Iron catalysed assembly of an asymmetric mixed-ligand triple helicate†

Paul V. Bernhardt,* Piao Chin† and Des R. Richardson‡

a Department of Chemistry. University of Queensland, Brisbane, 4072, Australia.
E-mail: P.Bernhardt@uq.edu.au
b Children’s Cancer Institute Australia for Medical Research, PO Box 81, High St, Randwick, Sydney, 2031, Australia.

Received 10th June 2004, Accepted 19th August 2004

First published as an Advance Article on the web 7th September 2004

The 2-pyridinecarbaldehyde isonicotinoyl hydrazone (HPCH) family of ligands are typically tridentate N,N,O chelators that exhibit very high in vitro activity in mobilizing intracellular Fe and are promising candidates for the treatment of Fe overload diseases. Complexation of ferrous perchlorate with HPCH in MeCN solution gives the expected six-coordinate complex FeII(HPCH). However, complexation of FeII with 2-pyridinecarbaldehyde picolinoyl hydrazone (HPCPH, an isomer of HPCH) under the same conditions leads to spontaneous assembly of an unprecedented asymmetric, mixed-ligand dinuclear triple helical complex FeII(IPH)(PHF), where PHF-II is the dianion of bis(picolinoyl)hydrazine. The X-ray crystal structure of this complex shows that each ligand binds simultaneously to both metal centres in a bidentate fashion. The dinuclear complex exhibits two well separated and totally reversible FeII/III redox couples as shown by cyclic voltammetry in MeCN solution.

Introduction

In our search for an orally active drug for the treatment of iron overload diseases, we have focused our attention on the Fe coordination chemistry of two series of ligands; the pyridylcarbaldehyde isonicotinoyl hydrazone (HPCH) and isonicotinoyl picolinoyl hydrazone (H3IPH) analogues (Chart 1). Several ligands from each of these families have shown high in vitro activity in mobilizing Fe from FeII-loaded cells and also in preventing Fe uptake from FeII-labeled transferrin.1,2 Both series of ligands have been found to coordinate meridionally as tridentate chelators through the pyridyl (N), azomethine/amide (N) and carbonyl (O) groups. The HPCH hydrazines are monobasic acids and coordinate typically in their monoanionic form,3 while the H3IPH hydrazines bear two weakly acidic N-atoms and can coordinate in either their monoor dianionic forms.4 These labile protons are highlighted in bold type in Chart 1.

In an earlier publication, we reported that complexation of FeII or FeII with HPCH in aerated aqueous solution gave an unexpected and unprecedented Fe-catalysed oxidation of HPCH to H3IPH, which was identified by isolation and structural characterisation of the complex FeII(IPH)(H3IPH).2 This serendipitous observation initiated our interest in the H3IPH series, which has now emerged as an equally effective series of Fe chelators. Furthermore, we have found that the isonicotinoyl (4-pyridyl) N-atom enables HPCH to act as a bridging ligand, with oligonuclear HPCH complexes of MnIII, CoII and ZnII having been identified and characterised structurally.3

The picolinoyl hydrazone HPCPH is isomeric with HPCH, but the N-atom on the pyridyl ring adjacent to the carbonyl group is in a position where it may coordinate in a chelating mode in partnership with either the adjacent N- or O-donor of the amide group. As we illustrate in this study, the coordination mode of HPCPH is unique amongst members of the HPCH family, but its FeII complex is also susceptible to oxidation as seen for its isomer HPCH.

Experimental

Syntheses

HPCH and HPCPH were prepared by Schiff base condensations between 2-pyridinecarbaldehyde and either isonicotinoyl and picolinic acid hydrazide, respectively, as described.4

General synthetic procedure for complexes

4 mmol of HPCH (or HPCPH) was dissolved in 40 cm3 of oxygen-free MeCN together with 32 mmol of triethylamine. 1.6 mmol of Fe(CIO3)3·6H2O, dissolved in 10 cm3 of oxygen-free MeCN, was added dropwise to the basic ligand solution with stirring. The resulting mixture was gently refluxed under a nitrogen atmosphere for 3 h. In each case, the product precipitated during the course of the reaction, and was collected by filtration then washed with MeOH and MeCO.

