DISCUSSION

Determination of the coefficient of consolidation using a least squares method


I. G. Doran and J. D. McKinley, Queen’s University Belfast

The paper proposes the use of an approximation, suggested by Hansen, to the exact analytical solution of the Terzaghi consolidation equation, as the basis for the determination of the coefficient of consolidation from the results of a consolidation test using a least squares error adjustment procedure. This is an area of considerable practical interest. The author seems to be unaware of the paper by Fox (1948), in which it is shown that the solution of the Terzaghi consolidation equation is given to a high degree of accuracy by the approximation

\[ U = \sqrt{\frac{47v}{\pi}} \quad 0 \leq T_r \leq 0.2 \]  
\[ U = 1 - \frac{8}{\pi^2} e^{-vT_r} \quad T_r > 0.2 \]

In fact, equations (1) and (6) of the paper are the same as (19a) and (19b) above, respectively, although Fox proposed that the transition point was \( T_r = 0.2 \), which corresponds to \( U \approx 50\% \) and not the \( U \approx 60\% \) (i.e. \( T_r \approx 0.286 \)) stated in the paper. Corresponding values of \( T_r \) and \( U \) are shown in Table 6, which is an extension of Table 1 in the paper. Clearly, the values calculated from Fox’s approximation are sufficiently accurate for any likely application, and are also significantly more accurate than the Hansen approximation used in the paper.

The accuracy of Fox’s approximation is further illustrated in Fig. 4, which shows the difference between the approximate value of \( U \) and the exact value, relative to the exact value, as a function of time factor, for several different approximations. This includes the series solution (equations (4) and (5) in the paper) truncated at different values of the index \( m \). In this discussion, ‘exact’ values have been calculated from the series solution summing up to \( m = 10,000 \). This is straightforward if the series solution is embedded in a user-defined function in Microsoft Excel using a FOR...NEXT loop.

The estimation of the consolidation parameters using Fox’s approximation can be achieved on a Microsoft Excel spreadsheet using the Solver tool to determine the curve fit that gives the least square error (Doran & McKinley, in preparation), using a simple IF(...) function. We have also applied Solver to the series solution to the Terzaghi consolidation equation, as given by equations (4) and (5) in the paper, and found that in practice about five terms give sufficient accuracy for the interpretation of typical consolidation test results. However, in our experience manipulating even this restricted number of terms is a tedious process unless the series solution is embedded in a user-defined function in Microsoft Excel, whereas the use of Fox’s approximation is straightforward and gives satisfactory results.

Figure 4 suggests that improved versions of Fox’s approximation can readily be established by the incorporation of extra terms from the series solution. Taking just the first term of the series, \( m = 0 \), a more accurate representation of Fox’s approximation is

<table>
<thead>
<tr>
<th>( T_r )</th>
<th>Series solution, ( m = 10,000 )</th>
<th>Hansen solution</th>
<th>Fox solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.0357</td>
<td>0.0355</td>
<td>-0.0002</td>
</tr>
<tr>
<td>0.010</td>
<td>0.1128</td>
<td>0.1122</td>
<td>-0.0006</td>
</tr>
<tr>
<td>0.020</td>
<td>0.1596</td>
<td>0.1587</td>
<td>-0.0008</td>
</tr>
<tr>
<td>0.030</td>
<td>0.1954</td>
<td>0.1944</td>
<td>-0.0010</td>
</tr>
<tr>
<td>0.040</td>
<td>0.2257</td>
<td>0.2245</td>
<td>-0.0012</td>
</tr>
<tr>
<td>0.050</td>
<td>0.2523</td>
<td>0.2510</td>
<td>-0.0013</td>
</tr>
<tr>
<td>0.060</td>
<td>0.2764</td>
<td>0.2749</td>
<td>-0.0015</td>
</tr>
<tr>
<td>0.070</td>
<td>0.2985</td>
<td>0.2969</td>
<td>-0.0016</td>
</tr>
<tr>
<td>0.080</td>
<td>0.3192</td>
<td>0.3174</td>
<td>-0.0017</td>
</tr>
<tr>
<td>0.090</td>
<td>0.3385</td>
<td>0.3367</td>
<td>-0.0019</td>
</tr>
<tr>
<td>0.100</td>
<td>0.3568</td>
<td>0.3548</td>
<td>-0.0020</td>
</tr>
<tr>
<td>0.200</td>
<td>0.5041</td>
<td>0.5007</td>
<td>-0.0034</td>
</tr>
<tr>
<td>0.300</td>
<td>0.6132</td>
<td>0.6094</td>
<td>-0.0038</td>
</tr>
<tr>
<td>0.400</td>
<td>0.6979</td>
<td>0.6958</td>
<td>-0.0021</td>
</tr>
<tr>
<td>0.500</td>
<td>0.7640</td>
<td>0.7647</td>
<td>-0.0008</td>
</tr>
<tr>
<td>0.600</td>
<td>0.8156</td>
<td>0.8189</td>
<td>-0.0034</td>
</tr>
<tr>
<td>0.700</td>
<td>0.8559</td>
<td>0.8608</td>
<td>-0.0049</td>
</tr>
<tr>
<td>0.800</td>
<td>0.8874</td>
<td>0.8927</td>
<td>-0.0052</td>
</tr>
<tr>
<td>0.900</td>
<td>0.9120</td>
<td>0.9166</td>
<td>-0.0046</td>
</tr>
<tr>
<td>1.000</td>
<td>0.9313</td>
<td>0.9347</td>
<td>-0.0034</td>
</tr>
</tbody>
</table>
approximately $1.7\%$ of the gradient at the transition point $T_v = 0$, equation (20), this discontinuity in gradient is approximated to within the numerical accuracy of the calculation, they do have a discontinuity in gradient at the transition point. For $m = 0$, equation (20), this discontinuity in gradient is approximately $1.7\%$ of the gradient at the transition point $T_v = 0.213$. For $m = 1$, equation (21), the discontinuity in gradient is approximately $0.01\%$ of the gradient at the transition point $T_v = 0.125$. From our experience of least squares adjustment to fit Fox’s approximation with real consolidation data this discontinuity in the gradient in the fitting function does not in practice lead to degenerate adjustments, and either approximation may be used with confidence.

