Appendix 1.
WinBUGS code for the zero-inflated Poisson mixture model. Note grazeL is a binary variable indicating a low level of grazing, grazeM indicates a moderate level of grazing and grazeH indicates a high level of grazing.

Note WinBUGS is a freely available piece of software available for download at http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

Zero-inflated Poisson Mixture Model for Bird/Grazing data

MODEL
{
 # Pr(Y=0|x,z)
 for(i in 1:Nz){
 zeros[i] <- 0
 zeros[i] ~ dpois(mu[i])
 mu[i] <- -log(1-p[i] + p[i]*exp(-lambda[i]))
 logit(p[i]) <- alpha
 log(lambda[i]) <- beta1.low*grazeL[i] + beta1.mod*grazeM[i] +
 beta1.high*grazeH[i]
 }

 # Pr(Y>0|x,z)
 for(i in (Nz+1):N){
 zeros[i] <- 0
 zeros[i] ~ dpois(mu[i])
 mu[i] <- -(log(p[i])-lambda[i] + y[i-Nz]*log(lambda[i])-logfact(y[i-Nz]))
 logit(p[i]) <- alpha
 log(lambda[i]) <- beta1.low*grazeL[i] + beta1.mod*grazeM[i] +
 beta1.high*grazeH[i]
 }

 # Vague Priors for model coefficients
 alpha ~ dnorm(0.0,0.0001)
 beta1.low ~ dnorm(0.0,0.0001)
 beta1.mod ~ dnorm(0.0,0.0001)
 beta1.high ~ dnorm(0.0,0.0001)
}
Appendix 2.
WinBUGS code for the generalised zero-inflated binomial model used when accounting for excess zeros generated by false zeros.

Zero-inflated binomial model for Mt Lofty Bird data. Code presented is that for the full model including all covariates influencing the probability of site occupancy ($p[i]$)

MODEL
{
 for (i in 1:n) { # this first loop is transforming the independent variables and calculating their mean and standard deviation so that they may be standardized later
 logConnectivity[i] <- log(Connectivity[i])
 }
 meanconnectivity <- mean(logConnectivity[1:n])
 sdconnectivity <- sd(logConnectivity[1:n])

 for(i in 1:155) { # this is the modelling loop, looping over i sites.
 stdarea[i] <- (log(area[i]) - 2.5495)/0.7678 #standardizing ‘area’
 stdconnectivity[i] <- (log(Connectivity[i]) - meanconnectivity)/sdconnectivity #standardizing ‘connectivity’
 obs[i] ~ dbin(q[i],3) # obs[i] is the observed presences after 3 visits (the data)
 Y[i] ~ dbern(p[i]) # Y[i] = 1 if species present and 0 if not
 q[i] <- Y[i] * alpha[1] # q[i] is detection probability (=0 if species not present)
 }

 # Vague Priors for model coefficients
 alpha[1] ~ dbeta(2,3) # detection probability (Pr(observed|presence))
 alpha[2] ~ dnorm(0.0,0.0001)
 beta[1] ~ dnorm(0.0,0.0001)
 beta[2] ~ dnorm(0.0,0.0001)
 beta[3] ~ dnorm(0.0,0.0001)
}

}