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Controlling the Decoherence of a “Meter” via Stroboscopic Feedback
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We propose a simple modification of the experimental scheme employed by Bruneet al. [Phys.
Rev. Lett.77, 4887 (1996)] for the generation and detection of a Schrödinger cat state, in which
the decoherence of the cat state can be significantly slowed down using an appropriate feedback
[S0031-9007(97)04106-9]
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Decoherence is the rapid destruction of the phase re
tion between two quantum states of a system caused
the entanglement of these two states with two differe
states of the environment [1]. The progressive decoh
ence of a mesoscopic Schrödinger cat has been obse
for the first time in the experiment of Bruneet al. [2],
where the linear superposition of two coherent states
the electromagnetic field in a cavity with classically dis
tinct phases has been generated and detected. In this
ter we describe a scheme in which decoherence due
spontaneous emission can be significantly mitigated
coherent feedback.

In Ref. [2], a Schrödinger cat state for the microwav
field in a superconducting cavityC has been generated
using circular Rydberg atoms crossing a cavity prepar
in a coherent state. All the atoms have an appropriat
selected velocity and the relevant levels are two adjac
Rydberg states which we denote asjgl and jel. The
atoms are initially prepared in the statejel. The high-Q
superconducting cavity is sandwiched between two lowQ
cavities R1 and R2, in which classical microwave fields
can be applied and which are resonant with the transit
between the statejel and the nearby lower circular stat
jgl. The intensity of the field in the first cavityR1 is
then chosen so that, for the selected atom velocity
py2 pulse is applied to the atom as it crossesR1. As
a consequence, the atomic state before entering the ca
C is jcatoml ­

1
p

2
sjel 1 jgld .

The high-Q cavityC is off resonance with respect to th
e ! g transition. However we will allow for a strong
field pulse to shift the excited state into resonance w
the cavityC. In the off-resonant case, the atom and th
field cannot exchange energy but only undergo dispers
frequency shifts depending on the atomic level [3]. Th
field undergoes an equal and opposite phase shift for
ground and excited states. However as only the relat
phase of the two components matters we may attribute
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the phase shift to the excited state component and ass
no phase shift for the ground state component. We sh
assume for simplicity that the atom velocity can be chos
so that the phase shift,f ­ p . For the generation of
a cat state one has to correlate each atomic state
superpositionof coherent states with different phases, a
this is achieved by submitting the atom to a secondpy2
pulse in the second microwave cavityR2, so that the
state becomesjc 0

atom1fieldl ­ sjel ja2l 1 jgl ja1ldy
p

2,
where we have defined the evens1d and odd s2d
Schrödinger cat states asja6l ­ N21

6 sjal 6 j 2 ald,
whereN2

6 ­ 2s1 6 e22jaj2 d. This shows that an even o
an odd coherent state is generated in the cavity accord
to the fact the atom is detected in the leveljgl or jel,
respectively.

To detect the cat state in the cavity we inject a seco
excited atom, the probe atom, into the system. As sho
in [4], the conditional dynamics for the probe atom
defined by the transformation

jel ja2l ! 2jel ja2l , jel ja1l ! jgl ja1l . (1)

This controlled-not dynamics (the atomic state flips on
for an odd cat state in the cavity) is an effect of th
f ­ p phase shift per photon. When there is an ev
cat, the cavityC does not change the atomic state a
the two py2 pulses sum up to a singlep pulse. In the
case of an odd cat, thee component of the atomic state
changes sign and the twopy2 pulses cancel each othe
The atomic state of the probe atom is precisely correla
with either an even or odd cat state so that if the pro
atom is found in the excited state, the state of the fie
prepared by the first atom was indeed an odd cat state

The Schrödinger cat state undergoes a very fast
coherence process [5] caused by the inevitable prese
of dissipation in the superconducting cavity, which is d
scribed by the following density matrix:
rstd ­
1

N2
6

fjae2gty2l kae2gty2j 1 j 2 ae2gty2l k2ae2gty2j 6 e22jaj2s12e2gtd

3 sj 2 ae2gty2l kae2gty2j 1 jae2gty2 l k2ae2gty2jdg , (2)
© 1997 The American Physical Society
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where g is the cavity decay rate and where the plu
(minus) sign corresponds to the even (odd) coherent sta
Decoherence is governed by the factor expf22jaj2s1 2

e2gtdg, which for gt ø 1 becomes expf22jaj2gtg, im-
plying therefore that the interference terms decay to ze
with a lifetime tdec ­ s2gjaj2d21.

