Effect of incubation temperature on muscle growth of barramundi Lates calcarifer at hatch and post-exogenous feeding

Carey, G. R., Kraft, P. G., Cramp, R. L. and Franklin, C. E. (2009) Effect of incubation temperature on muscle growth of barramundi Lates calcarifer at hatch and post-exogenous feeding. Journal of Fish Biology, 74 1: 77-89. doi:10.1111/j.1095-8649.2008.02110.x


Author Carey, G. R.
Kraft, P. G.
Cramp, R. L.
Franklin, C. E.
Title Effect of incubation temperature on muscle growth of barramundi Lates calcarifer at hatch and post-exogenous feeding
Formatted title
Effect of incubation temperature on muscle growth of barramundi Lates calcarifer at hatch and post-exogenous feeding
Journal name Journal of Fish Biology   Check publisher's open access policy
ISSN 0022-1112
Publication date 2009-01-01
Year available 2008
Sub-type Article (original research)
DOI 10.1111/j.1095-8649.2008.02110.x
Open Access Status
Volume 74
Issue 1
Start page 77
End page 89
Total pages 13
Editor J. F. Craig
Place of publication United Kingdom
Publisher Wiley-Blackwell Publishing
Language eng
Subject C1
970106 Expanding Knowledge in the Biological Sciences
0608 Zoology
Abstract Muscle morphology was investigated in newly hatched barramundi Lates calcarifer larvae incubated at set temperatures (26, 29 and 31 degrees C) prior to hatching. Three days after hatching (the start of exogenous feeding), larvae from the 26 and 31 degrees C treatments were each divided into two groups and reared at that temperature or transferred over the period of several hours to 29 degrees C (control temperature). Incubation temperature significantly affected muscle cellularity in the developing embryo, with larvae incubated at 26 degrees C (mean +/- s.e. 223.3 +/- 7.9) having on average 14.4% more inner muscle fibres than those incubated at 31 degrees C (195.2 +/- 8.8) and 4.8% more than those incubated at 29 degrees C (213.5 +/- 4.7). Conversely, inner muscle fibre cross-sectional area significantly increased at the warm incubation temperature in L. calcarifer, so that the total cross-sectional muscle area was not different between treatment groups. The total cross-sectional area of superficial muscle fibres and the proportion of superficial to total fibre cross-sectional area in just hatched L. calcarifer were also affected by incubation temperature, with incubation at the cool temperature (26 degrees C) increasing both the total cross-sectional area and proportion of superficial muscle fibres. By 9 days post-hatch, the aforementioned differences were no longer significant. Similarly, there was no difference in total superficial fibre cross-sectional area between any treatment groups of L. calcarifer, whereas incubation temperature still significantly affected the proportion of superficial to total muscle fibre cross-sectional area. Larvae hatched and grown at 31 degrees C had a significantly reduced percentage of superficial muscle cross-sectional area (mean +/- s.e. 5.11 +/- 0.66%) compared with those incubated and grown at 29 degrees C (8.04 +/- 0.77%) and 26 degrees C (9.32 +/- 0.56%) and those incubated at 26 degrees C and transferred to 29 degrees C (7.52 +/- 0.53%), and incubated at 31 degrees C and transferred to 29 degrees C (6.28 +/- 0.69%). These results indicate that changes in muscle cellularity induced by raising or lowering the incubation temperature of L. calcarifer display varying degrees of persistence over developmental time. The significance of these findings to the culture of L. calcarifer is discussed.
Formatted abstract
Muscle morphology was investigated in newly hatched barramundi Lates calcarifer larvae incubated at set temperatures (26, 29 and 31° C) prior to hatching. Three days after hatching (the start of exogenous feeding), larvae from the 26 and 31° C treatments were each divided into two groups and reared at that temperature or transferred over the period of several hours to 29° C (control temperature). Incubation temperature significantly affected muscle cellularity in the developing embryo, with larvae incubated at 26° C (mean ±s.e. 223·3 ± 7·9) having on average 14·4% more inner muscle fibres than those incubated at 31° C (195·2 ± 8·8) and 4·8% more than those incubated at 29° C (213·5 ± 4·7). Conversely, inner muscle fibre cross-sectional area significantly increased at the warm incubation temperature in L. calcarifer, so that the total cross-sectional muscle area was not different between treatment groups. The total cross-sectional area of superficial muscle fibres and the proportion of superficial to total fibre cross-sectional area in just hatched L. calcarifer were also affected by incubation temperature, with incubation at the cool temperature (26° C) increasing both the total cross-sectional area and proportion of superficial muscle fibres. By 9 days post-hatch, the aforementioned differences were no longer significant. Similarly, there was no difference in total superficial fibre cross-sectional area between any treatment groups of L. calcarifer, whereas incubation temperature still significantly affected the proportion of superficial to total muscle fibre cross-sectional area. Larvae hatched and grown at 31° C had a significantly reduced percentage of superficial muscle cross-sectional area (mean ±s.e. 5·11 ± 0·66%) compared with those incubated and grown at 29° C (8·04 ± 0·77%) and 26° C (9·32 ± 0·56%) and those incubated at 26° C and transferred to 29° C (7·52 ± 0·53%), and incubated at 31° C and transferred to 29° C (6·28 ± 0·69%). These results indicate that changes in muscle cellularity induced by raising or lowering the incubation temperature of L. calcarifer display varying degrees of persistence over developmental time. The significance of these findings to the culture of L. calcarifer is discussed.
Keyword hyperplasia
inner muscle
myogenesis
superficial muscle
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: Queensland Brain Institute Publications
School of Biological Sciences Publications
Ecology Centre Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 2 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Thu, 09 Jul 2009, 22:14:28 EST by Gail Walter on behalf of School of Biological Sciences