Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity

Dey, Priyanka, Blakey, Idriss, Thurecht, Kristofer J. and Fredericks, Peter M. (2014) Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity. Langmuir, 30 8: 2249-2258. doi:10.1021/la4047462


Author Dey, Priyanka
Blakey, Idriss
Thurecht, Kristofer J.
Fredericks, Peter M.
Title Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity
Journal name Langmuir   Check publisher's open access policy
ISSN 0743-7463
1520-5827
Publication date 2014-03-01
Year available 2014
Sub-type Article (original research)
DOI 10.1021/la4047462
Open Access Status DOI
Volume 30
Issue 8
Start page 2249
End page 2258
Total pages 10
Place of publication Washington, DC, United States
Publisher American Chemical Society
Language eng
Abstract Plasmonic gold nanoassemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g., localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g., surface-enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nanoassemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nanoassemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nanoassembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology, and properties of the hybrid nanoassemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching of the macromolecular linker. Insights have been gained into how the morphology influences the SERS performance of these nanoassemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nanoassembly formation and pave the way for the possible application of these nanoassemblies as SERS biosensors for medical diagnostics.
Formatted abstract
 Plasmonic gold nanoassemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g., localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g., surface-enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nanoassemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nanoassemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nanoassembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology, and properties of the hybrid nanoassemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching of the macromolecular linker. Insights have been gained into how the morphology influences the SERS performance of these nanoassemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nanoassembly formation and pave the way for the possible application of these nanoassemblies as SERS biosensors for medical diagnostics.
Keyword Gold Nanoparticles
Aggregation
Behavior
Monolayers
Chemistry
Q-Index Code C1
Q-Index Status Confirmed Code
Grant ID DP1094205
FT100100721
Institutional Status UQ

 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 18 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 18 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 13 Apr 2014, 10:04:25 EST by System User on behalf of Aust Institute for Bioengineering & Nanotechnology