Hijacking epidermal growth factor receptors by angiotensin II: New possibilities for understanding and treating cardiac hypertrophy

Smith N. J., Chan, H.-W., Osborne, J. E., Thomas, W. G. and Hannan, R. D. (2004) Hijacking epidermal growth factor receptors by angiotensin II: New possibilities for understanding and treating cardiac hypertrophy. Cellular and Molecular Life Sciences, 61 21: 2695-2703. doi:10.1007/s00018-004-4244-3

Author Smith N. J.
Chan, H.-W.
Osborne, J. E.
Thomas, W. G.
Hannan, R. D.
Title Hijacking epidermal growth factor receptors by angiotensin II: New possibilities for understanding and treating cardiac hypertrophy
Journal name Cellular and Molecular Life Sciences   Check publisher's open access policy
ISSN 1420-682X
Publication date 2004-11-01
Sub-type Critical review of research, literature review, critical commentary
DOI 10.1007/s00018-004-4244-3
Volume 61
Issue 21
Start page 2695
End page 2703
Total pages 9
Place of publication Basel, Switzerland
Publisher Birkhauser
Language eng
Subject 060110 Receptors and Membrane Biology
060111 Signal Transduction
060199 Biochemistry and Cell Biology not elsewhere classified
060108 Protein Trafficking
060602 Animal Physiology - Cell
110201 Cardiology (incl. Cardiovascular Diseases)
110903 Central Nervous System
Formatted abstract
Activation of the type 1 angiotensin II receptor (AT1R) is associated with the aetiology of left ventricular hypertrophy, although the exact intracellular signalling mechanism(s) remain unclear. Transactivation of the epidermal growth factor receptor (EGFR) has emerged as a central mechanism by which the G protein-coupled AT1R, which lacks intrinsic tyrosine kinase activity, can stimulate the mitogen-activated protein kinase signalling pathways thought to mediate cardiac hypertrophy. Current studies support a model whereby AT1R-dependent transactivation of EGFRs on cardiomyocytes involves stimulation of membrane-bound metalloproteases, which in turn cleave EGFR ligands such as heparin-binding EGF from a plasma membrane-associated precursor. Numerous aspects of the ‘triple membrane-passing signalling’ paradigm of AT1R-induced EGFR transactivation remain to be characterised, including the identity of the specific metalloproteases involved, the intracellular mechanism for their activation and the exact EGFR subtypes required. Here we examine how ‘hijacking’ of the EGFR might explain the ability of the AT1R to elicit the temporally and qualitatively diverse responses characteristic of the hypertrophic phenotype, and discuss the ramifications of delineating these pathways for the development of new therapeutic strategies to combat cardiac hypertrophy.
© Birkhäuser Verlag, Basel, 2004
Keyword Type 1 angiotensin II receptor (AT1R)
EGFR - metalloprotease
Cardiac hypertrophy
References 1 Levy D., Savage D. D., Garrison R. J., Anderson K. M., Kannel W. B. and Castelli W. P. (1987) Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am. J. Cardiol. 59(9): 956–960 2 Levy D., Garrison R. J., Savage D. D., Kannel W. B. and Castelli W. P. (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322(22): 1561–1566 3 Pfeffer J. M., Pfeffer M. A., Mirsky I. and Braunwald E. (1982) Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc. Natl. Acad. Sci. USA 79(10): 3310– 3314 4 McElmurray J. H. 3rd, Mukherjee R., New R. B., Sampson A. C., King M. K., Hendrick J. W. et al. (1999) Angiotensin-converting enzyme and matrix metalloproteinase inhibition with developing heart failure: comparative effects on left ventricular function and geometry. J. Pharmacol. Exp. Ther. 291(2): 799– 811 5 Dahlof B. (2001) Left ventricular hypertrophy and angiotensin II antagonists. Am. J. Hypertens. 