A greater insight into the decoherence process
obtained by considering the conditional evolution whe
the decay channel is monitored. This leads to the quant
trajectory picture of a decaying cavity field [6]. If a
photon is lost from a cat state, the character of the c
flips from even to odd and vice versa. Between photo
emission events, the amplitude of each component of t
cat simply decays at half the cavity decay rate, but th
character of the cat does not change. Thus by detect
whether or not the cat changes its character we can kn
if a photon has been lost from the cavity. This knowledg
may then be used to feedback on the cavity field to try
return the field to the desired state.

In the experiment of Bruneet al. [2] the progressive
decoherence of the cat state has been observed for
first time. This was achieved by sending a second ato
with the same velocity, through the same arrangements
cavities, after a time delayT . The probability of detecting
the second atom in thee or g state is [2]

P g
e

­
1
2

s1 6 RehTrfe2ipayarsTdgjd . (3)

If one inserts in (3) the explicit expression ofrsTd given
by (2), one gets the four conditional probabilitiesPij,
(i, j ­ e or g), of detecting the second atom in the stat
j after detecting the first atom in the statei and which
give a satisfactory description of the decoherence proce
of the cat state. Let us consider, for example, the case
two successive detections of the circular Rydberg sta
e: in this case the detection of the first atom projec
the microwave field in the superconducting cavity i
an odd coherent state and the corresponding conditio
probability is given by

PeesTd ­
1
2

"
1 2

e22jaj2e2gT
2 e22jaj2s12e2gT d

1 2 e22jaj2

#
. (4)

The dependence of this conditional probability upo
the time delay between the two atom crossings gives
clear description of the cat state decoherence. In fact
there is no dissipation in the cavity, i.e.,gT ­ 0, it is
Pee ­ 1 and this perfect correlation between the atom
state and the cavity state is the experimental signatu
of the presence of an odd coherent state in the highQ
cavity. As long asg fi 0, the conditional probability
decreases for increasing delay timeT . At a first stage one
has a decay to the valuePee ­ 1y2 in the decoherence
time tdec ­ s2gjaj2d21; this is the decoherence proces
itself, that is, the fast transition from the quantum linea
superposition state to the statistical mixture describing
classicalsuperposition of fields with opposite phases. A
larger delaysT , the plateauPee ­ 1y2 turns to a slow
decay to zero because the two coherent states of
s
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mixture both tend to the vacuum state and start to overla
due to field energy dissipation.

In the present paper, we propose a modification o
the experiment of Bruneet al. [2], in which the cat
decoherence is not simply monitored but also controlle
in an active way. In particular we show that by using a
appropriate feedback scheme, it is possible to slow dow
significantly the decoherence process. To fix the ideas, w
shall consider only the case in which the experimental
studied quantity is the conditional probabilityPee.

Applying a feedback loop to a quantum system mean
subjecting it to a series of measurements and then usi
the result of these measurements to modify the dynam
ics of the system. Wiseman and Milburn have deve
oped a quantum theory of continuous feedback [7]. Th
theory has been applied in Ref. [8] to show that an ap
propriate continuous feedback loop can be used to slo
down the decoherence of a Schrödinger cat in an optic
cavity. In the Bruneet al. experiment [2] it is not pos-
sible to monitor continuously the state of the radiation i
the cavity, since the involved field is in the microwave
range and there are not good enough detectors in this wa
length region. In this case, continuous measurement can
replaced by a series ofrepeatedmeasurements, performed
by off-resonance atoms crossing the superconducting ca
ity one by one with a time intervalT . As a consequence,
one could try to apply a sort of “discrete” feedback schem
modifying in a “stroboscopic” way the cavity field dynam-
ics according to the result of the atomic detection.

We will consider only the case where atomic detectio
of the first atom prepares an odd cat state. From Eq. (1
we see that the state of the probe atom is correlated w
an even or odd cat, and may thus be used to determine
the cat has undergone a flip from odd to even by photo
emission. The feedback loop must supply the cavity wit
a photon whenever the probe atom is found in stateg,
while it has to do nothing when the atom is detected i
the e state. This can be realized with a switch to Star
shift a subsequent atom onto resonance with respect to
radiation mode in the superconducting cavity wheneve
the probe atom is detected in theg state after crossing
the cavity. The on-resonance atom can now deposit
single photon in the cavity. We will determine the time
evolution ofPee in the presence of feedback.