FeII(IPH)II·2H2O. Dark green powder 89% yield. Microanalysis, found: C, 55.42; H, 3.44; N, 21.79%; calc. for C34H30FeN2O6: C, 55.94; H, 3.72; N, 21.74%. Electronic spectrum (MeOH): λmax/em (εdm−1 cm−1) 649 (4000), 349 (39000), 268 (19500), 229 (35200). IR (KBr disk): 7 (strong and
very strong peaks, cm\(^{-1}\): 1498s, 1482s, 1456vs, 1362vs, 1344s, 1151s, 1063s, 754s, 700s. ESI-MS (MeOH soln.): m/z: 506 ([Fe\(^{3+}\)(PCPH)]\(^2+\)).

\[\text{Fe}^{3+}(\text{PCPH})_{2}(\text{PPH})_{2}2\text{MeCN}6\text{H}_{2}\text{O}.\] Purple powder 60\% yield. Recrystallisation from MeCN afforded crystals suitable for X-ray work. IR and UV-vis spectroscopic data for the bulk and crystalline samples were indistinguishable. Electrochemical spectrum (MeOH): \(\lambda_{\text{max}}\text{nm} (\varepsilon / \text{dm}^3 \text{ mol}^{-1} \cdot \text{cm}^{-1})\): 571 (11600), 400 s (-9000), 320 (19300), 284 (29100), 269 (29700). IR (KBr disk): \(\nu\) (strong and very strong peaks, cm\(^{-1}\)) 1616vs, 1591vs, 1465s, 1361s, 1143s, 1148s, 1088s, 761s. \(\text{H}^1\text{NMR (DMSO-}d_6\text{):} \delta 2.06 \text{ (s, 3H, MeCN), 6.88 (d, 1H), 7.02 (d, 1H), 7.13 (s, 1H), 7.36 (d, 1H), 7.43 (t, 1H), 7.50 (s, 1H), 7.54 (t, 1H), 7.60 (2H), 7.76 (2H), 7.90 (1H), 7.95 (d, 1H), 8.04 (m, 4H), 8.11 (2H), 8.15 (2H), 8.23 (d, 1H), 8.74 (s, 1H), 8.84 (s, 1H), 9.37 (s, 1H) and 9.66 (s, 1H). 13\text{C NMR (DMSO-}d_6\text{):} \delta 1.09 \text{ (MeCN), 12.00 (MeCN), 122.8, 124.4, 124.5, 124.8, 125.6, 125.9, 126.0, 126.8, 127.5, 127.6, 128.5, 128.6, 135.5, 136.6, 136.7, 137.4, 138.3, 148.5, 149.3, 149.5, 151.8, 152.2, 153.0, 153.6, 153.7, 154.7, 156.6, 158.1, 158.2, 159.1, 159.2, 160.3, 161.1, 163.5, 163.7. ESI-MS (MeOH soln.): m/z: 802 ([Fe\(^{3+}\)(Fe\(^{3+}\)(PCPH)\(^2+\)(PPH)]\(^2+\)).

Physical methods

Electronic spectra were recorded on a Perkin-Elmer Lambda 40 spectrophotometer, and IR spectra were obtained on a Perkin-Elmer 1600 Series FTIR spectrometer, with samples dispersed in KBr disks. Nuclear magnetic resonance spectra were recorded at 500 (1H) and 125.8 MHz (13C) on a Bruker Avance spectrometer using DMSO-\(d_6\) as the solvent and TMS as the reference. Cyclic voltammetry was performed with a BAS100B/W electrochemical workstation employing glassy-carbon working electrode, a Pt auxiliary electrode and an Ag/AgCl (MeCN) reference electrode. Bulk electrolysis was carried out with a BAS reticulated vitreous carbon electrode. All solutions for electrochemistry contained ca. 2 mmol dm\(^{-3}\) analyte and 0.1 mol dm\(^{-3}\) \(\text{NaNO}_3\) in dry MeCN and were purged with nitrogen gas before measurement. Electronic paramagnetic resonance spectra were recorded at 77 K on a Bruker ER200D spectrometer at X-band frequency (9.303 GHz). Samples were prepared as 1 mM solutions in MeCN. Spectra were simulated with the program EPRSOFT.1

Crystallography

Data were collected at 150 K with an Oxford 600 Series Cryostream Cooler attached to an Enraf Nonius CAD4 diffractometer. Cell constants were determined by a least-squares fits to the setting parameters of 25 independent reflections employing graphite-monochromated Mo-K\(_\alpha\) radiation (0.71073 Å). Data reduction and empirical absorption correction (\(\psi\)-scans) were performed with the WinGX package.1 The structure was solved by direct methods with SHELXS and refined by full-matrix least-squares analysis with SHELXL. The MeCN solvent molecule was severely disordered about a three-fold rotation axis. Three unique positions were identified for this solvent molecule. One position has the molecule (N3A, C7A and C8A) coincident with a three-fold axis; another (N3B, C7B and C8B) finds only the nitrile carbon (C7B) on the three-fold axis, while the third (N3C, C7C and C8C) finds that only the N-atom on the three-fold axis. The occupancies were restrained to sum to one-third comprising a 1:1 ratio of Fe-MeCN, which is consistent with the NMR data obtained from the crystals. Restraints to the C–C and C–N bond lengths were necessary to enable refinement. The unique water molecule was disordered over two sites and the occupancies were refined complementarily (O2A:O2B 87:13%).

