Bracing of the reconstructed and osteoarthritic knee during high dynamic load tasks

Hart, Harvi F. , Crossley, Kay M. , Collins, Natalie J. and Ackland, David C. (2017) Bracing of the reconstructed and osteoarthritic knee during high dynamic load tasks. Medicine and Science in Sports and Exercise, 49 6: 1086-1096. doi:10.1249/MSS.0000000000001201


Author Hart, Harvi F.
Crossley, Kay M.
Collins, Natalie J.
Ackland, David C.
Title Bracing of the reconstructed and osteoarthritic knee during high dynamic load tasks
Journal name Medicine and Science in Sports and Exercise   Check publisher's open access policy
ISSN 1530-0315
0195-9131
Publication date 2017-06-01
Year available 2017
Sub-type Article (original research)
DOI 10.1249/MSS.0000000000001201
Open Access Status Not yet assessed
Volume 49
Issue 6
Start page 1086
End page 1096
Total pages 11
Place of publication Philadelphia, PA, United States
Publisher Lippincott Williams & Wilkins
Language eng
Subject 2732 Orthopedics and Sports Medicine
3612 Physical Therapy, Sports Therapy and Rehabilitation
Abstract Purpose: Lateral compartment osteoarthritis accompanied by abnormal knee biomechanics is frequently reported in individuals with knee osteoarthritis after anterior cruciate ligament reconstruction (ACLR). The aim of this study was to evaluate changes in knee biomechanics produced by an adjusted and unadjusted varus knee brace during high dynamic loading activities in individuals with lateral knee osteoarthritis after ACLR and valgus malalignment. Methods: Nineteen participants who had undergone ACLR 5 to 20 yr previously and had symptomatic and radiographic lateral knee osteoarthritis with valgus malalignment were assessed. Quantitative motion analysis experiments were conducted during hopping, stair ascent, and descent under three test conditions: (i) no brace, (ii) unadjusted brace with sagittal plane support and neutral frontal plane alignment, and (iii) adjusted brace with sagittal plane support and varus realignment (valgus to neutral). Sagittal, frontal, and transverse plane knee kinematics, external joint moment, and angular impulse data were calculated. Results: Relative to an unbraced knee, braced conditions significantly increased knee flexion and adduction angles during hopping (P = 0.003 and P = 0.005; respectively), stair ascent (P = 0.003 and P G 0.001, respectively), and descent (P = 0.009 and P G 0.001, respectively). In addition, the brace conditions increased knee flexion (P G 0.001) and adduction (P = 0.001) angular impulses and knee stiffness (P G 0.001) during hopping, as well as increased knee adduction moments during stair ascent (P = 0.008) and flexion moments during stair descent (P = 0.006). There were no significant differences between the adjusted and the unadjusted brace conditions (P 9 0.05). Conclusion: A knee brace, with or without varus alignment, can modulate knee kinematics and external joint moments during hopping, stairs ascent, and descent in individuals with predominant lateral knee osteoarthritis after ACLR. Longer-term use of a brace may have implications in slowing osteoarthritis progression.
Formatted abstract
Purpose: Lateral compartment osteoarthritis accompanied by abnormal knee biomechanics is frequently reported in individuals with knee osteoarthritis after anterior cruciate ligament reconstruction (ACLR). The aim of this study was to evaluate changes in knee biomechanics produced by an adjusted and unadjusted varus knee brace during high dynamic loading activities in individuals with lateral knee osteoarthritis after ACLR and valgus malalignment.

Methods: Nineteen participants who had undergone ACLR 5 to 20 yr previously and had symptomatic and radiographic lateral knee osteoarthritis with valgus malalignment were assessed. Quantitative motion analysis experiments were conducted during hopping, stair ascent, and descent under three test conditions: (i) no brace, (ii) unadjusted brace with sagittal plane support and neutral frontal plane alignment, and (iii) adjusted brace with sagittal plane support and varus realignment (valgus to neutral). Sagittal, frontal, and transverse plane knee kinematics, external joint moment, and angular impulse data were calculated.

Results: Relative to an unbraced knee, braced conditions significantly increased knee flexion and adduction angles during hopping (P = 0.003 and P = 0.005; respectively), stair ascent (P = 0.003 and P < 0.001, respectively), and descent (P = 0.009 and P < 0.001, respectively). In addition, the brace conditions increased knee flexion (P < 0.001) and adduction (P = 0.001) angular impulses and knee stiffness (P < 0.001) during hopping, as well as increased knee adduction moments during stair ascent (P = 0.008) and flexion moments during stair descent (P = 0.006). There were no significant differences between the adjusted and the unadjusted brace conditions (P > 0.05).

Conclusion: A knee brace, with or without varus alignment, can modulate knee kinematics and external joint moments during hopping, stairs ascent, and descent in individuals with predominant lateral knee osteoarthritis after ACLR. Longer-term use of a brace may have implications in slowing osteoarthritis progression.
Keyword Sport Sciences
Sport Sciences
Q-Index Code C1
Q-Index Status Provisional Code
Grant ID 813021
GNT1106852
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: HERDC Pre-Audit
School of Health and Rehabilitation Sciences Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 0 times in Thomson Reuters Web of Science Article
Scopus Citation Count Cited 0 times in Scopus Article
Google Scholar Search Google Scholar
Created: Tue, 31 Jan 2017, 00:21:27 EST by System User on behalf of Learning and Research Services (UQ Library)