The major difficulty that remains in the solution of the general problem is the determination of the range of readings within a given set of test results that actually comply with Terzaghi consolidation theory, and to which a curve-fitting procedure may be applied.

**R. A. Day and P. H. Morris, The University of Queensland**

The author has shown that simple linear regression based on equation (8) gives unreliable results. Reasonable results were obtained only when data points at both small and large time values were discarded. An explanation for this is given below.

The author also presents a least squares approach for analysing consolidation test data that involves calculation of complex summations and concludes with the numerical solution of equation (18). The discussion below demonstrates how common numerical tools can be used to simply and directly solve the least squares minimisation problem.

**SIMPLE LINEAR REGRESSION**

Consider first the data at large time values—the late data. The author’s example displays significant secondary settlement. Equation (8) does not account for secondary consolidation, and thus the late data must be discarded from the regression analysis. Based on conventional methods, the secondary consolidation starts when the reading is about $3.0 \text{ mm}$ (point 13) (Craig, 1995). This is consistent with the findings of the author that better results were obtained if points 15–17 were excluded.

Consider now the linear regression using the transformed data points $1/t^3$ and $1/ho^t$. Fig. 5 shows the result of regression analysis using points 2–10 plotted on natural

![Fig. 4. Comparison of relative difference between various approximate equations with the series solution to the one-dimensional Terzaghi consolidation equation](image-url)
scales. Points at larger time values were discarded to avoid the issue of secondary consolidation. Note that points 5–10 are so close together they appear as one on this plot. Also shown in Fig. 5 is the 99% confidence interval for the regression line determined using ordinary statistical methods and assumptions. This means there is a 1% probability that the true linear relationship does not lie within the bounds shown. The fit is very good; the correlation coefficient is 0.9998. However, in this problem we wish to determine the true linear relationship does not lie within the bounds shown in Fig. 5 is the 99% confidence interval for the intercept. Discarding early time data points (from the right-hand side) does not eliminate this feature of the data; a similar picture emerges in each case as points are successively discarded. The average of the remaining points is always near to the second point from the right because the 1/$t^3$ values are distributed approximately uniformly on a logarithmic scale. Fig. 7 shows the different linear regression lines obtained as data points are successively discarded. It can be seen that the predicted intercept switches from negative (impossible) to positive (but too high) values. A reasonably accurate estimate is not obtained until only points 7–10 are used in the analysis.

As the predicted value of the intercept is used to calculate the value of $c_0$, as well as the final consolidation settlement, an accurate evaluation of the intercept is very important for the consolidation problem. However, it cannot be obtained reliably using the simple linear regression technique described owing to the nature of the consolidation test data, even though it is a good predictor of the trend line. The method is thus intrinsically unsuitable for the analysis of the consolidation test.

LEAST SQUARES FITTING

The least squares approach presented by the author involves calculation of complex summations, and concludes with the numerical solution of equation (18). A simpler, transparent and elegant approach is to solve the least squares problem directly using numerical techniques commonly available within spreadsheet programs. The problem can be stated as: Minimise the objective function $\Phi$, which is defined as

$$\Phi = \sum_i w_i (\rho_i - \rho_0)^2$$

The weights $w_i$ take the value of either 1 or 0 to include or exclude (respectively) the corresponding data point from the objective function. The first data point ($t = 0$) and any data points for which $\rho_0 > \rho_\infty$ (representing secondary consolidation) must be excluded.

