Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells

Foley, Jeffrey M., Rozendal, Rene A., Hertle, Christopher K., Lant, Paul A. and Rabaey, Korneel (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environmental Science & Technology, 44 9: 3629-3637. doi:10.1021/es100125h

Author Foley, Jeffrey M.
Rozendal, Rene A.
Hertle, Christopher K.
Lant, Paul A.
Rabaey, Korneel
Title Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
Journal name Environmental Science & Technology   Check publisher's open access policy
ISSN 0013-936X
Publication date 2010-05-01
Year available 2010
Sub-type Article (original research)
DOI 10.1021/es100125h
Volume 44
Issue 9
Start page 3629
End page 3637
Total pages 9
Place of publication United Kingdom
Publisher Pergamon
Collection year 2011
Language eng
Abstract Existing wastewater treatment options are generally perceived as energy intensive and environmentally unfriendly. Much attention has been focused on two new approaches in the past years, (i) microbial fuel cells and (ii) microbial electrolysis cells, which directly generate electrical current or chemical products, respectively, during wastewater treatment. These systems are commonly denominated as bioelectrochemical systems, and a multitude of claims have been made in the past regarding the environmental impact of these treatment options. However, an in-depth study backing these claims has not been performed. Here, we have conducted a life cycle assessment (LCA) to compare the environmental impact of three industrial wastewater treatment options, (i) anaerobic treatment with biogas generation, (ii) a microbial fuel cell treatment, with direct electricity generation, and (iii) a microbial electrolysis cell, with hydrogen peroxide production. Our analysis showed that a microbial fuel cell does not provide a significant environmental benefit relative to the “conventional” anaerobic treatment option. However, a microbial electrolysis cell provides significant environmental benefits through the displacement of chemical production by conventional means. Provided that the target conversion level of 1000 A·m−3 can be met, the decrease in greenhouse gas emissions and other environmentally harmful emissions (e.g., aromatic hydrocarbons) of the microbial electrolysis cell will be a key driver for the development of an industrial standard for this technology. Evidently, this assessment is highly dependent on the underlying assumptions, such as the used reactor materials and target performance. This provides a challenge and an opportunity for researchers in the field to select and develop appropriate and environmentally benign materials of construction, as well as demonstrate the required 1000 A·m−3 performance at pilot and full scale.
Keyword Waste-water Treatment
Sewage-treatment processes
References 1. Rabaey, K.; Rodriguez, J.; Blackall, L. L.; Keller, J.; Gross, P.; Batstone, D.; Verstraete, W.; Nealson, K. H. Microbial ecology meets electrochemistry: electricity-driven and driving communities ISME J. 2007, 1 ( 1) 9– 18[CrossRef], [PubMed], [ChemPort] 2. Rozendal, R. A.; Hamelers, H. V. M.; Rabaey, K.; Keller, J.; Buisman, C. J. N. Towards practical implementation of bioelectrochemical wastewater treatment Trends Biotechnol. 2008, 26 ( 8) 450– 459[CrossRef], [PubMed], [ChemPort] 3. Liu, H.; Grot, S.; Logan, B. E. Electrochemically assisted microbial production of hydrogen from acetate Environ. Sci. Technol. 2005, 39 ( 11) 4317– 4320[ACS Full Text ], [PubMed], [ChemPort] 4. Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis Int. J. Hydrogen Energy 2006, 31 ( 12) 1632– 1640[CrossRef], [ChemPort] 5. Aulenta, F.; Canosa, A.; Majone, M.; Panero, S.; Reale, P.; Rossetti, S. Trichloroethene dechlorination and H-2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system Environ. Sci. Technol. 2008, 42 ( 16) 6185– 6190[ACS Full Text ], [PubMed], [ChemPort] 6. Gregory, K. B.; Lovley, D. R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes Environ. Sci. Technol. 2005, 39 ( 22) 8943– 8947[ACS Full Text ], [PubMed], [ChemPort] 7. Clauwaert, P.; Toledo, R.; Van der Ha, D.; Crab, R.; Verstraete, W.; Hu, H.; Udert, K. M.; Rabaey, K. Combining biocatalyzed electrolysis with anaerobic digestion Water Sci. Technol. 2008, 57 ( 4) 575– 579[CrossRef], [PubMed], [ChemPort] 8. Park, D. H.; Zeikus, J. G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation J. Bacteriol. 1999, 181 ( 8) 2403– 2410[PubMed], [ChemPort] 9. Shin, H. S.; Zeikus, J. G.; Jain, M. K. Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae Appl. Microbiol. Biotechnol. 2002, 58 ( 4) 476– 481[CrossRef], [PubMed], [ChemPort] 10. Emde, R.; Schink, B. Enhanced Propionate Formation by Propionibacterium-Freudenreichii Subsp Freudenreichii in a 3-Electrode Amperometric Culture System Appl. Environ. Microbiol. 