Molecular Epidemiology of carbapenem non-susceptible *Acinetobacter baumannii* isolates from the Gulf Cooperation Council States

Zowawi HM,1,2*, Balkhy HH,2 AlJohani S,2 Al-Jindan RY,3 Dashti AA4, Aljardani A5, AlSalman J6, Ibrahim E7, Alfaresi M8,9, Sidjabat H1, Paterson DL1

1The University of Queensland, UQ Centre for Clinical Research, Herston QLD 4029, Australia. 2King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. 3University of Dammam, College of Medicine, Dammam, Saudi Arabia. 4Kuwait University, Health Sciences Centre, Kuwait. 5The Royal Hospital, Clinical Microbiology Department, Muscat, Oman. 6Samariya Medical Complex, Infectious Diseases Department, Mamara, Bahrain. 7Hamad Medical Cooperation, Clinical Microbiology Department, Doha, Qatar. 8Zayed Military Hospital, Clinical Microbiology Department, Abu Dhabi, United Arab of Emirates. 9Pathology & Laboratory Medicine Department at Sheikh Khalifa General Hospital, Umm Al Quwain, UAE.

BACKGROUND

Acinetobacter baumannii is a well-known pathogen for causing hospital-acquired infections. For example, in the United States *A. baumannii* found to be responsible for 5 - 10% of cases of ICU-acquired pneumonia (1); where in Riyadh 26.5% of ventilator-associated pneumonia between 2005 and 2009 were caused by *Acinetobacter* spp (2). This success is partially due to the high prevalence of multidrug resistant phenotype among *A. baumannii*. In the Middle East, and in particular countries of the Gulf Cooperation Council (GCC) carbapenem resistance of *A. baumannii* increased dramatically over the last decades (3). For example, a study from Bahrain found 58% of *A. baumannii* isolates non-susceptible to carbapenem (4), while the prevalence of imipenem nonsusceptible *A. baumannii* in Riyadh hospitals peaked to reach more than 90% (5, 6). Such high prevalence of carbapenem resistance among *A. baumannii* is limiting treatment options, which can lead to increased morbidity and mortality due to infections caused by carbapenem resistant *A. baumannii* (CRAB). The primary aim of the present study was to investigate the molecular epidemiology of carbapenem resistance mechanisms in *A. baumannii* isolates collected from hospitals across in the vast GCC region.

METHODS

Participating countries

Saudi Arabia
United Arab of Emirates
Kuwait
Bahrain
Qatar
Oman

Non-duplicate clinically isolated *Acinetobacter* collected over 20 months (July 2011 – January 2013)
Resistant to extended spectrum cephalosporins or/and carbapenems
Disk diffusion susceptibility testing using EUCAST criteria
Identification of *A. baumannii* was done by PCR screening for *bla*_{OXA-23}
PCR screening for *bla*_{OXA-23}, *bla*_{OXA-24}, *bla*_{OXA-58}, *bla*_{NDM}, and *bla*_{IMP}

RESULTS

\[n=128 \text{ *Acinetobacter* were collected} \]

\[(n=118) \text{ were carbapenem non-susceptible *Acinetobacter} \]

\[(n=118) \text{ had positive OXA-51 => 118 *A. baumannii} \]

\[(n=82) \text{ were OXA-23 positive, } (n=82) \text{ were OXA-40 positive, and none were OXA-58, IMP, NDM, nor KPC positive} \]

Figure 1. The distribution of carbapenem resistance mechanisms among the *A. baumannii*

Table. The distribution of OXA-23 and OXA-40 among the GCC isolates

<table>
<thead>
<tr>
<th>Country</th>
<th>Total Acinetobacter</th>
<th>Non-susceptible Acinetobacter</th>
<th>OXA-23</th>
<th>OXA-40</th>
<th>OXA-58</th>
<th>IMP</th>
<th>NDM</th>
<th>KPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuwait</td>
<td>8</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saudi Arabia - Riyadh</td>
<td>50</td>
<td>49 (98%)</td>
<td>49 (98%)</td>
<td>22 (45%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saudi Arabia - Khobar</td>
<td>36</td>
<td>32 (88%)</td>
<td>32 (88%)</td>
<td>27 (84%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bahrain</td>
<td>8</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>4 (50%)</td>
<td>5 (62%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oman</td>
<td>9</td>
<td>5 (56%)</td>
<td>5 (56%)</td>
<td>1 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Qatar</td>
<td>9</td>
<td>8 (89%)</td>
<td>8 (89%)</td>
<td>1 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>8</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td>118 (92%)</td>
<td>118 (92%)</td>
<td>n=82 (69%)</td>
<td>5 (4%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CONCLUSION

This is the first regional study to systematically analyse *A. baumannii* isolated from the GCC States. Class D ß-lactamase, particularly OXA-23, is the main resistance mechanism among carbapenem non-susceptible *A. baumannii* isolated from the GCC States. The intrinsic OXA-51 may also play a significant role in the carbapenem resistance. Other resistance mechanisms could play a role in carbapenem resistance.

REFERENCES

Correspondence author: Hamdan Zowawi. h.zowawi@uq.edu.au

ACKNOWLEDGMENT

We thank all the staff from the collaborating clinical microbiology laboratories across the GCC States. We also thank the government of Saudi Arabia for academically sponsoring HMOD through King Abdullah Scholarship program. Lastly we thank King Abdulaziz International Medical Research Center for partially sponsoring this work.