Crystal data

\[\text{[Fe}^{3+}\text{(PCPH)}_{3}\text{(PPH)}_{2}\text{]6H}_{2}\text{O-2MeCN}: C}_{3}\text{H}_{3}\text{Fe}_{2}\text{N}_{4}\text{O}_{6}\text{H}_{2}\text{O}, M = 992.59, \text{trigonal, space group R}3\text{c (no. 167), } a = 13.353(4),

c = 43.288(7) \ \AA, \ U = 6684(3) \ \AA^{3}, \ T = 150 K, Z = 6, \mu(\text{Mo-K} \alpha) = 7.61 \ \text{cm}^{-1}, 3862 \text{ reflections measured, } 1324 \text{ unique (}\ R_{\text{int}} = 0.1146\text{) which were used in all calculations, } R_{\text{R}} = 0.0868 \text{ (for 756 obs. data, } I > 2\sigma(I)), W_{\text{R}} = 0.2656 \text{ (all data). CCDC reference number 239850).}

See http://www.rsc.org/suppdata/dt/b4/b408781j/ for crystallographic data in CIF or other electronic format.
proton (ESI,† Fig. S2). This observation reinforces the fact that only two of the three ligands bear azomethine H-atoms; the third (PPH) has only pyridyl H-atoms, all of which give multiplet resonances. For comparison, the azomethine protons must be chemically equivalent in the C-symmetrical isomer. Finally, the existence of exactly 36 °C NMR resonances for Fe(II)(PCPH)(PPH) indicates that the sample is isomerically pure. A co-crystallised mixture of asymmetric and symmetric isomers would not be apparent from the disordered crystal structure, but would result in 54 (36 + 18) chemically inequivalent C-atoms in addition to three azomethine protons.

The electronic spectrum of Fe(II)(PCPH)(PPH), exhibits a hypsochromically shifted metal to ligand charge transfer band at 571 nm compared with the simple mononuclear Fe(PCIH) analogue (649 nm). Given that the dinuclear complex bears two different FeN₄ chromophores, this band represents two overlapping transitions. Although we have no crystallographic data, all spectroscopic (IR, ESI-MS) and analytical data for Fe(II)(PCPH) point to the complex having an Fe₄N₂O₂ coordination sphere such as that seen in other divalent ML₂ analogues from this series. Cyclic voltammetry of Fe(PCIH) in MeCN solution gave a single reversible Fe(II/III) couple at +35 mV vs Ag/Ag⁺. Bulk electrolysis of Fe(II)(PCIH) in MeCN at a potential of +400 mV vs Ag/Ag⁺ enabled measurement of the EPR spectrum of the putative Fe(II) complex [Fe(II)(PCIH)]₂ at 77 K (Fig. 2(a)). An identical result was achieved by combining one equivalent of FeCl₃ and two equivalents of HPCIH in MeCN, with two equivalents of Et₃N added as base (Fig. 2(b)). The spectrum is typical of a low-spin, axially symmetric Fe(II) complex with gₓ = 2.255 and gᵧ = 1.935. The parameter gₓ = 1.935 is diagnostic of compounds with a d₅ ground state, which usually exhibit one g value below 2.15. Coordinate bond lengths of low-spin Fe(II) and low-spin Fe(III) complexes are generally very similar, and it is assumed that oxidation of the parent Fe(II) complex does not bring about a significant structural change.

Cyclic voltammetry of Fe(II)(PCPH)(PPH) in MeCN solution (Fig. 3) revealed two totally reversible Fe(II/III) couples at +28 mV and +507 mV vs Ag/Ag⁺. We propose that the lower potential couple of Fe(II/III)(PCPH)(PPH) corresponds to the Fe centre bearing the three coordinated amides, while the higher potential wave is due to the centre bearing two azomethine N-donors and only one amide. This assignment is based on the well-known ability of N-bound deprotonated amides to stabilise higher oxidation states. The large separation (~500 mV) between the two Fe(II/III) couples is further evidence for the asymmetric structure deduced from the NMR data i.e. the two metals are in different FeN₄ coordination environments and moreover distinct from Fe(PCIH)₂(FeN₂O₂).