14(2): 174–182 6 Fleischmann E. H. and Schmieder R. E. (2002) Are all antihypertensive drug classes equal in reducing left ventricular hypertrophy? Curr. Cardiol. Rep. 4(6): 474–478 7 Suzuki J., Matsubara H., Urakami M. and Inada M. (1993) Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ. Res. 73(3): 439–447 8 Nio Y., Matsubara H., Murasawa S., Kanasaki M. and Inada M. (1995) Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J. Clin. Invest. 95(1): 46–54 9 Fujii N., Tanaka M., Ohnishi J., Yukawa K., Takimoto E., Shimada S. et al. (1995) Alterations of angiotensin II receptor contents in hypertrophied hearts. Biochem. Biophys. Res. Commun. 212(2): 326–333 10 Sadoshima J. and Izumo S. (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res. 73(3): 413–423 11 Baker K. M. and Aceto J. F. (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am. J. Physiol. 259(2 Pt 2): H610–H618 12 Thomas W. G., Brandenburger Y., Autelitano D. J., Pham T., Qian H. and Hannan R. (2002) Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ. Res. 90(2): 135–142 13 Paradis P., Dali-Youcef N., Paradis F. W., Thibault G. and Nemer M. (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc. Natl. Acad.Sci. USA 97(2): 931–936 14 Hoffmann S., Krause T., van Geel P. P., Willenbrock R., Pagel I., into Y. M. et al. (2001) Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy. J. Mol. Med. 79(10): 601–608 15 de Gasparo M., Catt K. J., Inagami T., Wright J. W. and Unger T. (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52(3): 415–472 16 Rocic P., Govindarajan G., Sabri A. and Lucchesi P. A. (2001) A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am. J. Physiol. Cell Physiol. 280(1): C90–C99 17 Eguchi S., Iwasaki H., Ueno H., Frank G. D., Motley E. D., Eguchi K. et al. (1999) Intracellular signaling of angiotensin IIinduced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase and Akt. J. Biol. Chem. 274(52): 36843–36851 18 Daub H., Weiss F. U., Wallasch C. and Ullrich A. (1996) Role of transactivation of the EGF receptor in signalling by G-protein- coupled receptors. Nature 379(6565): 557–560 19 Kagiyama S., Eguchi S., Frank G. D., Inagami T., Zhang Y. C. and Phillips M. I. (2002) Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation 106(8): 909–912 CMLS, Cell. Mol. Life Sci. Vol. 61, 2004 Multi-author Review 2701 20 Asakura M., Kitakaze M., Takashima S., Liao Y., Ishikura F., Yoshinaka T. et al. (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8(1): 35–40 21 Villarreal F. J., Kim N. N., Ungab G. D., Printz M. P, and Dillmann W. H. (1993) Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88(6): 2849– 2861 22 Shah B. H. and Catt K. J. (2003) A central role of EGF receptor transactivation in angiotensin II-induced cardiac hypertrophy. Trends Pharmacol. Sci. 24(5): 239–244 23 Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C. et al. (1999) EGF receptor transactivation by G-protein- coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764): 884–888 24 Prenzel N., Fischer O. M., Streit S., Hart S. and Ullrich A. (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 8(1): 11–31 25 Eguchi S. and Inagami T. (2000) Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase. Regul. Pept. 91(1-3): 13–20 26 Gschwind A., Zwick E., Prenzel N., Leserer M. and Ullrich A. (2001) Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20(13): 1594–1600 27 Pierce K. L., Luttrell L. M. and Lefkowitz R. J. (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20(13): 1532–1539 28 Shah B. H. (2002) Epidermal growth factor receptor transactivation in angiotensin II-induced signaling: role of cholesterolrich microdomains. Trends Endocrinol. Metab. 