Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration

Frith, Jessica E., Menzies, Donna J., Cameron,Andrew R., Ghosh, P., Whitehead, Darryl L., Gronthos, S., Zannettino, Andrew C.W. and Cooper-White, Justin J. (2014) Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials, 35 4: 1150-1162. doi:10.1016/j.biomaterials.2013.10.056

Author Frith, Jessica E.
Menzies, Donna J.
Cameron,Andrew R.
Ghosh, P.
Whitehead, Darryl L.
Gronthos, S.
Zannettino, Andrew C.W.
Cooper-White, Justin J.
Title Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration
Journal name Biomaterials   Check publisher's open access policy
ISSN 0142-9612
Publication date 2014-01-01
Year available 2013
Sub-type Article (original research)
DOI 10.1016/j.biomaterials.2013.10.056
Open Access Status Not yet assessed
Volume 35
Issue 4
Start page 1150
End page 1162
Total pages 13
Place of publication Amsterdam, The Netherlands
Publisher Elsevier BV
Language eng
Subject 2502 Biomaterials
1502 Banking, Finance and Investment
2503 Ceramics and Composites
2211 Mechanics of Materials
1304 Biophysics
Abstract Previous reports in the literature investigating chondrogenesis in mesenchymal progenitor cell (MPC) cultures have confirmed the chondro-inductive potential of pentosan polysulphate (PPS), a highly sulphated semi-synthetic polysaccharide, when added as a soluble component to culture media under standard aggregate-assay conditions or to poly(ethylene glycol)/hyaluronic acid (PEG/HA)-based hydrogels, even in the absence of inductive factors (e.g. TGFβ). In this present study, we aimed to assess whether a 'bound' PPS would have greater activity and availability over a soluble PPS, as a media additive or when incorporated into PEG/HA-based hydrogels. We achieved this by covalently pre-binding the PPS to the HA component of the gel (forming a new molecule, HA-PPS). We firstly investigated the activity of HA-PPS compared to free PPS, when added as a soluble factor to culture media. Cell proliferation, as determined by CCK8 and EdU assay, was decreased in the presence of either bound or free PPS whilst chondrogenic differentiation, as determined by DMMB assay and histology, was enhanced. In all cases, the effect of the bound PPS (HA-PPS) was more potent than that of the unbound form. These results alone suggest wider applications for this new molecule, either as a culture supplement or as a coating for scaffolds targeted at chondrogenic differentiation or maturation. We then investigated the incorporation of HA-PPS into a PEG/HA-based hydrogel system, by simply substituting some of the HA for HA-PPS. Rheological testing confirmed that incorporation of either HA-PPS or PPS did not significantly affect gelation kinetics, final hydrogel modulus or degradation rate but had a small, but significant, effect on swelling. When encapsulated in the hydrogels, MPCs retained good viability and rapidly adopted a rounded morphology. Histological analysis of both GAG and collagen deposition after 21 days showed that the incorporation of the bound-PPS into the hydrogel resulted in increased matrix formation when compared to the addition of soluble PPS to the hydrogel, or the hydrogel alone. We believe that this new generation injectable, degradable hydrogel, incorporating now a covalently bound-PPS, when combined with MPCs, has the potential to assist cartilage regeneration in a multitude of therapeutic targets, including for intervertebral disc (IVD) degeneration.
Keyword Hyaluronic acid
Mesenchymal progenitor cell
Nucleus pulposus
Pentosan polysulphate
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 22 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 19 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 10 Dec 2013, 10:18:32 EST by System User on behalf of Aust Institute for Bioengineering & Nanotechnology