The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis

Ramos, Joyce S., Dalleck, Lance C., Tjonna, Arnt Erik, Beetham, Kassia S. and Coombes, Jeff S. (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Medicine, 45 5: 679-692. doi:10.1007/s40279-015-0321-z


Author Ramos, Joyce S.
Dalleck, Lance C.
Tjonna, Arnt Erik
Beetham, Kassia S.
Coombes, Jeff S.
Title The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis
Journal name Sports Medicine   Check publisher's open access policy
ISSN 1179-2035
0112-1642
Publication date 2015-05-01
Year available 2015
Sub-type Critical review of research, literature review, critical commentary
DOI 10.1007/s40279-015-0321-z
Open Access Status DOI
Volume 45
Issue 5
Start page 679
End page 692
Total pages 14
Place of publication Auckland, New Zealand
Publisher Adis International
Language eng
Abstract Vascular dysfunction is a precursor to the atherosclerotic cascade, significantly increasing susceptibility to cardiovascular events such as myocardial infarction or stroke. Previous studies have revealed a strong relationship between vascular function and cardiorespiratory fitness (CRF). Thus, since high-intensity interval training (HIIT) is a potent method of improving CRF, several small randomized trials have investigated the impact on vascular function of HIIT relative to moderate-intensity continuous training (MICT).

The aim of this study was to systematically review the evidence and quantify the impact on vascular function of HIIT compared with MICT.

Three electronic databases (PubMed, Embase, and MEDLINE) were searched (until May 2014) for randomized trials comparing the effect of at least 2 weeks of HIIT and MICT on vascular function. HIIT protocols involved predominantly aerobic exercise at a high intensity, interspersed with active or passive recovery periods. We performed a meta-analysis to compare the mean difference in the change in vascular function assessed via brachial artery flow-mediated dilation (FMD) from baseline to post-intervention between HIIT and MICT. The impact of HIIT versus MICT on CRF, traditional cardiovascular disease (CVD) risk factors, and biomarkers associated with vascular function (oxidative stress, inflammation, and insulin resistance) was also reviewed across included studies.

Seven randomized trials, including 182 patients, met the eligibility criteria and were included in the meta-analysis. A commonly used HIIT prescription was four intervals of 4 min (4 × 4 HIIT) at 85-95% of maximum or peak heart rate (HRmax/peak), interspersed with 3 min of active recovery at 60-70% HRmax/peak, three times per week for 12-16 weeks. Brachial artery FMD improved by 4.31 and 2.15% following HIIT and MICT, respectively. This resulted in a significant (p < 0.05) mean difference of 2.26%. HIIT also had a greater tendency than MICT to induce positive effects on secondary outcome measures, including CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity.

HIIT is more effective at improving brachial artery vascular function than MICT, perhaps due to its tendency to positively influence CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. However, the variability in the secondary outcome measures, coupled with the small sample sizes in these studies, limits this finding. Nonetheless, this review suggests that 4 × 4 HIIT, three times per week for at least 12 weeks, is a powerful form of exercise to enhance vascular function.
Formatted abstract
Background
Vascular dysfunction is a precursor to the atherosclerotic cascade, significantly increasing susceptibility to cardiovascular events such as myocardial infarction or stroke. Previous studies have revealed a strong relationship between vascular function and cardiorespiratory fitness (CRF). Thus, since high-intensity interval training (HIIT) is a potent method of improving CRF, several small randomized trials have investigated the impact on vascular function of HIIT relative to moderate-intensity continuous training (MICT).

Objective
The aim of this study was to systematically review the evidence and quantify the impact on vascular function of HIIT compared with MICT.

Methods
Three electronic databases (PubMed, Embase, and MEDLINE) were searched (until May 2014) for randomized trials comparing the effect of at least 2 weeks of HIIT and MICT on vascular function. HIIT protocols involved predominantly aerobic exercise at a high intensity, interspersed with active or passive recovery periods. We performed a meta-analysis to compare the mean difference in the change in vascular function assessed via brachial artery flow-mediated dilation (FMD) from baseline to post-intervention between HIIT and MICT. The impact of HIIT versus MICT on CRF, traditional cardiovascular disease (CVD) risk factors, and biomarkers associated with vascular function (oxidative stress, inflammation, and insulin resistance) was also reviewed across included studies.

Results
Seven randomized trials, including 182 patients, met the eligibility criteria and were included in the meta-analysis. A commonly used HIIT prescription was four intervals of 4 min (4 × 4 HIIT) at 85–95 % of maximum or peak heart rate (HRmax/peak), interspersed with 3 min of active recovery at 60–70 % HRmax/peak, three times per week for 12–16 weeks. Brachial artery FMD improved by 4.31 and 2.15 % following HIIT and MICT, respectively. This resulted in a significant (p < 0.05) mean difference of 2.26 %. HIIT also had a greater tendency than MICT to induce positive effects on secondary outcome measures, including CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity.

Conclusion
HIIT is more effective at improving brachial artery vascular function than MICT, perhaps due to its tendency to positively influence CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. However, the variability in the secondary outcome measures, coupled with the small sample sizes in these studies, limits this finding. Nonetheless, this review suggests that 4 × 4 HIIT, three times per week for at least 12 weeks, is a powerful form of exercise to enhance vascular function.
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ
Additional Notes See https://helpdesk.library.uq.edu.au/view.php?id=2038325 for further author details.

Document type: Journal Article
Sub-type: Critical review of research, literature review, critical commentary
Collections: Official 2016 Collection
School of Human Movement and Nutrition Sciences Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 75 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 73 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 24 Mar 2015, 10:34:18 EST by System User on behalf of School of Human Movement and Nutrition Sciences