13(1): 1–2 29 Baselga J. (2000) Current and planned clinical trials with trastuzumab (Herceptin). Semin. Oncol. 27(5 Suppl. 9): 27–32 30 Iwamoto R., Yamazaki S., Asakura M., Takashima S., Hasuwa H., Miyado K. et al. (2003) Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl. Acad. Sci. USA 100(6): 3221–3226 31 Crone S. A., Zhao Y. Y., Fan L., Gu Y., Minamisawa S., Liu Y. et al. (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 8(5): 459–465 32 Chen B., Bronson R. T., Klaman L. D., Hampton T. G., Wang J. F., Green P. J. et al. (2000) Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat. Genet. 24(3): 296–299 33 Zwick E., Hackel P. O., Prenzel N. and Ullrich A. (1999) The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol. Sci. 20(10): 408–412 34 Luttrell L. M. (2002) Activation and targeting of mitogen-activated protein kinases by G-protein-coupled receptors. Can. J. Physiol. Pharmacol. 80(5): 375–382 35 Mende U., Kagen A., Cohen A., Aramburu J., Schoen F. J. and Neer E. J. (1998) Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc. Natl. Acad. Sci. USA 95(23): 13893–13898 36 Akhter S. A., Luttrell L. M., Rockman H. A., Iaccarino G., Lefkowitz R. J. and Koch W. J. (1998) Targeting the receptor- Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280(5363): 574–577 37 Adams J. W., Sakata Y., Davis M. G., Sah V. P., Wang Y., Liggett S. B. et al. (1998) Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl. Acad. Sci. USA 95(17): 10140–10145 38 LaMorte V. J., Thorburn J., Absher D., Spiegel A., Brown J. H., Chien K. R. et al. (1994) Gq- and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J. Biol. Chem. 269(18): 13490–13496 39 Doan T. N., Ali M. S. and Bernstein K. E. (2001) Tyrosine kinase activation by the angiotensin II receptor in the absence of calcium signaling. J. Biol. Chem. 276(24): 20954–20958 40 Seta K., Nanamori M., Modrall J. G., Neubig R. R. and Sadoshima J. (2002) AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src-Ras-ERK pathway without nuclear translocation of ERKs. J. Biol. Chem. 277(11): 9268– 9277 41 Seta K. and Sadoshima J. (2003) Phosphorylation of tyrosine 319 of the angiotensin II type 1 receptor mediates angiotensin II-induced trans-activation of the epidermal growth factor receptor. J. Biol. Chem. 278(11): 9019–9026 42 Schlessinger J. (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110(6): 669–672 43 Falls D. L. (2003) Neuregulins: functions, forms and signaling strategies. Exp. Cell Res. 284(1): 14–30 44 Lin J. and Freeman M. R. (2003) Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate 54(1): 1–7 45 Zhao Y. Y., Sawyer D. R., Baliga R. R., Opel D. J., Han X., Marchionni M. A. et al. (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J. Biol. Chem. 273(17): 10261–10269 46 Riese D. J. 2nd and Stern D. F. (1998) Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 20(1): 41–48 47 Davis-Fleischer K. M. and Besner G. E. (1998) Structure and function of heparin-binding EGF-like growth factor (HB-EGF. Front. Biosci. 3: d288–d299 48 Baliga R. R., Pimental D. R., Zhao Y. Y., Simmons W. W., Marchionni M. A., Sawyer D. B. et al. (1999) NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K) and MEK-MAPK-RSK. Am. J. Physiol. 