The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs

Wu, Tao, Cheng, Ning, Xu, Chun, Sun, Wei, Yu, Chengzhong and Shi, Bin (2016) The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs. Journal of Biomedical Materials Research Part A, 104 12: 3004-3014. doi:10.1002/jbm.a.35841

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
UQ411488_OA.pdf application/pdf 2.16MB 0

Author Wu, Tao
Cheng, Ning
Xu, Chun
Sun, Wei
Yu, Chengzhong
Shi, Bin
Title The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs
Journal name Journal of Biomedical Materials Research Part A   Check publisher's open access policy
ISSN 1552-4965
1549-3296
Publication date 2016-12-01
Year available 2016
Sub-type Article (original research)
DOI 10.1002/jbm.a.35841
Open Access Status File (Author Post-print)
Volume 104
Issue 12
Start page 3004
End page 3014
Total pages 11
Place of publication Hoboken, NJ, United States
Publisher John Wiley & Sons
Language eng
Abstract This study evaluated the effect of mesoporous bioglass (MBG) dissolution on the differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from either sham control or ovariectomized (OVX) rats. MBG was fabricated by evaporation-induced self-assembly method. Cell proliferation was tested by Cell Counting Kit-8 assay, and cytoskeletal morphology was observed by fluorescence microscopy. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining and activity, Alizarin Red staining, while adipogenic differentiation was assessed by Oil Red-O staining. Quantitative real-time PCR and Western blot analysis were taken to evaluate the expression of runt-related transcription factor 2 (Runx2) and proliferator-activated receptor-γ (PPARγ). We found that MBG dissolution (0, 25, 50, 100, 200 µg/mL) was nontoxic to BMSCs growth. Sham and OVX BMSCs exhibited the highest ALP activity in 50 µg/mL of MBG osteogenic dissolution, except that sham BMSCs in 100 µg/mL showed the highest ALP activity on day 14. Runx2 was significantly upregulated after 100 µg/mL of MBG stimulation in sham and OVX BMSCs for 7 and 14 days, except that 25 µg/mL showed highest upregulation effect on OVX BMSCs at day 7. PPARγ was downregulated after MBG stimulation. The protein level of Runx2 from the sham BMSCs group was significantly upregulated after lower doses (25 and 50 µg/mL) of MBG stimulation, whereas PPARγ was downregulated in the sham and OVX BMSCs group. Thus, both the osteogenic and adipogenic abilities of BMSCs were damaged under OVX condition. Moreover, lower concentration of MBG dissolution can promote osteogenesis but inhibit adipogenesis of the sham and OVX BMSCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3004-3014, 2016.
Formatted abstract
This study evaluated the effect of mesoporous bioglass (MBG) dissolution on the differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from either sham control or ovariectomized (OVX) rats. MBG was fabricated by evaporation-induced self-assembly method. Cell proliferation was tested by Cell Counting Kit-8 assay, and cytoskeletal morphology was observed by fluorescence microscopy. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining and activity, Alizarin Red staining, while adipogenic differentiation was assessed by Oil Red-O staining. Quantitative real-time PCR and Western blot analysis were taken to evaluate the expression of runt-related transcription factor 2 (Runx2) and proliferator-activated receptor-γ (PPARγ). We found that MBG dissolution (0, 25, 50, 100, 200 µg/mL) was nontoxic to BMSCs growth. Sham and OVX BMSCs exhibited the highest ALP activity in 50 µg/mL of MBG osteogenic dissolution, except that sham BMSCs in 100 µg/mL showed the highest ALP activity on day 14. Runx2 was significantly upregulated after 100 µg/mL of MBG stimulation in sham and OVX BMSCs for 7 and 14 days, except that 25 µg/mL showed highest upregulation effect on OVX BMSCs at day 7. PPARγ was downregulated after MBG stimulation. The protein level of Runx2 from the sham BMSCs group was significantly upregulated after lower doses (25 and 50 µg/mL) of MBG stimulation, whereas PPARγ was downregulated in the sham and OVX BMSCs group. Thus, both the osteogenic and adipogenic abilities of BMSCs were damaged under OVX condition. Moreover, lower concentration of MBG dissolution can promote osteogenesis but inhibit adipogenesis of the sham and OVX BMSCs.
Keyword Adipogenesis
Bone marrow mesenchymal stem cells (BMSCs)
Mesoporous bioglass (MBG)
Osteogenesis
Osteoporosis
Q-Index Code C1
Q-Index Status Provisional Code
Grant ID 81170992
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: HERDC Pre-Audit
Australian Institute for Bioengineering and Nanotechnology Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 4 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 15 Nov 2016, 10:32:18 EST by System User on behalf of Learning and Research Services (UQ Library)