Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes

Kaur, R., Subbarayalu, M., Jagadeesan, R., Daglish, G. J., Nayak, M. K., Naik, H. R., Ramasamy, S., Subramanian, C., Ebert, P. R. and Schlipalius, D. I. (2015) Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Heredity, 115 3: 188-194. doi:10.1038/hdy.2015.24


Author Kaur, R.
Subbarayalu, M.
Jagadeesan, R.
Daglish, G. J.
Nayak, M. K.
Naik, H. R.
Ramasamy, S.
Subramanian, C.
Ebert, P. R.
Schlipalius, D. I.
Title Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes
Journal name Heredity   Check publisher's open access policy
ISSN 1365-2540
0018-067X
Publication date 2015-01-01
Sub-type Article (original research)
DOI 10.1038/hdy.2015.24
Open Access Status Not yet assessed
Volume 115
Issue 3
Start page 188
End page 194
Total pages 7
Place of publication London, United Kingdom
Publisher Nature Publishing Group
Language eng
Subject 1311 Genetics
2716 Genetics (clinical)
Abstract Phosphine (PH3) fumigation is the primary method worldwide for controlling insect pests of stored commodities. Over-reliance on phosphine, however, has led to the emergence of strong resistance. Detailed genetic studies previously identified two loci, rph1 and rph2, that interact synergistically to create a strong resistance phenotype. We compared the genetics of phosphine resistance in strains of Rhyzopertha Dominica and Tribolium castaneum from India and Australia, countries having similar pest species but widely differing in pest management practices. Sequencing analysis of the rph2 locus, dihydrolipoamide dehydrogenase (dld), identified two structurally equivalent variants, Proline49>Serine (P49S) in one R. Dominica strain and P45S in three strains of T. castaneum from India. These variants of the DLD protein likely affect FAD cofactor interaction with the enzyme. A survey of insects from storage facilities across southern India revealed that the P45/49S variant is distributed throughout the region at very high frequencies, in up to 94% of R. Dominica and 97% of T. castaneum in the state of Tamil Nadu. The abundance of the P45/49S variant in insect populations contrasted sharply with the evolutionary record in which the variant was absent from eukaryotic DLD sequences. This suggests that the variant is unlikely to provide a strong selective advantage in the absence of phosphine fumigation.
Formatted abstract
Phosphine (PH3) fumigation is the primary method worldwide for controlling insect pests of stored commodities. Over-reliance on phosphine, however, has led to the emergence of strong resistance. Detailed genetic studies previously identified two loci, rph1 and rph2, that interact synergistically to create a strong resistance phenotype. We compared the genetics of phosphine resistance in strains of Rhyzopertha dominica and Tribolium castaneum from India and Australia, countries having similar pest species but widely differing in pest management practices. Sequencing analysis of the rph2 locus, dihydrolipoamide dehydrogenase (dld), identified two structurally equivalent variants, Proline49>Serine (P49S) in one R. dominica strain and P45S in three strains of T. castaneum from India. These variants of the DLD protein likely affect FAD cofactor interaction with the enzyme. A survey of insects from storage facilities across southern India revealed that the P45/49S variant is distributed throughout the region at very high frequencies, in up to 94% of R. dominica and 97% of T. castaneum in the state of Tamil Nadu. The abundance of the P45/49S variant in insect populations contrasted sharply with the evolutionary record in which the variant was absent from eukaryotic DLD sequences. This suggests that the variant is unlikely to provide a strong selective advantage in the absence of phosphine fumigation.
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: Official 2016 Collection
School of Biological Sciences Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 8 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 9 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 28 Apr 2015, 10:24:36 EST by System User on behalf of School of Biological Sciences