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Controlling the Decoherence of a “Meter” via Stroboscopic Feedback
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We propose a simple modification of the experimental scheme employed by Btuale[Phys.
Rev. Lett.77, 4887 (1996)] for the generation and detection of a Schrodinger cat state, in which
the decoherence of the cat state can be significantly slowed down using an appropriate feedback.
[S0031-9007(97)04106-9]

PACS numbers: 42.50.Ar, 03.65.Bz, 89.70.+c

Decoherence is the rapid destruction of the phase reldhe phase shift to the excited state component and assume
tion between two quantum states of a system caused hyo phase shift for the ground state component. We shall
the entanglement of these two states with two differenassume for simplicity that the atom velocity can be chosen
states of the environment [1]. The progressive decoherso that the phase shiftp) = 7. For the generation of
ence of a mesoscopic Schrédinger cat has been observadcat state one has to correlate each atomic state to a
for the first time in the experiment of Brunet al. [2],  superpositiorof coherent states with different phases, and
where the linear superposition of two coherent states dthis is achieved by submitting the atom to a secant
the electromagnetic field in a cavity with classically dis-pulse in the second microwave caviRs, so that the
tinct phases has been generated and detected. In this Letate becomeB),om+fiea) = () la—) + |g) la+))/v/2,
ter we describe a scheme in which decoherence due wwhere we have defined the evegr-) and odd (—)
spontaneous emission can be significantly mitigated bgchrodinger cat states ds~) = N:'(la) = | — a)),
coherent feedback. whereN? = 2(1 = ¢~2leF). This shows that an even or

In Ref. [2], a Schrddinger cat state for the microwavean odd coherent state is generated in the cavity according
field in a superconducting cavit¢ has been generated to the fact the atom is detected in the leye} or |e),
using circular Rydberg atoms crossing a cavity preparedespectively.
in a coherent state. All the atoms have an appropriately To detect the cat state in the cavity we inject a second
selected velocity and the relevant levels are two adjacergxcited atom, the probe atom, into the system. As shown
Rydberg states which we denote hg and |e). The in [4], the conditional dynamics for the probe atom is
atoms are initially prepared in the stdte. The highQ  defined by the transformation
superconducting cavity is sandwiched between two @w-
cavitiesR; and R,, in which classical microwave fields |e)|a_) — —|e)|a_) , le) |lay) = |g)ay). (1)
can be applied and which are resonant with the transition
between the statf) and the nearby lower circular state This controlled-not dynamics (the atomic state flips only
lg). The intensity of the field in the first cavitR; is  for an odd cat state in the cavity) is an effect of the
then chosen so that, for the selected atom velocity, @& = 7 phase shift per photon. When there is an even
/2 pulse is applied to the atom as it crosses As  cat, the cavityC does not change the atomic state and
a consequence, the atomic state before entering the cavifye two 7 /2 pulses sum up to a single pulse. In the
Cis |thaom) = % (ley + 1g)) . case of an odd cat, the component of the atomic state

The highQ cavity C is off resonance with respect to the changes sign and the twe/2 pulses cancel each other.

e — g transition. However we will allow for a strong The atomic state of the probe atom is precisely correlated
field pulse to shift the excited state into resonance wittwith either an even or odd cat state so that if the probe
the cavityC. In the off-resonant case, the atom and theatom is found in the excited state, the state of the field
field cannot exchange energy but only undergo dispersivprepared by the first atom was indeed an odd cat state.
frequency shifts depending on the atomic level [3]. The The Schrédinger cat state undergoes a very fast de-
field undergoes an equal and opposite phase shift for theoherence process [5] caused by the inevitable presence
ground and excited states. However as only the relativef dissipation in the superconducting cavity, which is de-
phase of the two components matters we may attributq aficribed by the following density matrix:

p(t) = =5 [lae ") ae | + | = ae V) (—ae V| + ~Habli=e™)

X (| = ae Y (ae 2| + lae "2V (—ae "?|)], 2
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where y is the cavity decay rate and where the plusmixture both tend to the vacuum state and start to overlap,
(minus) sign corresponds to the even (odd) coherent statdue to field energy dissipation.

