Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules

Seviour, Thomas, Donose, Bogdan C., Pijuan, Maite and Yuan, Zhiguo (2010) Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules. Environmental Science & Technology, 44 12: 4729-4734. doi:10.1021/es100362b

Author Seviour, Thomas
Donose, Bogdan C.
Pijuan, Maite
Yuan, Zhiguo
Title Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules
Journal name Environmental Science & Technology   Check publisher's open access policy
ISSN 0013-936X
Publication date 2010-06-15
Sub-type Article (original research)
DOI 10.1021/es100362b
Volume 44
Issue 12
Start page 4729
End page 4734
Total pages 6
Editor Jerald Schnoor
Place of publication Washington, DC, U.S.A.
Publisher American Chemical Society
Collection year 2011
Language eng
Abstract The application of aerobic sludge granules in wastewater treatment could increase the intensity of wastewater treatment processes because of their greater density and size relative to conventional sludge flocs. It has been suggested that granules are distinguished from flocs by gel forming exopolysaccharides. In this study, evidence is presented linking a specific exopolysaccharide component with granule extracellular polymeric substance (EPS) gelation. Granular EPS comprised three components: high-molecular-weight (MW) exopolysaccharide, medium-MW proteins and glycosides, and low-MW proteins and glycosides. The high-MW fraction was separated by fractional precipitation and preparatory-scale gel permeation chromatography (GPC). The MW profile of this fraction appears to be exclusively attributable to high-MW polysaccharide. The exopolysaccharide exists as a gel at normal wastewater treatment operating pH (i.e., 6.0−8.5), whereas the low/medium-MW material does not. Conformational analysis by atomic force microscopy (AFM) of the dried material showed that the polysaccharide forms pearl-necklace-like, intramolecularly condensed structures when dissolved in Milli-Q water and partially relaxed helical aggregates when in alkali solution. Consequently, the gel-forming property of EPS in the aerobic sludge granules tested is probably associated with high-MW polysaccharide components.
Keyword Extracellular polymeric substances
Atomic-force microscopy
Size-exclusion chromatography
References 1. de Kreuk, M. K.; van Loosdrecht, M. C. M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability Water Sci. Technol. 2004, 49 ( 11−12) 9– 17[PubMed], [ChemPort] 2. Liu, Y.; Tay, J.-H. State of the art of biogranulation technology for wastewater treatment Biotechnol. Adv. 2004, 22 ( 7) 533– 563[CrossRef], [PubMed], [ChemPort] 3. Liu, Y.-Q.; Liu, Y.; Tay, J.-H. The effects of extracellular polymeric substances on the formation and stability of biogranules Appl. Microbiol. Biotechnol. 2004, 65 ( 2) 143– 148[CrossRef], [PubMed], [ChemPort] 4. McSwain, B. S.; Irvine, R. L.; Hausner, M.; Wilderer, P. A. Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge Appl. Environ. Microbiol. 2005, 71 ( 2) 1051– 1057[CrossRef], [PubMed], [ChemPort] 5. Lemaire, R.; Webb, R. I.; Yuan, Z. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater ISME J. 2008, 2 ( 5) 528– 541[CrossRef], [PubMed], [ChemPort] 6. Wilen, B. M.; Jin, B.; Lant, P. The influence of key chemical constituents in activated sludge on surface and flocculating properties Water Res. 2003, 37 ( 9) 2127– 2139[CrossRef], [PubMed], [ChemPort] 7. Tay, J. H.; Liu, Q. S.; Liu, Y. The role of cellular polysaccharides in the formation and stability of aerobic granules Lett. Appl. Microbiol. 2001, 33 ( 3) 222– 226[CrossRef], [PubMed], [ChemPort] 8. Tay; Tay, J. H.; Liu; Liu, Q. S.; Liu; Liu, Y. The effects of shear force on the formation, structure and metabolism of aerobic granules Appl. Microbiol. Biotechnol. 2001, 57 ( 1) 227– 233[CrossRef], [PubMed] 9. Adav, S. S.; Lee, D.-J.; Tay, J.-H. Extracellular polymeric substances and structural stability of aerobic granule Water Res. 2008, 42 ( 6−7) 1644– 1650[CrossRef], [PubMed], [ChemPort] 10. Seviour, T.; Pijuan, M.; Nicholson, T.; Keller, J.; Yuan, Z. Understanding the properties of aerobic sludge granules as hydrogels Biotechnol. Bioeng. 