1990, 56 ( 9) 2771– 2776[PubMed], [ChemPort] 11. Rabaey, K.; Verstraete, W. Microbial fuel cells: novel biotechnology for energy generation Trends Biotechnol. 2005, 23 ( 6) 291– 298[CrossRef], [PubMed], [ChemPort] 12. Logan, B. E.; Hamelers, B.; Rozendal, R.; Schrorder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology Environ. Sci. Technol. 2006, 40 ( 17) 5181– 5192[ACS Full Text ], [PubMed], [ChemPort] 13. Rabaey, K.; Clauwaert, P.; Aelterman, P.; Verstraete, W. Tubular microbial fuel cells for efficient electricity generation Environ. Sci. Technol. 2005, 39 ( 20) 8077– 8082[ACS Full Text ], [PubMed], [ChemPort] 14. Fan, Y. Z.; Hu, H. Q.; Liu, H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration J. Power Sources 2007, 171, 348– 354[CrossRef], [ChemPort] 15. Foller, P. C.; Bombard, R. T. Processes for the Production of Mixtures of Caustic Soda and Hydrogen-Peroxide Via the Reduction of Oxygen J. Appl. Electrochem. 1995, 25 ( 7) 613– 627[CrossRef], [ChemPort] 16. Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system Angew. Chem., Int. Ed. 2003, 42 ( 31) 3653– 3655[CrossRef], [PubMed], [ChemPort] 17. Rozendal, R.; Leone, E.; Keller, J.; Rabaey, K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system Electrochem. Commun. 2009, 11 ( 9) 1752– 1755[CrossRef], [ChemPort] 18. Rismani-Yazdi, H.; Carver, S. M.; Christy, A. D.; Tuovinen, I. H. Cathodic limitations in microbial fuel cells: An overview J. Power Sources 2008, 180 ( 2) 683– 694[CrossRef], [ChemPort] 19. You, S. J.; Zhao, Q. L.; Zhang, J.; Liu, H.; Jiang, J. Q.; Zhao, S. Q. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells Biosens. Bioelectron. 2008, 23 ( 7) 1157– 1160[CrossRef], [PubMed], [ChemPort] 20. ISO Environmental management - Life cycle assessment - Principles and framework: International Standard 14040; International Standards Organisation: Geneva, 2006. 21. Tchobanoglous, G.; Burton, F. L.; Stensel, H. D. Wastewater Engineering, Treatment and Reuse; 4th ed.; McGraw Hill: Boston, 2003. 22. Jones, C. W. Applications of hydrogen peroxide and derivatives; Royal Society of Chemistry: Cambridge, U.K., 1999. 23. Shimoyama, T.; Komukai, S.; Yamazawa, A.; Ueno, Y.; Logan, B. E.; Watanabe, K. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell Appl. Microbiol. Biotechnol. 2008, 80 ( 2) 325– 300[CrossRef], [PubMed], [ChemPort] 24. Lundie, S.; Peters, G. M.; Beavis, P. C. Life Cycle Assessment for sustainable metropolitan water systems planning Environ. Sci. Technol. 2004, 38 ( 13) 3465– 3473[ACS Full Text ], [PubMed], [ChemPort] 25. Lassaux, S.; Renzoni, R.; Germain, A. Life Cycle Assessment of Water from the Pumping Station to the Wastewater Treatment Plant Int. J. Life Cycle Assess. 2007, 12 ( 2) 118– 126[CrossRef], [ChemPort] 26. Hospido, A.; Teresa Moreira, M.; Martin, M.; Rigola, M.; Feijoo, G. Environmental Evaluation of Different Treatment Processes for Sludge from Urban Wastewater Treatments: Anaerobic Digestion versus Thermal Processes Int. J. Life Cycle Assess. 2005, 10 ( 5) 336– 345[CrossRef], [ChemPort] 27. Emmerson, R. H. C.; Morse, G. K.; Lester, J. N.; Edge, D. R. The Life-Cycle Analysis of Small-Scale Sewage Treatment Processes J. Chartered Inst. Water Environ. Manage. 1995, 9 ( 3) 317– 325[CrossRef], [ChemPort] 28. Zhang, Z.; Wilson, F. Life-cycle assessment of a sewage-treatment plant in South-East Asia J. Chartered Inst. Water Environ. Manage. 2000, 14 ( 1) 51– 56[CrossRef] 29. Gaterell, M. R.; Griffin, P.; Lester, J. N. Evaluation of environmental burdens associated with sewage treatment processes using life cycle assessment techniques Environ. Technol. 2005, 26 ( 3) 231– 249[CrossRef], [PubMed], [ChemPort] 30. PRe Consultants SimaPro 7, v.7.1.8, Amersfoort, Netherlands, 2008. 31. Swiss Centre for Life Cycle Inventories ecoinvent, v.1.3, Dubendorf, 2007. 32. Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology Int. J. Life Cycle Assess. 2003, 8 ( 6) 234– 330[CrossRef] 33. Udo de Haes, H. A.; Jolliet, O.; Finnveden, G.; Hauschild, M.; Krewitt, W.; Muller-Wenk, R. Best Available Practice Regarding Impact Categories and Category Indicators in Life Cycle Impact Assessment Int. J. Life Cycle Assess. 1999, 4 ( 2) 66– 74[CrossRef] 34. Foley, J.; De Haas, D.; Hartley, K.; Lant, P. Comprehensive Life Cycle Inventories of Alternative Wastewater Treatment Systems Water Res. 2010, 44 ( 4) 1654– 1666[CrossRef], [PubMed], [ChemPort] 35. Rozendal, R.; Leone, E.; Keller, J.; Rabaey, K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system Electrochem. Commun. 2009, 11 ( 9) 1752– 1755[CrossRef], [ChemPort]
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ
Additional Notes Online March 31, 2010

Document type: Journal Article
Sub-type: Article (original research)
Collection: Official 2011 Collection
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 89 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 98 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 16 May 2010, 10:06:38 EST