Decoherence is governed by the factor [expla|*(1 — In the present paper, we propose a modification of
e~ 7], which for yr < 1 becomes exp-2|a|*yt], im-  the experiment of Bruneet al.[2], in which the cat
plying therefore that the interference terms decay to zerdecoherence is not simply monitored but also controlled
with a lifetime tgee = Q2ylal?)~!. in an active way. In particular we show that by using an

A greater insight into the decoherence process isppropriate feedback scheme, it is possible to slow down
obtained by considering the conditional evolution whensignificantly the decoherence process. To fix the ideas, we
the decay channel is monitored. This leads to the quanturshall consider only the case in which the experimentally
trajectory picture of a decaying cavity field [6]. If a studied quantity is the conditional probabilig,.
photon is lost from a cat state, the character of the cat Applying a feedback loop to a quantum system means
flips from even to odd and vice versa. Between photorsubjecting it to a series of measurements and then using
emission events, the amplitude of each component of thihe result of these measurements to modify the dynam-
cat simply decays at half the cavity decay rate, but thécs of the system. Wiseman and Milburn have devel-
character of the cat does not change. Thus by detectingped a quantum theory of continuous feedback [7]. This
whether or not the cat changes its character we can knotheory has been applied in Ref. [8] to show that an ap-
if a photon has been lost from the cavity. This knowledgepropriate continuous feedback loop can be used to slow
may then be used to feedback on the cavity field to try tadlown the decoherence of a Schrodinger cat in an optical
return the field to the desired state. cavity. In the Bruneet al. experiment [2] it is not pos-

In the experiment of Brunet al [2] the progressive sible to monitor continuously the state of the radiation in
decoherence of the cat state has been observed for thge cavity, since the involved field is in the microwave
first time. This was achieved by sending a second atonrange and there are not good enough detectors in this wave-
with the same velocity, through the same arrangements déngth region. In this case, continuous measurement can be
cavities, after a time dela®. The probability of detecting replaced by a series oépeatedneasurements, performed

the second atom in theor g state is [2] by off-resonance atoms crossing the superconducting cav-
1 Cimata ity one by one with a time intervadl. As a consequence,
P = — (1 £ Re{Tr[e p(D))). (3)  one could try to apply a sort of “discrete” feedback scheme
If one inserts in (3) the explicit expression pfT) given ~ Modifying in a “stroboscopic” way the cavity field dynam-
by (2), one gets the four conditional probabilities;, €S according to the result of the atomic detection.

(i,j = e or g), of detecting the second atom in the state We Will consider only the case where atomic detection

j after detecting the first atom in the statend which  Of the first atom prepares an odd cat state. From Eq. (1),
give a satisfactory description of the decoherence proced¥e See that the state of the probe atom is correlated with
of the cat state. Let us consider, for example, the case @0 €ven or odd cat, and may thus be used to determine if
two successive detections of the circular Rydberg statf’® cat has undergone a flip from odd to even by photon
e in this case the detection of the first atom projects€mission. The feedback loop must supply the cavity with
the microwave field in the superconducting cavity in@ Photon whenever the probe atom is found in sgte
an odd coherent state and the corresponding condition#fnilé it has to do nothing when the atom is detected in

probability is given by the e state. This can be realized with a switch to Stark
| alPe _ —2laP—eT) shlf_t a subsequept atom onto resonance Wlth_ respect to the
P, (T) = — |:1 — e_ . :| (4) radiation mode in the superconducting cavity whenever
2 I — 2l the probe atom is detected in tigestate after crossing