277(5 Pt 2): H2026– H2037 49 Spinale F. G., Coker M. L., Krombach S. R., Mukherjee R., Hallak H., Houck W. V. et al. (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ. Res. 85(4): 364–376 50 Visse R. and Nagase H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ. Res. 92(8): 827–839 51 Ono M., Raab G., Lau K., Abraham J. A. and Klagsbrun M. (19947) Purification and characterization of transmembrane forms of heparin-binding EGF-like growth factor. J. Biol. Chem. 269(49): 31315–31321 52 Higashiyama S., Iwamoto R., Goishi K., Raab G., Taniguchi N., Klagsbrun M. et al. (1995) The membrane protein CD9/DRAP 27 potentiates the juxtacrine growth factor activity of the membrane- anchored heparin-binding EGF-like growth factor. J. Cell. Biol. 128(5): 929–938 53 Takemura T., Hino S., Murata Y., Yanagida H., Okada M., Yoshioka K. et al. (1999) Coexpression of CD9 augments the ability of membrane-bound heparin-binding epidermal growth factorlike growth factor (proHB-EGF) to preserve renal epithelial cell viability. Kidney Int. 55(1): 71–81 54 Takemura T., Kondo S., Homma T., Sakai M. and Harris R. C. (1997) The membrane-bound form of heparin-binding epidermal growth factor-like growth factor promotes survival of cultured renal epithelial cells. J. Biol. Chem. 272(49): 31036– 31042 55 Rao G. N. (1996) Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates Ras and extracellular signal-regulated protein kinases group of mitogen-activated protein kinases. Oncogene 13(4): 713–719 56 Rocic P., Seshiah P. and Griendling K. K. (2003) Reactive oxygen species-sensitivity of angiotensin II-dependent translation initiation in vascular smooth muscle cells. J. Biol. Chem. 2702 N. J. Smith et al. Hijacking EGF receptors with Angiotensin II 57 Takahashi T., Taniguchi T., Konishi H., Kikkawa U., Ishikawa Y. and Yokoyama M. (1999) Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am. J. Physiol. 276(6 Pt 2): H1927–H1934 58 Frank G. D., Eguchi S., Yamakawa T., Tanaka S., Inagami T. and Motley E. D. (2000) Involvement of reactive oxygen species in the activation of tyrosine kinase and extracellular signal-regulated kinase by angiotensin II. Endocrinology 141(9): 3120– 3126 59 Kayanoki Y., Higashiyama S., Suzuki K., Asahi M., Kawata S., Matsuzawa Y. et al. (1999) The requirement of both intracellular reactive oxygen species and intracellular calcium elevation for the induction of heparin-binding EGF-like growth factor in vascular endothelial cells and smooth muscle cells. Biochem. Biophys. Res. Commun. 259(1): 50–55 60 Frank G. D., Mifune M., Inagami T., Ohba M., Sasaki T., Higashiyama S. et al. (2003) Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: role of metalloprotease and protein kinase C-delta. Mol. Cell. Biol. 23(5): 1581– 1589 61 Sorescu D. and Griendling K. K. (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest. Heart Fail. 8(3): 132–140 62 Li J. M., Gall N. P., Grieve D. J., Chen M. and Shah A. M. (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40(4): 477–484 63 Delbosc S., Cristol J. P., Descomps B., Mimran A. and Jover B. (2002) Simvastatin prevents angiotensin II-induced cardiac alteration and oxidative stress. Hypertension 40(2): 142–147 64 Shih N. L., Cheng T. H., Loh S. H., Cheng P. Y., Wang D. L., Chen Y. S. et al. (2001) Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem. Biophys. Res. Commun. 283(1): 143–148 65 Voisin L., Foisy S., Giasson E., Lambert C., Moreau P. and Meloche S. (2002) EGF receptor transactivation is obligatory for protein synthesis stimulation by G protein-coupled receptors. Am. J. Physiol. Cell. Physiol. 283(2): C446–C455 66 Bhat G. J., Thekkumkara T. J., Thomas W. G., Conrad K. M. and Baker K. M. (1995) Activation of the STAT pathway by angiotensin II in T3CHO/AT1A cells. Cross-talk between angiotensin II and interleukin-6 nuclear signaling. J. Biol. Chem. 270(32): 19059–19065 67 Bhat G. J., Thekkumkara T. J., Thomas W. G., Conrad K. M. and Baker K. M. (1994) Angiotensin II stimulates sis-inducing factor- like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J. Biol. Chem. 269(50): 31443–31449 68 David M., Wong L., Flavell R., Thompson S. A., Wells A., Larner A. C. et al. (1996) STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J. Biol. Chem. 271(16): 9185–9188 69 Park O. K., Schaefer T. S. and Nathans D. (1996) In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc. Natl. Acad. Sci. USA 93(24): 13704–13708 70 Hannan R. D., Jenkins A., Jenkins A. K. and Brandenburger Y. (2003) Cardiac hypertrophy: a matter of translation. Clin. Exp. Pharmacol. Physiol. 