Changes in the neurochemistry of athletes with repetitive brain trauma: preliminary results using localized correlated spectroscopy

Lin, Alexander P., Ramadan, Saadallah, Stern, Robert A., Box, Hayden C., Nowinski, Christopher J., Ross, Brian D. and Mountford, Carolyn E. (2015) Changes in the neurochemistry of athletes with repetitive brain trauma: preliminary results using localized correlated spectroscopy. Alzheimer's Research and Therapy, 7 1: . doi:10.1186/s13195-015-0094-5


Author Lin, Alexander P.
Ramadan, Saadallah
Stern, Robert A.
Box, Hayden C.
Nowinski, Christopher J.
Ross, Brian D.
Mountford, Carolyn E.
Title Changes in the neurochemistry of athletes with repetitive brain trauma: preliminary results using localized correlated spectroscopy
Journal name Alzheimer's Research and Therapy   Check publisher's open access policy
ISSN 1758-9193
Publication date 2015-03-15
Sub-type Article (original research)
DOI 10.1186/s13195-015-0094-5
Open Access Status DOI
Volume 7
Issue 1
Total pages 9
Place of publication London, United Kingdom
Publisher BioMed Central
Collection year 2016
Language eng
Formatted abstract
Introduction: The goal was to identify which neurochemicals differ in professional athletes with repetitive brain trauma (RBT) when compared to healthy controls using a relatively new technology, in vivo Localized COrrelated SpectroscopY (L-COSY).

Methods: To achieve this, L-COSY was used to examine five former professional male athletes with 11 to 28 years of exposure to contact sports. Each athlete who had had multiple symptomatic concussions and repetitive sub concussive trauma during their career was assessed by an experienced neuropsychologist. All athletes had clinical symptoms including headaches, memory loss, confusion, impaired judgment, impulse control problems, aggression, and depression. Five healthy men, age and weight matched to the athlete cohort and with no history of brain trauma, were recruited as controls. Data were collected from the posterior cingulate gyrus using a 3 T clinical magnetic resonance scanner equipped with a 32 channel head coil.

Results: The variation of the method was calculated by repeated examination of a healthy control and phantom and found to be 10% and 5%, respectively, or less. The L-COSY measured large and statistically significant differences (P ≤0.05), between healthy controls and those athletes with RBT. Men with RBT showed higher levels of glutamine/glutamate (31%), choline (65%), fucosylated molecules (60%) and phenylalanine (46%). The results were evaluated and the sample size of five found to achieve a significance level P = 0.05 and a power of 90%. Differences in N-acetyl aspartate and myo-inositol between RBT and controls were small and were not statistically significance.

Conclusions: A study of a small cohort of professional athletes, with a history of RBT and symptoms of chronic traumatic encephalopathy when compared with healthy controls using 2D L-COSY, showed elevations in brain glutamate/glutamine and choline as recorded previously for early traumatic brain injury. For the first time increases in phenylalanine and fucose are recorded in the brains of athletes with RBT. Larger studies utilizing the L-COSY method may offer an in-life method of diagnosis and personalized approach for monitoring the acute effects of mild traumatic brain injury and the chronic effects of RBT.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ

Document type: Journal Article
Sub-type: Article (original research)
Collection: Centre for Advanced Imaging Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 8 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 10 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Thu, 09 Mar 2017, 17:34:40 EST by Lorine Wilkinson on behalf of Learning and Research Services (UQ Library)