The time evolution of the microwave field in the
high-Q cavity can be described by the transformatio
from the state just before the crossing of a nonresona
Rydberg atom to the state of the radiation mode befo
the next nonresonant atom crossing. This transformatio
is given by the composition of two successive mapping
r0 ­ Fsrd ­ FdisssssFfbsrdddd, where Ffb describes the
effect of the interaction with the nonresonant prob
atom followed by the conditional effect of the resonan
feedback atom. The operationFdiss describes instead the
dissipative evolution of the field mode during the time
interval T between measurement and feedback steps, a
it is characterized by the energy relaxation rateg.
2443
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To constructFfb we must first determine the condi-
tional state of the cavity, given the state of the probe ato
These are given by

r g

e
­

1
4 fe2ipayareipaya 1 r 6 e2ipayar 6 reipayag .

(5)
Second, we need to determine the change in the con
tional state when a resonant atom is injected in the exci
state. The feedback mechanism acts only if the atom h
been found ing, and corresponds to injecting a resona
excited state atom [9]. The details will be presented els
where. The effect of the nonunit efficiency of the atom
detectorsh, which is of the order ofh ­ 0.4 in the actual
experiment, must also be included. Combining all the o
erations, we derive the explicit expression of the feedba
operatorFfb:

Ffbsrd ­ hre 1 h cossm
p

aaydrg cossm
p

aayd

1 hay sinsm
p

aayd
saayd1y2

rg
sinsm

p
aayd

saayd1y2
a

1 s1 2 hd fre 1 rgg , (6)

where m ­ Vt, with V denoting the resonance Rab
2444
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frequency andt is the atom-field interaction time. The
probability of releasing the photon within the high-
Q cavity is maximized when the sine term in (6) is
maximum. In the case of the Schrödinger cat state studi
here this essentially corresponds to the conditionmjaj ­
psm 1 1y2d (m integer) and it can be obtained with an
appropriate selection of the velocity of the feedback atom
Here we assume that the feedback resonant atoms co
from a second source and that their state is not detect
after exiting the cavities. In writing this expression we
have implicitly assumed that not only the off-resonan
atom time of flight, but also the feedback loop delay time
is much smaller than the typical time scales of the syste
and that they can be neglected. This means consideri
only Markovian feedback and this simplifies considerabl
the discussion [7]. The operatorFdiss describing the
dissipative time evolution between two successive ato
crossings can be obtained from the exact evolution of
cavity in a standard vacuum bath [10].

The general expression of the transformationF de-
scribing the transition from the state of the cavity field
at time nT , i.e., just before the injection of thenth off-
resonant probe atom, to the state at timesn 1 1dT , is
written for density matrix elements in the following way
(knjFsrd jn 1 pl ­ r0

n,n1p):
r0
n,n1p ­

X̀
k­0

Ω
cn,kcn1p,k

4
fhs2sn, kd2 1 4s1 2 hd 1 hs1sn, kd2 cossm

p
n 1 k 1 1 d cossm

p
n 1 p 1 k 1 1 dg

1 h
cn,k11cn1p,k11

4
s1sn, kd2 sinsm

p
n 1 k 1 1 d sinsm

p
n 1 p 1 k 1 1 d

æ
3 rn1k,n1p1k 1 h

cn,0cn1p,0

4
sinsm

p
n d sinsm

p
n 1 p ds2sn, 0d2rn21,n1p21 , (7)
s

i

e

-

e
i

,
ic

at
where

cn,k ­

s
sn 1 kd!

n!k!
e2ngT s1 2 e2gT dk

and s6sn, kd ­ 1 6 s21dn1k. Equation (7) gives the
stroboscopic time evolution of the microwave field in th
superconducting cavity in the presence of the propo
feedback mechanism. This dynamics can be experim
tally monitored from the reconstruction of the probab
ity of detecting the off-resonance atoms in the statee,
PesnT d, using Eq. (3) evaluated at timesnT . The time
evolution of this probability is plotted in Fig. 1, wher
an initial odd coherent state withjaj2 ­ 3.3 ( just the
value corresponding to that of the actual experiment
Ref. [2]) is considered. The full line refers to the n
feedback case (m ­ 0), that is, the theoretical predic
tion of Eq. (4), the dashed line refers tom ­ py6 and
gT ­ 0.02, the dotted line tom ­ py2 andgT ­ 0.02,
horizontal crosses tom ­ py2 andgT ­ 0.2, and diago-
nal crosses tom ­ py6 andgT ­ 0.2. All the curves re-
fer to the realistic case of a detection efficiencyh ­ 0.4.

