Graph fusion algebras of WLM(p,p′)

Rasmussen, Jorgen (2010) Graph fusion algebras of WLM(p,p′). Nuclear Physics, Section B, 830 3: 493-541. doi:10.1016/j.nuclphysb.2009.12.033

Author Rasmussen, Jorgen
Title Graph fusion algebras of WLM(p,p′)
Formatted title
Graph fusion algebras of WLM(p,p′)
Journal name Nuclear Physics, Section B   Check publisher's open access policy
ISSN 0550-3213
Publication date 2010-05-11
Year available 2010
Sub-type Article (original research)
DOI 10.1016/j.nuclphysb.2009.12.033
Open Access Status DOI
Volume 830
Issue 3
Start page 493
End page 541
Total pages 49
Place of publication Amsterdam, Netherlands
Publisher Elsevier
Language eng
Formatted abstract
We consider the W-extended logarithmic minimal model WLM (p, p ′). As in the rational minimal models, the so-called fundamental fusion algebra of WLM (p, p ′) is described by a simple graph fusion algebra. The fusion matrices in the regular representation thereof are mutually commuting, but in general not diagonalizable. Nevertheless, we show that they can be brought simultaneously to block-diagonal forms whose blocks are upper-triangular matrices of dimension 1, 3, 5 or 9. The directed graphs associated with the two fundamental modules are described in detail. The corresponding adjacency matrices share a complete set of common generalized eigenvectors organized as a web constructed by interlacing the Jordan chains of the two matrices. This web is here called a Jordan web and it consists of connected subwebs with 1, 3, 5 or 9 generalized eigenvectors. The similarity matrix, formed by concatenating these vectors, simultaneously brings the two fundamental adjacency matrices to Jordan canonical form modulo permutation similarity. The ranks of the participating Jordan blocks are 1 or 3, and the corresponding eigenvalues are given by 2 cos (j π/ ρ) where j = 0, ..., ρ and ρ = p, p ′. For p > 1, only some of the modules in the fundamental fusion algebra of WLM (p, p ′) are associated with boundary conditions within our lattice approach. The regular representation of the corresponding fusion subalgebra has features similar to the ones in the regular representation of the fundamental fusion algebra, but with dimensions of the upper-triangular blocks and connected Jordan-web components given by 1, 2, 3 or 8. Some of the key results are illustrated for W-extended critical percolation WLM (2, 3).
Keyword Physics, Particles & Fields
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ

Document type: Journal Article
Sub-type: Article (original research)
Collection: School of Mathematics and Physics
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 4 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 4 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 14 Mar 2012, 21:27:01 EST by Kay Mackie on behalf of School of Mathematics & Physics