Computational modeling of optical tweezers

Nieminen, Timo A., Heckenberg, Norman R. and Rubinsztein-Dunlop, Halina (2004). Computational modeling of optical tweezers. In: Kishan Dholakia and Gabriel C. Spalding, Proceedings of SPIE. Optical Trapping and Optical Micromanipulation, Denver, CO, USA, (514-523). 2-6 August 2004. doi:10.1117/12.557090

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
cmot_preprint.pdf cmot_preprint.pdf application/pdf 143.12KB 0
UQ10227_OA.pdf Full text (open access) application/pdf 150.59KB 0

Author Nieminen, Timo A.
Heckenberg, Norman R.
Rubinsztein-Dunlop, Halina
Title of paper Computational modeling of optical tweezers
Conference name Optical Trapping and Optical Micromanipulation
Conference location Denver, CO, USA
Conference dates 2-6 August 2004
Proceedings title Proceedings of SPIE   Check publisher's open access policy
Journal name Optical Trapping and Optical Micromanipulation   Check publisher's open access policy
Place of Publication Bellingham, Washington, U.S.A.
Publisher SPIE - International Society for Optical Engineering
Publication Year 2004
Sub-type Fully published paper
DOI 10.1117/12.557090
Open Access Status File (Publisher version)
ISBN 0-8194-5452-4
ISSN 0277-786X
1996-756X
Editor Kishan Dholakia
Gabriel C. Spalding
Volume 5514
Start page 514
End page 523
Total pages 10
Collection year 2004
Language eng
Abstract/Summary Computational modelling of optical tweezers offers opportunities for the study of a wide range of parameters such as particle shape and composition and beam profile on the performance of the optical trap, both of which are of particular importance when applying this technique to arbitrarily shaped biological entities. In addition, models offer insight into processes that can be difficult to experimentally measure with sufficient accuracy. This can be invaluable for the proper understanding of novel effects within optical tweezers. In general, we can separate methods for computational modelling of optical tweezers into two groups: approximate methods such as geometric optics or Rayleigh scattering, and exact methods, in which the Maxwell equations are solved. We discuss the regimes of applicability of approximate methods, and consider the relative merits of various exact methods. The T-matrix method, in particular, is an attractive technique due to its efficiency for repeated calculations, and the simplicity of determining the optical force and torque. Some example numerical results are presented.
Subjects 240504 Electrostatics and Electrodynamics
240400 Optical Physics
E1
780102 Physical sciences
240499 Optical Physics not elsewhere classified
Keyword optical tweezers
T-matrix
scattering
References 1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics Letters 11, pp. 288-290, 1986. 2. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical application and measurement of torque on microparticles of isotropic nonabsorbing material," Physical Review A 68, p. 033802, 2003. 3. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Orientation of biological cells using plane polarised Gaussian beam optical tweezers," Journal of Modern Optics 50(10), pp. 1581-1590, 2003. 4. D. A. White, "Vector finite element modeling of optical tweezers," Computer Physics Communications 128, pp. 558-564, 2000. 5. D. A. White, "Numerical modeling of optical gradient traps using the vector finite element method," Journal of Computational Physics 159, pp. 13-37, 2000. 6. W. L. Collett, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Applied Physics Letters 82, pp. 2730-2732, 2003. 7. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, "Radiation forces in the discrete-dipole approximation," Journal of the Optical Society of America A 18, pp. 1944-1953, 2001. 8. L. Lorenz, "Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle," Videnskabernes Selskabs Skrifter 6, pp. 2-62, 1890. 9. G. Mie, "Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen," Annalen der Physik 25(3), pp. 377-445, 1908. 10. K. F. Ren, G. Grehan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Applied Optics 35, pp. 2702-2710, 1996. 11. T. Wohland, A. Rosin, and E. H. K. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, pp. 181-190, 1996. 