Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy

Barber, Lee, Carty, Chris, Modenese, Luca, Walsh, John, Boyd, Roslyn and Lichtwark, Glen (2017) Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy. Developmental Medicine and Child Neurology, 59 8: 843-851. doi:10.1111/dmcn.13427


Author Barber, Lee
Carty, Chris
Modenese, Luca
Walsh, John
Boyd, Roslyn
Lichtwark, Glen
Title Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy
Journal name Developmental Medicine and Child Neurology   Check publisher's open access policy
ISSN 1469-8749
0012-1622
Publication date 2017-03-01
Year available 2017
Sub-type Article (original research)
DOI 10.1111/dmcn.13427
Open Access Status Not yet assessed
Volume 59
Issue 8
Start page 843
End page 851
Total pages 10
Place of publication Chichester, West Sussex, United Kingdom
Publisher Wiley-Blackwell Publishing
Language eng
Subject 2735 Pediatrics, Perinatology, and Child Health
2806 Developmental Neuroscience
2728 Clinical Neurology
Abstract Aim: This study investigates the in vivo function of the medial gastrocnemius and soleus muscle-tendon units (MTU), fascicles, and tendons during walking in children with cerebral palsy (CP) and an equinus gait pattern. Method: Fourteen children with CP (9 males, 5 females; mean age 10y 6mo, standard deviation [SD] 2y 11mo; GMFCS level I=8, II=6), and 10 typically developing (6 males, 4 females; mean age 10y, SD 2y 1mo) undertook full body 3D gait analysis and simultaneous B-mode ultrasound images of the medial gastrocnemius and soleus fascicles during level walking. Fascicle lengths were analysed using a semi-automated tracking algorithm and MTUs using OpenSim. Statistical parametric mapping (two-sample t-test) was used to compare differences between groups (p<0.05). Results: In the CP group medial gastrocnemius fascicles lengthened during mid-stance gait and remained longer into late-stance compared to the typically developing group (p<0.001). CP medial gastrocnemius fascicles shortened less during stance (1.16mm [SD 1.47mm]) compared to the typically developing group (4.48mm [SD 1.94mm], p<0.001). In the CP group the medial gastrocnemius and soleus MTU and tendon were longer during early- and mid-stance (p<0.001). Ankle power during push-off (p=0.015) and positive work (p<0.002) and net work (p<0.001) were significantly lower in the CP group. Interpretation: Eccentric action of the CP medial gastrocnemius muscle fascicles during mid-stance walking is consistent with reduced volume and neuromuscular control of impaired muscle. Reduced ankle push-off power and positive work in the children with CP may be attributed to reduced active medial gastrocnemius fascicle shortening. These findings suggest a reliance on passive force generation for forward propulsion during equinus gait.
Formatted abstract
Aim: This study investigates the in vivo function of the medial gastrocnemius and soleus muscle-tendon units (MTU), fascicles, and tendons during walking in children with cerebral palsy (CP) and an equinus gait pattern.

Method: Fourteen children with CP (9 males, 5 females; mean age 10y 6mo, standard deviation [SD] 2y 11mo; GMFCS level I=8, II=6), and 10 typically developing (6 males, 4 females; mean age 10y, SD 2y 1mo) undertook full body 3D gait analysis and simultaneous B-mode ultrasound images of the medial gastrocnemius and soleus fascicles during level walking. Fascicle lengths were analysed using a semi-automated tracking algorithm and MTUs using OpenSim. Statistical parametric mapping (two-sample t-test) was used to compare differences between groups (p<0.05).

Results: In the CP group medial gastrocnemius fascicles lengthened during mid-stance gait and remained longer into late-stance compared to the typically developing group (p<0.001). CP medial gastrocnemius fascicles shortened less during stance (1.16mm [SD 1.47mm]) compared to the typically developing group (4.48mm [SD 1.94mm], p<0.001). In the CP group the medial gastrocnemius and soleus MTU and tendon were longer during early- and mid-stance (p<0.001). Ankle power during push-off (p=0.015) and positive work (p<0.002) and net work (p<0.001) were significantly lower in the CP group.

Interpretation: Eccentric action of the CP medial gastrocnemius muscle fascicles during mid-stance walking is consistent with reduced volume and neuromuscular control of impaired muscle. Reduced ankle push-off power and positive work in the children with CP may be attributed to reduced active medial gastrocnemius fascicle shortening. These findings suggest a reliance on passive force generation for forward propulsion during equinus gait.
Keyword Clinical Neurology
Pediatrics
Neurosciences & Neurology
Pediatrics
Q-Index Code C1
Q-Index Status Provisional Code
Grant ID 10415
Institutional Status UQ

 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 4 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 25 Apr 2017, 00:26:36 EST by Web Cron on behalf of Learning and Research Services (UQ Library)