The dependence of this conditional probability uponthe cavity. The on-resonance atom can now deposit a
the time delay between the two atom crossings gives aingle photon in the cavity. We will determine the time
clear description of the cat state decoherence. In fact, évolution ofP,. in the presence of feedback.
there is no dissipation in the cavity, i.ey,l = 0, it is The time evolution of the microwave field in the
P.. = 1 and this perfect correlation between the atomichigh-Q cavity can be described by the transformation
state and the cavity state is the experimental signaturigom the state just before the crossing of a nonresonant
of the presence of an odd coherent state in the Righ- Rydberg atom to the state of the radiation mode before
cavity. As long asy # 0, the conditional probability the next nonresonant atom crossing. This transformation
decreases for increasing delay tiffie At a first stage one is given by the composition of two successive mappings
has a decay to the valuR,, = 1/2 in the decoherence p’ = ®(p) = Dy;ss(Pry(p)), Where &g, describes the
time e = (2ylal?)~'; this is the decoherence processeffect of the interaction with the nonresonant probe
itself, that is, the fast transition from the quantum linearatom followed by the conditional effect of the resonant
superposition state to the statistical mixture describing #eedback atom. The operatidpy;s; describes instead the
classicalsuperposition of fields with opposite phases. Atdissipative evolution of the field mode during the time
larger delaysT, the plateauP,, = 1/2 turns to a slow interval T between measurement and feedback steps, and
decay to zero because the two coherent states of thieis characterized by the energy relaxation rate
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To construct®;, we must first determine the condi- frequency andr is the atom-field interaction time. The
tional state of the cavity, given the state of the probe atomprobability of releasing the photon within the high-

ese are given cavity is maximized when the sine term in is
Th g by Q ty d when th t 6

X N . . maximum. In the case of the Schrodinger cat state studied
pe = 7le T e’ + p ke Ty = pe'TT ] here this essentially corresponds to the condifidey| =

5) w(m + 1/2) (m integer) and it can be obtained with an

Second, we need to determine the change in the con ppropriate selection of the velocity of the feedback atom.
’ ?ere we assume that the feedback resonant atoms come

tional state when a resonant atom is injected in the excite ) .
state. The feedback mechanism acts only if the atom h om a second source and that their state is not detected
' arter exiting the cavities. In writing this expression we

been found ing, and corresponds to injecting a resonantha e imolicitly assumed that not onlv the off-resonant
excited state atom [9]. The details will be presented else- Ve Implicitly assu y “resor
where. The effect of the nonunit efficiency of the atomictom time of flight, but also the fe'edback loop delay time,
detectorsy, which is of the order ofy = 0.4 in the actual is much smaller than the typical time scales of the system
experimeni, must also be included. Corﬁbining all the op—and that they can be neglected: T'his means ansidering
erations, we derive the explicit expression of the feedbac nly I\_/Iarkov_lan feedback and this simplifies c_o_nS|derany

' e discussion [7]. The operateby,, describing the

operator®sp: dissipative time evolution between two successive atom
® _ + »coduvaah)o. cod uvaat crossings can be obtained from the exact evolution of a
wlp) = mpe " duvaa )pf’ duvaal) cavity in a standard vacuum bath [10].
+ nat Sln(,u\/aa*)p sin(uvaat) u The general expression of the transformatidnde-
(@aa™)1/2 78 (aat)1/? scribing the transition from the state of the cavity field

©6) at time nT, i.e., just before the injection of theth off-
resonant probe atom, to the state at titne+ 1)7, is
written for density matrix elements in the following way

(<n|q)(,0) |I’l + p> = prlz,rH—p):

+ (1 = n)lpe + pel.

where u = Q 7, with Q denoting the resonance Ral?i

i Ci‘l Cﬂ
Phnip = Z{M[nun,mz +4(1 — m) + nsi(n,k)>coduvn + k + 1)coduyn + p + k + 1)]

k=0 4
Cn Cn . .
+ 7 wﬁ(n,k)zsm(,u\/n + k4 1)sin(uyn + p + k + 1)}
Cn0Cn+p,0 _. .
X Pntkniptk T 1 ?”sm(m/ﬁ)sm(m/n + p)s— (1,0 pu—101p-1. (7)
where | the decay of this probability can be not only slowed down,
(n + k)l but also partially inhibited in the sense that the asymptotic
Cok = T e MYT(1 — e Tk value of P, becomes nonzero.
nK.

