Distributions of fecal markers in wastewater from different climatic zones for human fecal pollution tracking in Australian surface waters

Ahmed, W., Sidhu, J. P. S., Smith, K., Beale, D. J., Gyawali, P. and Toze, S. (2016) Distributions of fecal markers in wastewater from different climatic zones for human fecal pollution tracking in Australian surface waters. Applied and Environmental Microbiology, 82 4: 1316-1323. doi:10.1128/AEM.03765-15

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
UQ380785_OA.pdf Full text (open access) application/pdf 929.38KB 0

Author Ahmed, W.
Sidhu, J. P. S.
Smith, K.
Beale, D. J.
Gyawali, P.
Toze, S.
Title Distributions of fecal markers in wastewater from different climatic zones for human fecal pollution tracking in Australian surface waters
Journal name Applied and Environmental Microbiology   Check publisher's open access policy
ISSN 1098-5336
0099-2240
Publication date 2016-01-01
Sub-type Article (original research)
DOI 10.1128/AEM.03765-15
Open Access Status File (Publisher version)
Volume 82
Issue 4
Start page 1316
End page 1323
Total pages 8
Place of publication Washington, DC, United States
Publisher American Society for Microbiology
Language eng
Subject 1305 Biotechnology
1106 Food Science
2402 Applied Microbiology and Biotechnology
2303 Ecology
Abstract Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 10 gene copies per ml), followed by those of HF183 (8.0 × 10 gene copies per ml) and Enterococcus spp. (3.6 × 10 gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters.
Formatted abstract
Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 106 gene copies per ml), followed by those of HF183 (8.0 × 105 gene copies per ml) and Enterococcus spp. (3.6 × 105 gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: HERDC Pre-Audit
School of Public Health Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 12 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 13 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 28 Feb 2016, 10:19:45 EST by System User on behalf of Learning and Research Services (UQ Library)