The direct numerical approach does not restrict the theoretical relationship to a simple approximation or single equation. The classical Fourier series solution (equation (4)) is
DISCUSSION

The consolidation test.
equation (23) (Craig, 1995) is very simple to implement for
be used to cover the full range of data. For example,
nuities do not present problems. Multiple relationships can
applicable to an enormous range of problems. Multi-variable
and can be easily implemented. It is completely general, and
Consolidation test
procedure, performed in this case using a common
spreadsheet program (Day, 2005), for the analysis of a
Consolidation test
The least squares approach is simple yet very powerful,
and can be easily implemented. It is completely general, and
applicable to an enormous range of problems. Multi-variable
problems and complex relationships requiring multi-stage
calculations can be fitted as easily as simple ones. Discontinuities
do not present problems. Multiple relationships can
be used to cover the full range of data. For example,
equation (23) (Craig, 1995) is very simple to implement for
the consolidation test.

\begin{align*}
\text{For } U & \leq 0.6, \ T_v = \frac{\pi}{4} U^2 \\
\text{For } U > 0.6, \ T_v = -0.933 \log (1 - U) - 0.085 \quad (23)
\end{align*}

Author’s reply
First the author would like to thank the two groups of
colleagues who have spent considerable time and effort to
investigate and discuss the technical note concerned.
Doran & McKinley were right in saying that the author is
unaware of the paper by Fox (1948), but equations (19a) and
(19b) are the same as equations (1) and (6). From Table 1,
the \( U \) values using equation (1) and equation (6) for \( T_v \)
values of 0.2 and 0.3 are 0.5046 and 0.6180, 0.5051 and
0.6134 respectively, whereas the exact solutions are 0.5041
and 0.6132. The author feels that they are close enough for
all practical purposes in geotechnical application.

The author agrees that Fox’s approximation, whether the
transition point is at \( U = 0.5 \) or 0.6, is sufficiently accurate
for any likely application, and is also significantly more
accurate than the Hansen approximation used in the technical
note. The same conclusion was drawn by the author even
before the technical note was published. Therefore the
equation pair (1) and (6) with the transition at \( U = 0.6 \) has
formed the basis of Tan (2003). Instead of using the ‘artificial’
example from Craig (1995), 72 sets of real
Consolidation data have been obtained from three different
industrial and academic sources. The results obtained are in
good agreement, especially with Taylor’s method, for
obvious reasons.

The author also agrees that Fox’s approximation or the
equation pair (1) and (6) with the transition at \( U = 0.6 \) is
much more convenient to use than the series solution given
by equation (4). Concerning the discontinuity of slope at the
interface, the author has the same experience as Doran &

Fig. 8. Comparison of data points and fitted relationship

McKinley. As long as no data point is near the transition,
the issue of discontinuity is not of concern. Even if there is
a data point at the transition, using one slope or the other
does not make any significant difference. For the 72 sets of
data analysed, this discontinuity does not seem to cause any
major problem.

As for the problems of derivation of parameters from the
Terzaghi consolidation, this may arise from the change of
stiffness during the consolidation process and significant
secondary consolidation settlement. El-Gehani (2004) has
tried an automatic procedure that attempted to remove
points with significant secondary consolidation. It met with a
good degree of success for the data set from Craig (1995),
but as the 72 sets of data used do not show significant
secondary consolidation behaviour, the result cannot be seen
as conclusive. Furthermore, for the 72 data sets tried, the
resulting curve fits the data points reasonably well: therefore
it can be concluded that the variation of stiffness may not be
significant for the 72 sets of data used.

The author would also like to thank Day & Morris for
their detailed study on the simple linear regression scheme
that the author tried but failed to investigate further. The
author is glad to find that the conclusion from the detailed
study is that ‘the method is thus intrinsically unsuitable for
the analysis of the consolidation test’.

We also tried using a direct minimisation using the same
equation as equation (22). It works for some data sets but
not all the data sets tried. We found that the direct minimum
could be very flat, and Microsoft Excel Solver failed to
achieve the absolute minimum. However, we discovered an
alternative minimum that is much more suitable for Excel
calculation. Instead of solving equation (18), the author
realised that it is equivalent to finding the maximum of the
function \( A(c_v)/\sqrt{B(c_v)} \), which is more stable than the
solution of equation (18) for Microsoft Excel.

In El-Gehani (2004) we also tried the three-variable
method, which uses the initial settlement, the final primary
settlement and the coefficient of consolidation as variables.
The scheme was devised before the receipt of the discussion
from Day & Morris, and it is good to know that they agree
that this is a good way forward. However, from our experi-
ence, the initial settlements obtained are very sensitive to
the quality of data, and can be very different from the
traditional method. The automatic procedure used in El-
Gehani (2004) was a similar procedure to equation (22).

In conclusion, the author is very grateful for the general
interest that the technical note has generated. It is good to
know that investigations carried out in three different
countries came to similar approaches, with conclusions support-
ing each other. It is his sincere hope that further
development could be made in the automatic determination
of the coefficient of consolidation, thus removing operator
bias and reducing the time and effort required in oedometer
tests, while highlighting soil that has unusual consolidation
characteristics.

REFERENCES
Accessed 25 August 2005
coefficient of consolidation using a fully automatic least squares
procedure. MSc thesis, University of Birmingham.
Fox, E. N. (1948). The mathematical solution for the early stages of
Rotterdam 1, 41–42.
Tan, S. N. (2003). New method for the determination of the coeffi-
cient of consolidation, \( c_v \) from the oedometer results. MSc