2009, 102 ( 5) 1483– 1493[CrossRef], [PubMed], [ChemPort] 11. Seviour, T.; Pijuan, M.; Nicholson, T.; Keller, J.; Yuan, Z. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges Water Res. 2009, 43 ( 18) 4469– 4478[CrossRef], [PubMed], [ChemPort] 12. Whistler, R. L.; Smart, C. L. Polysaccharide Chemistry; Academic Press: New York, 1953. 13. Warda, M.; Toida, T.; Zhang, F.; Sun, P.; Munoz, E.; Xie, J.; Linhardt, R. Isolation and characterization of heparan sulfate from various murine tissues Glycoconjugate J. 2006, 23 ( 7) 555– 563[CrossRef], [PubMed], [ChemPort] 14. Ni, B.-J.; Fang, F.; Xie, W.-M.; Sun, M.; Sheng, G.-P.; Li, W.-H.; Yu, H.-Q. Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling Water Res. 2009, 43 ( 5) 1350– 1358[CrossRef], [PubMed], [ChemPort] 15. Garnier, C.; Grner, T.; Lartiges, B. S.; Abdelouhab, S.; de Donato, P. Characterization of activated sludge exopolymers from various origins: A combined size-exclusion chromatography and infrared microscopy study Water Res. 2005, 39 ( 13) 3044– 3054[CrossRef], [PubMed], [ChemPort] 16. Grner, T.; de Donato, P.; Ameil, M.-H.; Montarges-Pelletier, E.; Lartiges, B. S. Activated sludge exopolymers: separation and identification using size exclusion chromatography and infrared micro-spectroscopy Water Res. 2003, 37 ( 10) 2388– 2393[CrossRef], [PubMed], [ChemPort] 17. Yang, L.; Zhang, L.-M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources Carbohydr. Polym. 2009, 76 ( 3) 349– 361[CrossRef], [ChemPort] 18. Cowman, M. K.; Li, M.; Balazs, E. A. Tapping Mode Atomic Force Microscopy of Hyaluronan: Extended and Intramolecularly Interacting Chains Biophys. J. 1998, 75 ( 4) 2030– 2037[CrossRef], [PubMed], [ChemPort] 19. Cowman, M. K.; Spagnoli, C.; Kudasheva, D.; Li, M.; Dyal, A.; Kanai, S.; Balazs, E. A. Extended, Relaxed, and Condensed Conformations of Hyaluronan Observed by Atomic Force Microscopy Biophys. J. 2005, 88 ( 1) 590– 602[CrossRef], [PubMed], [ChemPort] 20. Liu, H.; Fang, H. H. P. Extraction of extracellular polymeric substances (EPS) of sludges J. Biotechnol. 2002, 95 ( 3) 249– 256[CrossRef], [PubMed], [ChemPort] 21. Ferguson, J.; Kemblowski, Z. Applied Fluid Rheology; Elsevier Applied Science: London, 1991. 22. Noda, S.; Funami, T.; Nakauma, M.; Asai, I.; Takahashi, R.; Al-Assaf, S.; Ikeda, S.; Nishinari, K.; Phillips, G. O. Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behavior in aqueous systems. 1. Gellan gum with various acyl contents in the presence and absence of potassium Food Hydrocolloids 2008, 22 ( 6) 1148– 1159[CrossRef], [ChemPort] 23. Robinson, G.; Manning, C. E.; Morris, E. R. Conformation and Physical Properties of the Bacterial Polysaccharide Gellan, Welan and Rhamsan. In Food Polymers, Gels and Colloids; Dickinson, E., Ed.; The Royal Society of Chemistry: Cambridge, U.K., 1990. 24. Sletmoen, M.; Christensen, B. E.; Stokke, B. T. Probing macromolecular architectures of nanosized cyclic structures of (1→3)-aβ-d-glucans by AFM and SEC-MALLS Carbohydr. Res. 2005, 340 ( 5) 971– 979[CrossRef], [PubMed], [ChemPort] 25. Bhaskar, P. V.; Bhosle, N. B. Bacterial extracellular polymeric substance (EPS): A carrier of heavy metals in the marine food-chain Environ. Int. 2006, 32 ( 2) 191– 198[CrossRef], [PubMed], [ChemPort] 26. Wingender, J.; Neu, T.; Fleming, H.-C., What are Bacterial Extracellular Polymeric Substances? In Microbial Extracellular Polymeric Substances; Wingender, J.; Neu, T.; Fleming, H.-C., Eds.; Springer: Berlin, 1999. 27. Morris, V. J. Gels. In The Chemical Physics of Food; Belton, P., Ed.; Blackwell Publishing: Oxford, U.K., 2007; Vol. 151, p 191.
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collection: Official 2011 Collection
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 31 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 33 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 27 Jun 2010, 10:07:58 EST