Fig. 1 View of the Fe(II)(PCPH)(PPH) helicate (30% probability ellipsoids, drawn with ORTEP and rendered with PovRay V3.5): selected bond lengths (Å) and angles (°): Fe₁–N₁ 1.962(5), Fe₁–N₂ 1.920(5), C₆–O₁ 1.199(10), C₆–N₂ 1.272(8), N₂–N₂ 1.404(8) (primed atom symmetry operation x – y + 1/3, –y + 2/3, –z + 13/6); N₁–Fe₁–N₂ 80.2(2).

Fig. 2 X-Band (ν = 9.303 GHz) EPR spectra of [Fe(II)(PCIH)]⁺ (77 K, MeCN): (a) from bulk electrolysis of Fe(II)(PCIH) complex in MeCN at a potential of +400 mV vs Ag/Ag⁺ (MeCN) (b) from in situ complexation of FeCl₃ with HPCIH in MeCN/Et₃N and (c) EPR50F computer simulation with parameters gₓ = 2.255, gᵧ = 1.935.

Fig. 3 Cyclic voltammogram of Fe(II)(PCPH)(PPH) in MeCN solution (0.1 M Bu₄NClO₄, glassy carbon working electrode, Pt counter and Ag/Ag⁺ (MeCN) reference electrodes. Scan rate 100 mV s⁻¹). The unexpected and interesting product Fe(II)(PCPH)(PPH) reported here provides the first example to our knowledge of an asymmetric, mixed-ligand, triple helicate. Three-fold symmetric helicates bearing identical ligands are the norm. Stratton and Busch originally synthesised the dinuclear Fe(II) complex [Fe₂(2-pyridinealdazine)₃]⁺ at 77 K (Fig. 2(a)). An identical result was achieved by combining one equivalent of FeCl₃ and two equivalents of HPCIH in MeCN, with two equivalents of Et₃N added as base (Fig. 2(b)). The spectrum is typical of a low-spin, axially symmetric Fe(II) complex with gₓ = 2.255 and gᵧ = 1.935. The parameter gₓ = 1.935 is diagnostic of compounds with a d₅ ground state, which usually exhibit one g value below 2.15. Coordinate bond lengths of low-spin Fe(II) and low-spin Fe(III) complexes are generally very similar, and it is assumed that oxidation of the parent Fe(II) complex does not bring about a significant structural change.

Cyclic voltammetry of Fe(II)(PCPH)(PPH) in MeCN solution (Fig. 3) revealed two totally reversible Fe(II/III) couples at +28 mV and +507 mV vs Ag/Ag⁺. We propose that the lower potential couple of Fe(II/III)(PCPH)(PPH) corresponds to the Fe centre bearing the three coordinated amides, while the higher potential wave is due to the centre bearing two azomethine N-donors and only one amide. This assignment is based on the well-known ability of N-bound deprotonated amides to stabilise higher oxidation states. The large separation (~500 mV) between the two Fe(II/III) couples is further evidence for the asymmetric structure deduced from the NMR data i.e. the two metals are in different FeN₄ coordination environments and moreover distinct from Fe(PCIH)₂(FeN₂O₂).
the HPCIIH and H$_3$IPH series. Instead, all other ligands we have studied bind as meridionally coordinating N,N,O ligands (Scheme 1). In the present case, the all-N coordination mode of PCPH$^-$ appears to be driven by the preference of the FeII centres for the softer unsaturated N-donors. Once formed, the putative [Fe$_2$(PCPH)$_2$]$^{2-}$ (Scheme 1) acts as a template for the formation of the triple helicate. Ligand oxidation may take place at the stage of [Fe$_4$(PCPH)$_2$]$^{3+}$, the (presumed) double helicate [Fe$_3$(PCPH)$_2$]$^{3+}$ or after complete assembly of the triple helicate [Fe$_2$(PCPH)$_2$]$^{3+}$ (Scheme 1). At present we have no way of discriminating between these three pathways, but we favour the fully formed helicate [Fe$_4$(PCPH)$_2$]$^{3+}$ as the species which undergoes ligand oxidation.