30(8): 517–527 71 Hannan R. D., Luyken J. and Rothblum L. I. (1996) Regulation of ribosomal DNA transcription during contraction-induced hypertrophy of neonatal cardiomyocytes. J. Biol. Chem. 271(6): 3213–3220 72 Hannan R. D., Luyken J. and Rothblum L. I. (1995) Regulation of rDNA transcription factors during cardiomyocyte hypertrophy induced by adrenergic agents. J. Biol. Chem. 270(14): 8290–8297 73 Stefanovsky V. Y., Pelletier G., Hannan R., Gagnon-Kugler T., Rothblum L. I. and Moss T. (2001) An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell. 8(5): 1063–1073 74 Hannan K. M., Brandenburger Y., Jenkins A., Sharkey K., Cavanaugh A., Rothblum L. et al. (2003) mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 23: p. 23 75 Hannan R. D., Stefanovsky V., Taylor L., Moss T. and Rothblum L. I. (1996) Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: implications for cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 93(16): 8750–8755 76 Brandenburger Y., Jenkins A., Autelitano D. J. and Hannan R. D. (2001) Increased expression of UBF is a critical determinant for rRNA synthesis and hypertrophic growth of cardiac myocytes. FASEB J. 15(11): 2051–2053 77 Adams J. W. and Brown J. H. (2001) G-proteins in growth and apoptosis: lessons from the heart. Oncogene 20(13): 1626– 1634 78 Fry D. W. (2003) Mechanism of action of erbB tyrosine kinase inhibitors. Exp. Cell Res. 284(1): 131–139 79 Levitzki A. and Gazit A. (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267(5205): 1782– 1788 80 Marikovsky M., Breuing K., Liu P. Y., Eriksson E., Higashiyama S., Farber P. et al. (1993) Appearance of heparinbinding EGF-like growth factor in wound fluid as a response to injury. Proc. Natl. Acad. Sci. USA 90(9): 3889–3893 81 Homma T., Sakai M., Cheng H. F., Yasuda T., Coffey R. J. Jr and Harris R. C. (1995) Induction of heparin-binding epidermal growth factor-like growth factor mRNA in rat kidney after acute injury. J. Clin. Invest. 96(2): 1018–1025 82 Kudoh S., Komuro I., Hiroi Y., Zou Y., Harada K., Sugaya T. et al. (1998) Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J. Biol. Chem. 273(37): 24037–24043 83 Bokemeyer D., Schmitz U. and Kramer H. J. (2000) Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor. Kidney Int. 58(2): 549–558 84 Eguchi S., Dempsey P. J., Frank G. D., Motley E. D. and Inagami T. (2001) Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J. Biol. Chem. 276(11): 7957–7962 85 Uchiyama-Tanaka Y., Matsubara H., Nozawa Y., Murasawa S., Mori Y., Kosaki A. et al. (2001) Angiotensin II signaling and HB-EGF shedding via metalloproteinase in glomerular mesangial cells. Kidney Int. 60(6): 2153–2163 CMLS, Cell. Mol. Life Sci. Vol. 61, 2004 Multi-author Review 2703
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Unknown
Additional Notes Published under "What’s new in the renin-angiotensin system?".

Document type: Journal Article
Sub-type: Critical review of research, literature review, critical commentary
Collections: Excellence in Research Australia (ERA) - Collection
School of Biomedical Sciences Publications
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 29 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 32 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 14 Jan 2009, 22:23:02 EST by Judy Dingwall on behalf of School of Biomedical Sciences