Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production

Wei, Wei, Zhou, Xu, Wang, Dongbo, Sun, Jing and Wang, Qilin (2017) Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production. Water Research, 118 12-19. doi:10.1016/j.watres.2017.04.015


Author Wei, Wei
Zhou, Xu
Wang, Dongbo
Sun, Jing
Wang, Qilin
Title Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production
Journal name Water Research   Check publisher's open access policy
ISSN 1879-2448
0043-1354
Publication date 2017-07-01
Sub-type Article (original research)
DOI 10.1016/j.watres.2017.04.015
Open Access Status Not yet assessed
Volume 118
Start page 12
End page 19
Total pages 8
Place of publication London, United Kingdom
Publisher I W A Publishing
Language eng
Abstract Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH3) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH3-N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH3-N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B0) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH3-N/L, and was determined as approximately 22% (from 160 to 195 L CH4/kg VS added) and 140% (from 0.22 to 0.53 d(-1)) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'.
Formatted abstract
Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH3) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH3-N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH3-N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B0) and hydrolysis rate (k) was achieved at FA concentrations of 420–680 mg NH3-N/L, and was determined as approximately 22% (from 160 to 195 L CH4/kg VS added) and 140% (from 0.22 to 0.53 d−1) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from ‘linear economy’ to ‘circular economy’.
Keyword Anaerobic digestion
Degradability
Energy
Free ammonia
Methane
Secondary sludge
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: HERDC Pre-Audit
Advanced Water Management Centre Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 3 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 5 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 09 May 2017, 00:23:47 EST by System User on behalf of Learning and Research Services (UQ Library)