The Impact of Expert Testimony on Jurors’ Decisions: Gender of the Expert and Testimony Complexity

Regina A. Schullera, Deborah Terryb, and Blake McKimmiec

aYork University Toronto, Ontario, Canada
bUniversity of Queensland Brisbane, Australia
cQueensland University of Technology Brisbane, Australia

Abstract

The present study investigated whether people used the gender of an expert witness as a heuristic cue to evaluate the evidence presented by the expert. Specifically, the gender of the expert and the complexity of the expert’s testimony (low, high) were varied systematically within a simulated civil trial involving an antitrust price-fixing agreement. It was expected that the male expert would be more persuasive than the female expert, but only when the testimony presented was complex. As predicted, this interaction was revealed across a range of dependent measures. Somewhat unexpected was the finding of a female expert advantage in the low-complexity condition. The implications of these findings are discussed.

In both civil and criminal cases, expert evidence is increasingly being proffered at trial (Gross & Syverund, 1991). As such, research on the topic of how jurors utilize expert information and the variables that influence its impact on jurors’ decisions is of increasing importance. Like any communicative message, the impact of expert testimony on jurors’ decisions is likely to be influenced by a range of variables, some of which are content related (e.g., quality of the testimony) and some of which are not (e.g., source characteristics of the expert). The focus of the present research is on expert gender, a non-content-related source characteristic that may, albeit unwittingly, influence jurors’ receptivity to the information conveyed by the expert.

A handful of studies have provided some support for the notion that the gender of an expert witness may influence the degree to which the expert’s testimony impacts upon jurors’ decisions. Indeed, the observation that male experts are likely to be regarded as more credible than female experts (Memon & Shuman, 1998) is entirely consistent with the view that people tend to associate male targets with a wide variety of positive attributes that they fail to impart on female targets (Eagly, Makhijani, & Klonsky, 1992; Swim, Borgida, Maruyama, & Myers, 1989). Somewhat at odds with this initial impression, however, are results of studies comparing the impact of male versus female experts. These studies have found evidence for a female, rather than a male, expert advantage (Memon & Shuman, 1998; Schuller & Cripps, 1998; Swenson, Nash, & Roos, 1984). As the researchers have noted, however, the evidence for the persuasive superiority of the female expert witness in these studies may be a consequence of the female specific domain in which the effects of expert gender were examined (e.g., child custody, battered women). Indeed, given the theoretical literature on gender-role stereotyping and evaluations of men and women (e.g., Eagly et al. 1992; Swim et al., 1989), one might expect that the expert would be valued more, and hence have more of an impact, relative to his or her counterpart, when the domain of the case was gender congruent. More recently, Schuller, Terry, and McKimmie (2001) explored this hypothesis directly and found support for the interplay between the expert’s gender and the congruency of the case domain in which the expert testified, with the differential advantage of gender-role congruency primarily confined to the male congruent case (e.g., construction industry).

By drawing on social psychological research on the topic of persuasion and attitude change (e.g., elaboration likelihood model; Petty & Cacioppo, 1986), the present study is designed to explore whether the gender of an expert might operate as a heuristic cue that jurors use to evaluate an expert’s testimony. As suggested by the longstanding research tradition in persuasion, people tend to use one of two cognitive routes-systematic or heuristic-when evaluating a persuasive message (Chaiken, 1980; Petty & Cacioppo, 1986). Systematic or effortful processing involves a careful consideration of the quality of the message and its content, and requires both motivation and
ability on the part of the individual to process the information. When people lack the motivation or ability to scrutinize and understand the message, however, researchers have demonstrated that people will turn to decisional shortcuts or heuristic cues to assess the quality of the message (Petty, Cacioppo, & Goldman, 1981; Ratneshwar & Chaiken, 1991).

Drawing on this theoretical base, Cooper, Bennett, and Sukel (1996) posited that, since expert testimony by its very nature tends to be complex, replete with specialized, technical, and scientific concepts (Faigman, Kaye, Saks, & Saunders, 2002), jurors may be especially sensitive to heuristic cues when evaluating expert testimony. To test this hypothesis, Cooper et al. presented mock jurors with a simulated civil trial in which the strength of the expert’s credentials (low, high) and the complexity of the expert testimony (low, high) were manipulated orthogonally. As expected, when the testimony was complex, Cooper et al. found that the mock jurors were more persuaded by an expert with highly credible credentials than by an expert with fewer credentials, a result that was not evident when participants were exposed to the simplified form of the testimony. In this latter condition, the influence of the expert’s credentials disappeared. In another series of experiments, Cooper and Neuhaus (2000) replicated and extended these results, again finding that the influence of peripheral cues was most pronounced when expert testimony was complex and not easily processed.

