Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse

Yeo, S. -H., Kyle, V., Morris, P. G., Jackman, S., Sinnett-Smith, L. C., Schacker, M., Chen, C. and Colledge, W. H. (2016) Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse. Journal of Neuroendocrinology, 28 11: 1-12. doi:10.1111/jne.12435


Author Yeo, S. -H.
Kyle, V.
Morris, P. G.
Jackman, S.
Sinnett-Smith, L. C.
Schacker, M.
Chen, C.
Colledge, W. H.
Title Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse
Journal name Journal of Neuroendocrinology   Check publisher's open access policy
ISSN 0953-8194
1365-2826
Publication date 2016-11-01
Year available 2016
Sub-type Article (original research)
DOI 10.1111/jne.12435
Open Access Status DOI
Volume 28
Issue 11
Start page 1
End page 12
Total pages 12
Place of publication Chichester, West Sussex, United Kingdom
Publisher Wiley-Blackwell Publishing
Language eng
Abstract Kisspeptin neuropeptides are encoded by the Kiss1 gene and play a critical role in the regulation of the mammalian reproductive axis. Kiss1 neurones are found in two locations in the rodent hypothalamus: one in the arcuate nucleus (ARC) and another in the RP3V region, which includes the anteroventral periventricular nucleus (AVPV). Detailed mapping of the fibre distribution of Kiss1 neurones will help with our understanding of the action of these neurones in other regions of the brain. We have generated a transgenic mouse in which the Kiss1 coding region is disrupted by a CRE-GFP transgene so that expression of the CRE recombinase protein is driven from the Kiss1 promoter. As expected, mutant mice of both sexes are sterile with hypogonadotrophic hypogonadism and do not show the normal rise in luteinising hormone after gonadectomy. Mutant female mice do not develop mature Graafian follicles or form corpora lutea consistent with ovulatory failure. Mutant male mice have low blood testosterone levels and impaired spermatogenesis beyond the meiosis stage. Breeding Kiss-CRE heterozygous mice with CRE-activated tdTomato reporter mice allows fluorescence visualisation of Kiss1 neurones in brain slices. Approximately 80-90% of tdTomato positive neurones in the ARC were co-labelled with kisspeptin and expression of tdTomato in the AVPV region was sexually dimorphic, with higher expression in females than males. A small number of tdTomato-labelled neurones was also found in other locations, including the lateral septum, the anterodorsal preoptic nucleus, the amygdala, the dorsomedial and ventromedial hypothalamic nuclei, the periaquaductal grey, and the mammillary nucleus. Three dimensional visualisation of Kiss1 neurones and fibres by CLARITY processing of whole brains showed an increase in ARC expression during puberty and higher numbers of Kiss1 neurones in the caudal region of the ARC compared to the rostral region. ARC Kiss1 neurones sent fibre projections to several hypothalamic regions, including rostrally to the periventricular and pre-optic areas and to the lateral hypothalamus.
Formatted abstract
Kisspeptin neuropeptides are encoded by the Kiss1 gene and play a critical role in the regulation of the mammalian reproductive axis. Kiss1 neurones are found in two locations in the rodent hypothalamus: one in the arcuate nucleus (ARC) and another in the RP3V region, which includes the anteroventral periventricular nucleus (AVPV). Detailed mapping of the fibre distribution of Kiss1 neurones will help with our understanding of the action of these neurones in other regions of the brain. We have generated a transgenic mouse in which the Kiss1 coding region is disrupted by a CRE-GFP transgene so that expression of the CRE recombinase protein is driven from the Kiss1 promoter. As expected, mutant mice of both sexes are sterile with hypogonadotrophic hypogonadism and do not show the normal rise in luteinising hormone after gonadectomy. Mutant female mice do not develop mature Graafian follicles or form corpora lutea consistent with ovulatory failure. Mutant male mice have low blood testosterone levels and impaired spermatogenesis beyond the meiosis stage. Breeding Kiss-CRE heterozygous mice with CRE-activated tdTomato reporter mice allows fluorescence visualisation of Kiss1 neurones in brain slices. Approximately 80-90% of tdTomato positive neurones in the ARC were co-labelled with kisspeptin and expression of tdTomato in the AVPV region was sexually dimorphic, with higher expression in females than males. A small number of tdTomato-labelled neurones was also found in other locations, including the lateral septum, the anterodorsal preoptic nucleus, the amygdala, the dorsomedial and ventromedial hypothalamic nuclei, the periaquaductal grey, and the mammillary nucleus. Three dimensional visualisation of Kiss1 neurones and fibres by CLARITY processing of whole brains showed an increase in ARC expression during puberty and higher numbers of Kiss1 neurones in the caudal region of the ARC compared to the rostral region. ARC Kiss1 neurones sent fibre projections to several hypothalamic regions, including rostrally to the periventricular and pre-optic areas and to the lateral hypothalamus.
Keyword Kiss-CRE
Transgenic
Mouse
TdTomato
CLARITY
Neuronal distribution
Q-Index Code C1
Q-Index Status Provisional Code
Grant ID BB/K003178/1
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: HERDC Pre-Audit
School of Biomedical Sciences Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 3 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 5 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 27 Nov 2016, 10:21:53 EST by System User on behalf of Learning and Research Services (UQ Library)