12. P. A. Maia Neto and H. M. Nussenzweig, "Theory of optical tweezers," Europhysics Letters 50, pp. 702-708, 2000. 13. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proceedings of the Royal Society of London A 459, pp. 3021-3041, 2003. 14. J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration," Applied Optics 43, pp. 2532-2544, 2004. 15. J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force," Applied Optics 43, pp. 2545-2554, 2004. 16. Y. Han and Z. Wu, "Scattering of a spheroidal particle illuminated by a Gaussian beam," Applied Optics 40, pp. 2501-2509, 2001. 17. Y. Han, G. Grehan, and G. Gouesbet, "Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination," Applied Optics 42, pp. 6621-6629, 2003. 18. F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," Journal of Quantitative Spectroscopy and Radiative Transfer 79-80, pp. 775-824, 2003. 19. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light scattering by nonspherical particles: theory, measurements, and applications, Academic Press, San Diego, 2000. 20. P. C. Waterman, "Symmetry, unitarity, and geometry in electromagnetic scattering," Physical Review D 3, pp. 825-839, 1971. 21. M. I. Mishchenko, "Light scattering by randomly oriented axially symmetric particles," Journal of the Optical Society of America A 8, pp. 871-882, 1991. 22. J. D. Jackson, Classical Electrodynamics, John Wiley, New York, 3rd ed., 1999. 23. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Multipole expansion of strongly focussed laser beams," Journal of Quantitative Spectroscopy and Radiative Transfer 79-80, pp. 1005-1017, 2003. 24. G. Gouesbet, J. A. Lock, and G. Grehan, "Partial-wave representations of laser beams for use in lightscattering calculations," Applied Optics 34, pp. 2133-2143, 1995. 25. G. Gouesbet, "Exact description of arbitrary-shaped beams for use in light-scattering theories," Journal of the Optical Society of America A 13, pp. 2434-2440, 1996. 26. G. Gouesbet, "Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres," Journal of the Optical Society of America A 16, pp. 1641-1650, 1999. 27. B. C. Brock, "Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields," Sandia report SAND2000-2217-Revised, Sandia National Laboratories, Albuquerque, New Mexico, USA, 2001. 28. G. Videen, "Light scattering from a sphere near a plane interface," in Light Scattering from Microstructures, F. Moreno and F. Gonzalez, eds., Lecture Notes in Physics(534), ch. 5, pp. 81-96, Springer-Verlag, Berlin, 2000. 29. N. A. Gumerov and R. Duraiswami, "Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation," SIAM Journal on Scientific Computing 25(4), pp. 1344-1381, 2003. 30. C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, "Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion," Journal of Chemical Physics 111, pp. 8825-8831, 1999. 31. A. Doicu and T. Wriedt, "Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions," Applied Optics 36, pp. 2971-2978, 1997. 32. J. H. Crichton and P. L. Marston, "The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation," Electronic Journal of Differential Equations Conf. 04, pp. 37-50, 2000. 33. O. Farsund and B. U. Felderhof, "Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field," Physica A 227, pp. 108-130, 1996. 34. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Calculation of the T-matrix: general considerations and application of the point-matching method," Journal of Quantitative Spectroscopy and Radiative Transfer 79-80, pp. 1019-1029, 2003. 35. L. Gurel and W. C. Chew, "A recursive T-matrix algorithm for strips and patches," Radio Science 27, pp. 387-401, 1992. 36. D. W. Mackowski, "Discrete dipole moment method for calculation of the T-matrix for nonspherical particles," Journal of the Optical Society of America A 19, pp. 881-893, 2002. 37. P. A. Martin, "On connections between boundary integral equations and T-matrix methods," Engineering Analysis with Boundary Elements 27, pp. 771-777, 2003. 38. http://www.t-matrix.de/ 39. http://www.giss.nasa.gov/~crmim/
Q-Index Code E1

 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 28 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 30 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 10 Nov 2004, 10:00:00 EST by Timo Nieminen on behalf of School of Mathematics & Physics