Crosses of Nod Mice with the Related Non Strain - a Polygenic Model for Iddm

McAleer, MA, Reifsnyder, P, Palmer, SM, Prochazka, M, Love, JM, Copeman, JB, Powell, EE, Rodrigues, NR, Prins, JB, Serreze, DV, Delarato, NH, Wicker, LS, Peterson, LB, Schork, NJ, Todd, JA and Leiter, EH (1995) Crosses of Nod Mice with the Related Non Strain - a Polygenic Model for Iddm. Diabetes, 44 10: 1186-1195. doi:10.2337/diabetes.44.10.1186

Author McAleer, MA
Reifsnyder, P
Palmer, SM
Prochazka, M
Love, JM
Copeman, JB
Powell, EE
Rodrigues, NR
Prins, JB
Serreze, DV
Delarato, NH
Wicker, LS
Peterson, LB
Schork, NJ
Todd, JA
Leiter, EH
Title Crosses of Nod Mice with the Related Non Strain - a Polygenic Model for Iddm
Journal name Diabetes   Check publisher's open access policy
ISSN 0012-1797
Publication date 1995-10-01
Year available 1995
Sub-type Article (original research)
DOI 10.2337/diabetes.44.10.1186
Open Access Status Not yet assessed
Volume 44
Issue 10
Start page 1186
End page 1195
Total pages 10
Place of publication ALEXANDRIA
Language eng
Abstract Chromosome locations of non-major histocompatibility complex (MHC) genes contributing to insulin-dependent diabetes mellitus (IDDM) in mice have been determined by outcrossing NOD mice to other inbred strains congenic for the NOD MHC haplotype (H2(g7)). At least nine non-MHC IDDM susceptibility genes (Idd) were previously identified at first backcross (BC1) after outcross of NOD to C57BL/10.H2(g7) congenic mice (B10.H2(g7)). We investigated whether the same set of Idd loci segregated with IDDM susceptibility after outcross of NOD to NON.H2(g7) congenic mice, Since the outcrosses to NON.H2(g7) and B10.H2(g7) were performed in the same vivarium, direct comparisons were made of the chromosomal locations and relative strengths of Idd alleles in diabetic progeny from the two different outcrosses, In comparison with the NOD x B10.H2(g7) outcross, the NOD x NON.H2(g7) outcross produced significantly higher IDDM: frequencies in Fl, F2, and BC1 generations, The high F2 diabetes frequency allowed evaluation of the effects of homozygous expression of both the susceptibility and the resistance allele at Idd loci, This analysis demonstrated that no single non-MHC Idd locus was essential for the onset of diabetes in this cross, After outcross to NON.H2(g7), Idd4 (chromosome [Chr] 11), Idd5 (Chr 1), and Idd8 (Chr 14) did not segregate with IDDM in either the BC1 or the F2 generation, Diabetogenic NOD-derived alleles at Idd2 (Chr 9), Idd3 (Chr 3), and Idd10 (Chr 3) were segregating in the BC1, An NON-derived allele contributing to susceptibility on Chr 7 (Idd7) was also detected, Dominant traits, detectable only in the F2 cross, were encoded by Chr 4 (Idd9) and two newly mapped loci on Chr 13 (Idd14) and 5 (Idd15). A third dominant trait was encoded by Chr 6 (possibly Idd6), but here, in contrast to Idd9, Idd14, and Idd15, the NON allele was diabetogenic, Stepwise logistic regression analysis of the BC1 and F2 data confirmed that the ability to identify certainty of the non-MHC Idd loci was contingent on the extent of homozygosity for NOD background genes, This study shows that the diabetogenic phenotype can be achieved through the actions of variable combinations of MHC-unlinked genes and a diabetogenic MHC haplotype.
Keyword Nonobese Diabetic Mice
Q-Index Code C1
Q-Index Status Provisional Code
Grant ID CA-34196
Institutional Status Unknown

Document type: Journal Article
Sub-type: Article (original research)
Collection: ResearcherID Downloads - Archived
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 118 times in Thomson Reuters Web of Science Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 22 Apr 2014, 18:22:08 EST by System User