However, the fact thaP, can be kept very close to one
and s=(n,k) = 1 = (=1)"**. Equation (7) gives the foran indefinite time does not mean that the initial odd cat

stroboscopic time evolution of the microwave field in the
superconducting cavity in the presence of the proposed
feedback mechanism. This dynamics can be experimen-
tally monitored from the reconstruction of the probabil-
ity of detecting the off-resonance atoms in the state
P.(nT), using Eq. (3) evaluated at timeg’. The time
evolution of this probability is plotted in Fig. 1, where
an initial odd coherent state withx|?> = 3.3 (just the
value corresponding to that of the actual experiment of
Ref. [2]) is considered. The full line refers to the no
feedback casey = 0), that is, the theoretical predic-
tion of Eq. (4), the dashed line refers o = 7 /6 and

vT = 0.02, the dotted line tqu = 7/2 andyT = 0.02,
horizontal crosses ta = 7/2 andyT = 0.2, and diago- FIG. 1. Time evolution of the probability of detecting the off-

_ _ _ resonant atoms in state in the case whena|*> = 3.3 and
nal crosses ta = a7/6 andyT = 0.2. Allthe curves re the detection efficiency isp = 0.4. Full line: u =0 (no

fer to the realistic case of a detection efficiengy= 0.4. feedback case): dashed ling:= /6 and yT — 0.02; dotted
The comparison between the curves in the presence Qhe: 4 = /2 and yT = 0.02; horizontal crossesu - /2

feedback and that in absence of feedback is impressivandyT = 0.2; diagonal crossesz = 7/6 andyT = 0.2.
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state can be preserved almost perfectly, because the quatiases, and the oscillations associated to quantum coher-
tity P, gives only a partial information on the state of theence have essentially disappeared. On the contrary, the
radiation mode within the cavity [see Eq. (3)]. Perfect catstate evolved in presence of feedback is almost indistin-
state “freezing” can be realized only in cavities with anguishable from the initial one and the interference oscilla-
infinite Q; the proposed feedback scheme inevitably modtions are still very visible. Figure 2(a) also shows that the
ifies the initial state, even in the ideal conditions of per-unconventional, feedback-induced phase diffusion is actu-
fect detection efficiency; = 1 and continuous feedback ally very slow, since its effects are not yet visible after
vT = 0. In fact our model can preserve for an infinite + ~ 3z4..; Moreover we have also checked that the rota-
time the initial photon number distribution only at best. tionally invariant stationary state is not reached even after
But it causes a kind of phase diffusion, because the phden decoherence times.

ton left in the cavity by the resonant atom has no phase Here we have assumed that it is possible to send
relationship with those in the cavity. To state it in otherexactly one atom at a time in the cavity, while in [2]
words, our feedback scheme protects very well the relativatomic pulses with an average numbeldess than one
phase of the coefficients of the two components of the iniare used. Essentially, this is equivalent to having, in
tial cat state (which isr for the odd cat state) generating our model, an effective quantum efficienayy = 7.

at the same time the diffusion of the phase of the two coNonetheless, the performance of the feedback scheme
herent states. The phase diffusion however is unconvercould be improved with respect to that shown by the
tional and slower than usual phase diffusion. This is stillfigures, where we have preferred to be as close as possible
a relevant result because it shows how quantum coherente the actual experimental values. In fact one could
can be partially protected, only making a slight modifica-use more efficient atomic detectors and, above all, one
tion of the beautiful experiment of [2]. This is clearly could make the time interval between two successive
shown by Figs. 2(a) and 2(b), where the Wigner functiondetectionsT as small as possible. This is the most
of the cavity state after a time= 0.44/y (¢t ~ 314c) relevant parameter (see also Fig. 1) since decoherence can
for the same initial odd coherent state wit|? = 3.3 be better inhibited if one can “check” the cavity state, and
considered in Fig. 1, is plotted. Figure 2(a) refers to thesventually try to restore it, as soon as possible.

feedback case witlu = 7 /6, yT = 0.02, andn = 0.4, The scheme proposed here could also be useful for
while Fig. 2(b) shows the situation in absence of feedthe use of cavity QED systems for quantum information
back. The figures clearly show the effectiveness of ouprocessing. Within this context, most of the proposals
scheme: since ~ 314, the state in absence of feedbackthat have already appeared adopt quantum error correction
has become a mixture of two coherent states with oppositechniques [11] to oppose to decoherence. These propos-
als are difficult to realize experimentally, while here we
propose a physical control of decoherence which can be
implemented in an already performed experiment.
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