As the findings of Cooper et al. (1996) suggest, variables that convey information about source credibility should have the most influence under conditions that limit the ability of an individual to systematically process and evaluate the content of a message. Drawing on this logic, the present study assesses whether expert gender might operate as a heuristic cue by orthogonally varying the complexity of the expert testimony and the gender of the expert within a simulated civil trial. If expert gender operates as a variable that conveys information about an expert’s level of expertise, it should have the greatest influence under conditions that limit the ability of an individual to systematically process and evaluate the content of the expert’s testimony. That is, the hypothesis that gender of expert operates as a heuristic cue that jurors will utilize to evaluate expert testimony if they are unable to systematically process the evidence is explored.

In the present study, the potential for systematic processing was manipulated by varying directly the complexity of the expert testimony. Given that the gender effects found in Schuller et al. (2001) were primarily confined to the male-oriented domain considered in their research, the present study assesses the hypothesis in this condition only (i.e., male congruent condition). Based on the findings of Schuller et al., it is expected that if the testimony presented by the expert is highly complex, mock jurors will be more likely to rely on the peripheral cue of expert gender when evaluating the expert testimony. Thus, because of the male expert’s gender congruency with the domain of the case, it is expected that the male expert will exert a greater impact on the jurors’ awards and decisions than will his female expert counterpart. In contrast, the male expert advantage is not expected when the testimony is presented in a less complex and more comprehensible format, as such a presentation would permit participants to engage in a more systematic evaluation of the testimony, thereby reducing their reliance on the peripheral cue of gender.

Method

Participants

Participants were 123 (78 women, 45 men) volunteers recruited from undergraduate classes and advertisements posted on campus at a large Canadian university. They ranged in age from 18 to 33 years (Mage = 20.20 years, SD = 2.45).

Stimulus Materials

Participants were presented with a transcript of a slightly modified version of a civil trial (approximately 20 pages long) involving an antitrust price-fixing violation that was developed originally by Diamond and Casper (1992) and used in Schuller et al. (2001). The case involved a price-fixing agreement between two defendant suppliers who supplied crushed rock to a road construction company. The plaintiff in the case was a long-time customer of the suppliers. The two suppliers controlled 70% of the market in the state, and the plaintiff was suing the two companies for $490,000 for damages allegedly caused by the price-fixing agreement.

1 Two participants failed to indicate their gender and were excluded from the sample.
The defendants’ guilt had been established previously in an earlier trial; thus, the task for the mock jurors was to determine the extent of the damages suffered by the plaintiff. Relying on opposing expert witnesses, each side of the case presented different estimates of the damages allegedly suffered by the plaintiff (the testimony provided by each expert was similar in length and approximately 2.5 pages for each expert). Basically, the plaintiff’s expert, who utilized regression models to calculate damages, estimated the damage to be $490,000. In contrast, the expert for the defendants (male across all conditions), who adopted a yardstick approach for calculating damages (i.e., an estimate based on comparative data from similar firms), claimed that the damage caused by the price-fixing agreement totalled $105,000.

Independent Variables

Following Cooper et al. (1996), complexity of the expert testimony was varied by modifying the type of language and difficulty level of the expert’s explanation to produce two levels of complexity. The high-complexity condition included a greater emphasis on specialized technical jargon in the expert’s explanations and responses to the questions posed by the lawyer in the high-complexity condition (e.g., “The appropriate method demands that one first examine the corporate entities’ pricing practices prior to collusion and then embark upon the development of a statistical model”), whereas the low-complexity condition was characterized by a greater reliance on lay terminology explanations and responses (e.g., “The best method, in my opinion, is to look at their pricing in earlier periods and develop a statistical model that identifies the factors that have determined their prices in the past”). The word count and organization of the paragraphs was, however, virtually identical across the two conditions.

Within each of these two levels of complexity, the second experimental variable was manipulated by varying the gender of the plaintiff’s expert witness presenting the testimony, with half of the participants receiving testimony from a female expert (Dr. Elizabeth Pinder) and half of the participants receiving testimony from a male expert (Dr. Michael Pinder).

Dependent Variables Initial impression of expert testimony

Participants were asked to provide an initial assessment of the testimony presented by the plaintiff’s expert witness, with these judgments collected immediately after participants read the presentation of the expert testimony and prior to reading the defense’s case. Using 7-point bipolar adjective rating scales, participants rated the expert testimony across six dimensions (i.e., difficult to understand-easy to understand, convincing-unconvincing, invalid-valid, poorly presented-well presented, credible-not credible, low complexity-high complexity).