The comparison between the curves in the presenc
feedback and that in absence of feedback is impress
e
ed
en-
l-
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o
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ve:

the decay of this probability can be not only slowed down
but also partially inhibited in the sense that the asymptot
value ofPe becomes nonzero.

However, the fact thatPe can be kept very close to one
for an indefinite time does not mean that the initial odd c

FIG. 1. Time evolution of the probability of detecting the off-
resonant atoms in statee in the case whenjaj2 ­ 3.3 and
the detection efficiency ish ­ 0.4. Full line: m ­ 0 (no
feedback case); dashed line:m ­ py6 andgT ­ 0.02; dotted
line: m ­ py2 and gT ­ 0.02; horizontal crosses:m ­ py2
andgT ­ 0.2; diagonal crosses:m ­ py6 andgT ­ 0.2.
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state can be preserved almost perfectly, because the qu
tity Pe gives only a partial information on the state of the
radiation mode within the cavity [see Eq. (3)]. Perfect ca
state “freezing” can be realized only in cavities with a
infinite Q; the proposed feedback scheme inevitably mo
ifies the initial state, even in the ideal conditions of per
fect detection efficiencyh ­ 1 and continuous feedback
gT ø 0. In fact our model can preserve for an infinite
time the initial photon number distribution only at best
But it causes a kind of phase diffusion, because the ph
ton left in the cavity by the resonant atom has no pha
relationship with those in the cavity. To state it in othe
words, our feedback scheme protects very well the relati
phase of the coefficients of the two components of the in
tial cat state (which isp for the odd cat state) generating
at the same time the diffusion of the phase of the two c
herent states. The phase diffusion however is unconve
tional and slower than usual phase diffusion. This is st
a relevant result because it shows how quantum cohere
can be partially protected, only making a slight modifica
tion of the beautiful experiment of [2]. This is clearly
shown by Figs. 2(a) and 2(b), where the Wigner functio
of the cavity state after a timet ­ 0.44yg (t , 3tdec)
for the same initial odd coherent state withjaj2 ­ 3.3
considered in Fig. 1, is plotted. Figure 2(a) refers to th
feedback case withm ­ py6, gT ­ 0.02, andh ­ 0.4,
while Fig. 2(b) shows the situation in absence of feed
back. The figures clearly show the effectiveness of o
scheme: sincet , 3tdec, the state in absence of feedbac
has become a mixture of two coherent states with oppos

FIG. 2. Wigner function for an initial odd coherent state with
jaj2 ­ 3.3 after an elapsed timet ­ 0.44yg. (a) Evolution
in presence of feedback withm ­ py6, gT ­ 0.02, h ­ 0.4;
(b) no feedback case.
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phases, and the oscillations associated to quantum coh
ence have essentially disappeared. On the contrary, t
state evolved in presence of feedback is almost indistin
guishable from the initial one and the interference oscilla
tions are still very visible. Figure 2(a) also shows that the
unconventional, feedback-induced phase diffusion is actu
ally very slow, since its effects are not yet visible after
t , 3tdec; moreover we have also checked that the rota
tionally invariant stationary state is not reached even afte
ten decoherence times.

Here we have assumed that it is possible to sen
exactly one atom at a time in the cavity, while in [2]
atomic pulses with an average numbern̄ less than one
are used. Essentially, this is equivalent to having, in
our model, an effective quantum efficiencyheff ­ hn̄.
Nonetheless, the performance of the feedback schem
could be improved with respect to that shown by the
figures, where we have preferred to be as close as possi
to the actual experimental values. In fact one could
use more efficient atomic detectors and, above all, on
could make the time interval between two successiv
detectionsT as small as possible. This is the most
relevant parameter (see also Fig. 1) since decoherence c
be better inhibited if one can “check” the cavity state, and
eventually try to restore it, as soon as possible.

The scheme proposed here could also be useful f
the use of cavity QED systems for quantum information
processing. Within this context, most of the proposal
that have already appeared adopt quantum error correcti
techniques [11] to oppose to decoherence. These propo
als are difficult to realize experimentally, while here we
propose a physical control of decoherence which can b
implemented in an already performed experiment.
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