Responses to increases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic

Laudicina, Vito Armando, Benhua, Sun, Dennis, Paul G, Badalucco, Luigi, Rushton, Steven P, Newsham, Kevin K, O'Donnell, Anthony G, Hartley, Iain P and Hopkins, David W (2015) Responses to increases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic. Polar Biology, 38 8: 1153-1160. doi:10.1007/s00300-015-1673-4

Author Laudicina, Vito Armando
Benhua, Sun
Dennis, Paul G
Badalucco, Luigi
Rushton, Steven P
Newsham, Kevin K
O'Donnell, Anthony G
Hartley, Iain P
Hopkins, David W
Title Responses to increases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic
Journal name Polar Biology   Check publisher's open access policy
ISSN 0722-4060
Publication date 2015-03-10
Year available 2015
Sub-type Article (original research)
DOI 10.1007/s00300-015-1673-4
Open Access Status
Volume 38
Issue 8
Start page 1153
End page 1160
Total pages 8
Place of publication Heidelberg, Germany
Publisher Springer
Language eng
Abstract Understanding relationships between environmental changes and soil microbial respiration is critical for predicting changes in soil organic carbon (SOC) fluxes and content. The maritime Antarctic is experiencing one of the fastest rates of warming in the world and is therefore a key location to examine the effect of temperature on SOC mineralization by the respiration of soil micro-organisms. However, depletion of the labile substrates at higher temperatures relative to the total SOC and greater temperature sensitivity of recalcitrant components of the SOC confound simple interpretations of the effects of warming. We have addressed these issues by testing the hypothesis that respiration by heterotrophic soil micro-organisms is not down-regulated with increasing temperature by comparing the increase in biomass-specific respiration rate with temperature to the increase in respiration rate per unit SOC. We used five soils from the maritime Antarctic ranging in latitude and SOC content and measured the soil respiratory responses to temperatures ranging from 2 to 50 °C in laboratory incubations lasting up to 31 days. In all cases, soil respiration increased with temperature up to 50 °C, even though this exceeds the temperatures normally be experienced, indicating that the community contained sufficient physiological diversity to be able to respire over large temperature ranges. Both the biomass-specific respiration rate and the overall rate of SOC mineralization increased with temperature, which we interpret as respiration by soil micro-organisms not down-regulating relative to temperature.
Keyword Acclimation
Carbon dioxide
Soil organic matter
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: School of Agriculture and Food Sciences
Official 2016 Collection
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 1 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 3 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 24 Mar 2015, 10:48:33 EST by System User on behalf of Scholarly Communication and Digitisation Service