Analysing visual behaviour in Drosophila Dscam2 mutants using optimised optomotor and operant control assays

Bosch, Danny (2016). Analysing visual behaviour in Drosophila Dscam2 mutants using optimised optomotor and operant control assays PhD Thesis, School of Biomedical Sciences, The University of Queensland. doi:10.14264/uql.2016.454

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
s4269582_final_thesis.pdf Thesis full text application/pdf 30.54MB 0
Author Bosch, Danny
Thesis Title Analysing visual behaviour in Drosophila Dscam2 mutants using optimised optomotor and operant control assays
Formatted title
Analysing visual behaviour in Drosophila Dscam2 mutants using optimised optomotor and operant control assays
School, Centre or Institute School of Biomedical Sciences
Institution The University of Queensland
DOI 10.14264/uql.2016.454
Publication date 2016-07-18
Thesis type PhD Thesis
Supervisor Millard, S. S.
van Swinderen, B.
Total pages 135
Total colour pages 40
Total black and white pages 95
Language eng
Subjects 1109 Neurosciences
Formatted abstract
The patterns of synaptic connections between neurons in the brain are key determinants of behaviour, but how specific neural circuits lead to distinct behaviours is largely unknown. Cell recognition molecules that mediate interactions between neurons play a crucial role in establishing synaptic connections. Down Syndrome Cell Adhesion Molecule 2 (Dscam2) is required for establishing modularity in the visual system. Dscam2null flies have a disorganized visual system, lack boundaries between neighbouring modules in the optic lobe and exhibit changes in the postsynaptic composition of photoreceptor synapses. The behavioural consequences of these wiring defects have not been explored previously. In this thesis, I begin to dissect how these changes in neural circuitry affect visual system behaviours such as the optomotor response, object-orientation preference, and attention-like object-tracking. In order to do so, a population and single tethered-fly assay have been optimized and used to explore motion perception by assessing the visual response to a wide range of psychophysical parameters of black/green moving gratings. In addition, a single tethered-fly virtual reality assay has been set-up and used to explore orientation preference and attention-like tracking. Through the population and single tethered-fly optomotor assays, it is shown that Dscam2null flies can track motion but that their response is opposite to control flies under defined experimental conditions. Through the single tethered-fly virtual reality assay, it is shown that Dscam2null flies anti-fixate on a dark bar, again the opposite behaviour to control flies. Responses to a light bar are in contrast, the same as controls. It is shown that this anti-fixation is bar width dependent. Together these results demonstrate that the disrupted visual system of the Dscam2null flies can dramatically change the perception of specific visual cues and modify behaviour. Lastly, other perturbations of Dscam2 were studied such as Dscam2 single isoform and Dscam2 trisomic flies. Dscam2B single isoform flies displayed some motion detection phenotypes. In addition, they were not responding to either a dark or light bar in the tethered virtual reality assay. Dscam2 trisomic flies were able to detect gratings with different spatial and temporal frequencies but had a change in orientation behaviour as they displayed fixation behaviour to both a dark and a light bar. The results provide a foundation for understanding how brain miswiring can lead to changes in behaviour.

In chapter 1, I outline the background information to provide context for the experiments and overall research aim. In chapter 2, I contrast a population and single fly assay to explore motion detection in Drosophila. In chapter 3, I present a new single fly virtual reality assay which goes beyond simple visual reflexes by measuring object-orientation preferences and attention-like tracking. In chapter 4, I test motion detection in Dscam2null flies. In chapter 5, I test object-orientation preference and attention-like tracking in Dscam2null flies. In chapter 6, I test motion detection and object-orientation preference in other Dscam2 related mutants. Lastly, in chapter 7, I present a general discussion to explore how the combined experimental results further our knowledge of the research topic.
Keyword Drosophila melanogaster
Visual system
Optomotor response
Object orientation
Object tracking
Motion detection

Document type: Thesis
Collections: UQ Theses (RHD) - Official
UQ Theses (RHD) - Open Access
Version Filter Type
Citation counts: Google Scholar Search Google Scholar
Created: Thu, 07 Jul 2016, 00:27:48 EST by Danny Bosch on behalf of Learning and Research Services (UQ Library)