Adsorption kinetics of laponite and ludox silica nanoparticles onto a deposited Poly(diallyldimethylammonium chloride) layer measured by a quartz crystal microbalance and optical reflectometry

Xu, Dan, Hodges, Chris, Ding, Yulong, Biggs, Simon, Brooker, Anju and York, David (2010) Adsorption kinetics of laponite and ludox silica nanoparticles onto a deposited Poly(diallyldimethylammonium chloride) layer measured by a quartz crystal microbalance and optical reflectometry. Langmuir, 26 23: 18105-18112. doi:10.1021/la103071c


Author Xu, Dan
Hodges, Chris
Ding, Yulong
Biggs, Simon
Brooker, Anju
York, David
Title Adsorption kinetics of laponite and ludox silica nanoparticles onto a deposited Poly(diallyldimethylammonium chloride) layer measured by a quartz crystal microbalance and optical reflectometry
Journal name Langmuir   Check publisher's open access policy
ISSN 0743-7463
1520-5827
Publication date 2010-12-07
Sub-type Article (original research)
DOI 10.1021/la103071c
Volume 26
Issue 23
Start page 18105
End page 18112
Total pages 8
Place of publication Washington, DC, United States
Publisher American Chemical Society
Language eng
Abstract A quartz crystal microbalance with dissipation (QCM-D) and an optical reflectometer (OR) have been used to investigate the adsorption behavior of Laponite and Ludox silica nanoparticles at the solid-liquid interface. The adsorption of both Laponite and Ludox silica onto poly(diallyldimethylammonium chloride) (PDADMAC)-coated surfaces over the first few seconds were studied by OR. Both types of nanoparticles adsorbed rapidly and obtained a stable adsorbed amount after only a few minutes. The rate of adsorption for both nanoparticle types was concentration dependent. The maximum adsorption rate of Ludox nanoparticles was found to be approximately five times faster than that for Laponite nanoparticles. The QCM data for the Laponite remained stable after the initial adsorption period at each concentration tested. The observed plateau values for the frequency shifts increased with increasing Laponite particle concentration. The QCM data for the Ludox nanoparticles had a more complex long-time behavior. In particular, the dissipation data at 3 ppm and 10 ppm Ludox increased slowly with time, never obtaining a stable value within the duration of the experiment. We postulate here that this is caused by slow structural rearrangements of the particles and the PDADMAC within the surface adsorbed layer. Furthermore, the QCM dissipation values were significantly smaller for Laponite when compared with those for Ludox for all nanoparticle concentrations, suggesting that the Laponite adsorbed layer is more compact and more rigidly bound than the Ludox adsorbed layer.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ

Document type: Journal Article
Sub-type: Article (original research)
Collection: Faculty of Engineering, Architecture and Information Technology Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 12 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 13 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sat, 14 Jun 2014, 06:09:00 EST by System User on behalf of Faculty Of Engineering, Architecture & Info Tech