![Scheme 1](image)

The fact that the oxidation of PCPH$^-$ to PPH$^{3+}$ has occurred under the reactions conditions employed is remarkable. Previously, we reported that the reaction of HPCIIH with FeII or FeIII salts in aerated aqueous solution led to rapid and quantitive formation of the hydrazine complex Fe$_{II}$([IPH]HIPH). Therefore, we took great care to minimise exposure of the reaction mixture to oxygen or water, but it appears that the conversion of PCPH$^-$ to PPH$^{3+}$ (catalysed by Fe) is facile, although incomplete in this case as two of the three coordinated ligands remain intact. The mechanism for this hydrazone-to-hydrazone transformation remains the subject of future investigations. Our current hypothesis is that in the presence of oxygen, the ferric oxidation state is reached, and the highly polarised azomethine C-atom is rapidly attacked by (trace amounts of) water. A complicated two-electron oxidative dehydrogenation then occurs by an unknown mechanism, but one in which redox cycling of the adjacent Fe ion is implicated. The identification of water in the crystal structure of [Fe$_{II}$([PCP-H]$_2$)(PPH)]·6H$_2$O·2MeCN confirms its presence in the reaction medium, and complete exclusion, perhaps in a dry-box or using an anhydrous FeII salt, may lead to a different outcome. There is a related report of a Re and Ru-catalysed conversion of an imine to its amide, but apart from our earlier paper, the present example is only the second report of the direct conversion of an aryl hydrazone to a diaryl hydrazone.

The other remarkable feature of this chemistry is that we only observe the asymmetric isomer of [Fe$_{II}$([PCP-H]$_2$)(PPH)]$^{2+}$, isolated as a solid in –60% yield. An analysis of the possible combinations of FeII and ligand is given in ESI.$^+$ Fig. S3, which shows that complexation of FeII with PCPH$^-$ in a 2:3 ratio should, on a purely statistical basis, result in a 3:1 ratio of asymmetric and C$_2$-symmetric helical [Fe$_2$(PCPH)$_2$]$^{3+}$. If each of these four combinations can be oxidised at any one of its three azomethine C-atoms an equal distribution of asymmetric and C$_2$-symmetric isomers of [Fe$_{III}$([PCP-H]$_2$)(PPH)]$^{3+}$ should ensue. However, the reaction appears to be regio-selective, so other factors must be at work. On the basis of our previous study involving the Fe-catalysed oxidation of IPH$^-$ to IPH$^{3+}$, oxidation of the azomethine C-atom is associated with oxidation of the Fe ion to which the adjacent N-donor is coordinated. As mentioned above in discussion of the cyclic voltammetry results, within either the asymmetric or C$_2$-symmetric [Fe$_{II}$([PCP-H]$_2$)(PPH)]$^{2+}$, the Fe atom bearing the greater number of picolinyl (amide) chelates will be oxidized at lower potential. For the asymmetric isomer, this would favour oxidation of the sole azomethine C-atom adjacent to the two picolinyl amide chelates (now coordinated to FeIII) to give asymmetric [Fe$_{III}$([PCP-H]$_2$)(PPH)]$^{3+}$ (ESI.$^+$ Fig. S3). If C$_2$-symmetric [Fe$_{II}$([PCP-H]$_2$)$^{3+}$ is formed then one would expect the tris-picolinoyl (trimide) coordinated Fe atom to be oxidised preferentially; but this would not lead to any additional chemistry as the amide chelates cannot undergo further oxidation. In this case, both Fe atoms would need to be oxidised before ligand oxidation may commence.

Our continuing interest in the coordination chemistry of the HPCIIH and H$_3$IPH analogues is driven by their high activity in mobilizing Fe from Fe-loaded cells and in preventing Fe-uptake from transferrin.2 We have already shown2 that an Fe-catalysed hydrazone-to-hydrazone transformation of HPCIIH to H$_3$IPH occurs rapidly in aqueous solution, and the fact that a similar result occurs in deoxygenated dry MeCN raises the question of whether compounds such as Fe$_{II}$([PCP-H]$_2$)(PPH) may form in vivo. Evidently the ligands PCPH$^-$ and PPH$^{3+}$ are predisposed to act as (hypodentate) bis-chelate ligands, with the azine analogues PAA and PAHAP, and no other products were observed in the present synthesis, so assembly of this complicated structure must be rapid and highly favorable. Further work is needed to address the question of whether ligands such as HPCIIH and H$_3$IPH behave differently to the other related hydrazones and hydrazines of their respective families in the complexation and mobilisation of intracellular Fe.

Acknowledgements

We gratefully acknowledge financial support from the Australian Research Council (Grant No. DP0450001) and the National Health and Medical Research Council.

References