Frequency of occurrence of various drought types and its impact on performance of photoperiod-sensitive and insensitive rice genotypes in rainfed lowland conditions in Cambodia

Tsubo, M., Fukai, S., Basnayake, J. and Ouk, M. (2009) Frequency of occurrence of various drought types and its impact on performance of photoperiod-sensitive and insensitive rice genotypes in rainfed lowland conditions in Cambodia. Field Crops Research, 113 3: 287-296. doi:10.1016/j.fcr.2009.06.006


Author Tsubo, M.
Fukai, S.
Basnayake, J.
Ouk, M.
Title Frequency of occurrence of various drought types and its impact on performance of photoperiod-sensitive and insensitive rice genotypes in rainfed lowland conditions in Cambodia
Journal name Field Crops Research   Check publisher's open access policy
ISSN 0378-4290
1872-6852
Publication date 2009-09-04
Sub-type Article (original research)
DOI 10.1016/j.fcr.2009.06.006
Open Access Status Not yet assessed
Volume 113
Issue 3
Start page 287
End page 296
Total pages 10
Editor D. Chatel
Jill M. Lenne
P. H. Graham
Place of publication Amsterdam, Netherlands
Publisher Elsevier
Language eng
Subject C1
820402 Rice
070302 Agronomy
Abstract Lowland rice production in the Mekong region is generally low because crops are cultivated under rainfed conditions and often exposed to drought. To examine how field water availability affects productivity of different genotypes in rainfed lowland rice, the field experiments were carried out for six years at eight locations in Cambodia. We classified 34 genotypes used in the experiments into photoperiod-insensitive [short (IS) and medium (IM) maturity] and sensitive [medium (SM) and long-duration (SL) maturity] genotype groups. Mean days-to-flower from sowing was 87 in IS, 112 in IM, 112 in SM and 132 in SL and mean grain yield was 2.0, 2.8, 2.5 and 2.4 t ha, respectively. Drought environment was quantified for each experiment by determining whether free water level was observed to be less than the soil surface during three growth stages: GS1 (maximum tillering), GS2 (panicle development) and GS3 (grain filling). The drought frequency estimated from 44 field experiments was 18% in all IM, SM and SL at GS1, 23%, 25% and 32% in IM, SM and SL, respectively at GS2, and 43%, 45% and 57% at GS3. Thus, the drought occurred more frequently after flowering, particularly in the SL group. Based on the results, the IM genotypes may be grown to escape from drought during the GS2 and GS3 periods by sowing early (June) in the drought environment. When sown late (August), the SM genotypes are exposed to less drought risk because they flower earlier than the IM genotypes. Compared with the SM genotypes, the SL genotypes are highly exposed to water stress during the GS3 period, resulting in yield reduction. SM and IM had similar occurrence of drought environment, but yield reduction due to drought was less in SM than in IM. Thus, photoperiod-sensitive cultivars with medium maturity are preferred in drought-prone lowland fields, particularly when sowing is delayed. In the favourable water environment, the SM genotypes can be better than the IM genotypes when sown early in the season, while the IM genotypes performs better than the SM genotypes with late sowing. This suggests that for lowland fields without drought photoperiod-insensitive cultivars are recommended and photoperiod-sensitive cultivars can be preferred if sown early.
Formatted abstract
Lowland rice production in the Mekong region is generally low because crops are cultivated under rainfed conditions and often exposed to drought. To examine how field water availability affects productivity of different genotypes in rainfed lowland rice, the field experiments were carried out for six years at eight locations in Cambodia. We classified 34 genotypes used in the experiments into photoperiod-insensitive [short (IS) and medium (IM) maturity] and sensitive [medium (SM) and long-duration (SL) maturity] genotype groups. Mean days-to-flower from sowing was 87 in IS, 112 in IM, 112 in SM and 132 in SL and mean grain yield was 2.0, 2.8, 2.5 and 2.4 t ha−1, respectively. Drought environment was quantified for each experiment by determining whether free water level was observed to be less than the soil surface during three growth stages: GS1 (maximum tillering), GS2 (panicle development) and GS3 (grain filling). The drought frequency estimated from 44 field experiments was 18% in all IM, SM and SL at GS1, 23%, 25% and 32% in IM, SM and SL, respectively at GS2, and 43%, 45% and 57% at GS3. Thus, the drought occurred more frequently after flowering, particularly in the SL group. Based on the results, the IM genotypes may be grown to escape from drought during the GS2 and GS3 periods by sowing early (June) in the drought environment. When sown late (August), the SM genotypes are exposed to less drought risk because they flower earlier than the IM genotypes. Compared with the SM genotypes, the SL genotypes are highly exposed to water stress during the GS3 period, resulting in yield reduction. SM and IM had similar occurrence of drought environment, but yield reduction due to drought was less in SM than in IM. Thus, photoperiod-sensitive cultivars with medium maturity are preferred in drought-prone lowland fields, particularly when sowing is delayed. In the favourable water environment, the SM genotypes can be better than the IM genotypes when sown early in the season, while the IM genotypes performs better than the SM genotypes with late sowing. This suggests that for lowland fields without drought photoperiod-insensitive cultivars are recommended and photoperiod-sensitive cultivars can be preferred if sown early.
Keyword Drought
Flowering
Grain yield
Photoperiod sensitivity
Water availability
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: 2010 Higher Education Research Data Collection
School of Agriculture and Food Sciences
ERA 2012 Admin Only
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 7 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 12 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Fri, 04 Sep 2009, 20:21:39 EST