An initial principal components analysis with varimax rotation revealed that these ratings were well captured by two distinct dimensions; thus, two composite measures were derived by summing and averaging those items with factor loading k0.50 common to a factor. The two subsequent scales provide measures of the persuasiveness (i.e., convincing, valid, well presented, credible; a = .73) and complexity (i.e., difficult to understand, high complexity; a = .62) of the testimony. Participants also were asked to rate, based on the evidence they had read thus far, the strength of the plaintiff’s case against the defense, using a 7-point scale ranging from 1 (strong) to 7 (weak; reverse scored).

Award estimates and case judgments

Once participants finished reading the entire trial transcript, they were asked to determine the amount of damages that should be awarded to the plaintiff. They were informed that they were free to award any amount they deemed reasonable. Following this, they indicated their confidence in that decision, on a 7-point scale ranging from 1 (not at all confident) to 7 (completely confident). Participants also rated on a 7-point scale the extent to which the defendants’ price-fixing agreement had an impact on the plaintiff’s net profit. Using a 7-point rating scale ranging from 1 (not at all convincing) to 7 (very convincing), participants rated the degree to which the plaintiff provided a convincing case and the extent to which the defendants provided a convincing case (reverse scored). Finally, a comparative judgment of the two experts was provided by asking participants to rate the testimony presented by the expert for each side in terms of how convincing they found the testimony, with the 7-point scale ranging from 1 (plaintiff’s expert more convincing) to 7 (defense’s expert more convincing; reverse scored). These four items were summed and averaged to form a composite measure of the impact of the price-fixing agreement (a = .79), with a high score indicative of greater belief in the plaintiff’s claim of resultant damages.
Expert and testimony judgments

Following the measures used by Schuller et al. (2001), participants rated the expert testimony provided by each of the expert witnesses on four scales (i.e., strong-weak, invalid-valid, persuasive-unpersuasive, poorly presented-well presented). Composite measures of the quality of the testimony provided by each expert were then created by summing and averaging these four items, with a higher score indicating a more positive evaluation of the testimony \((a = .73 \text{ and } .81, \text{ for plaintiff and defense expert, respectively}) \).

In addition, using the scales employed in Schuller et al. (2001), participants were asked to rate each expert witness across nine bipolar rating scales that tapped two distinct dimensions regarding the expert; that is, his or her degree of professional competence (i.e., incompetent-competent, qualified-unqualified, knowledgeable-unknownable, not credible-credible, persuasive-not persuasive, unbelievable-believable) and his or her degree of objectivity (i.e., untrustworthy-trustworthy, objective-not objective, unbiased-biased). Composite measures of each of these dimensions were then created by summing and averaging those items comprising each factor \((a = .84 \text{ and } .78, \text{ for plaintiff and defense expert competence, respectively; } a = .63 \text{ and } .54 \text{ for plaintiff and defense expert objectivity, respectively}) \).

Manipulation checks

The success of the complexity manipulation was assessed via participants’ initial evaluation of the complexity of the plaintiffs expert testimony, while the manipulation of expert gender was evaluated by asking participants to indicate the gender of the expert who testified for the plaintiff, with this latter measure completed at the end of the questionnaire.

Finally, five items were included to assess participants’ self-reported cognitive effort engaged in while reading the testimony. A subsequent factor analysis revealed that these items were well captured by a two-factor solution. Two subscales (derived by summing and averaging those items with factor loadings of h0.50 common to a factor) yielded composite measures of cognitive distraction (i.e., thoughts remained focused, degree of distraction while reading the testimony; \(a = .84 \)) and cognitive effort (i.e., thinking carefully, mental effort expended, effort exerted; \(a = .80 \)).

Procedure

Participants were assigned randomly to one of the four conditions, separately for men and women. They were informed that they would be reading a summary of a civil trial and that, for the duration of the study, it was their task to assume the role of a juror. After reading the plaintiff’s case, and prior to reading the defense’s case, participants completed initial ratings of the expert testimony provided by the plaintiff. They then read the defense’s case and completed the second set of dependent measures. Upon completion of the study, participants were provided with verbal feedback regarding the study and thanked for their participation.

Preliminary Analyses

There were 12 participants who failed to correctly note the gender of the plaintiff’s expert witness. Although not statistically significant, it appears that participants were more likely to incorrectly note the gender of the expert in the female-expert/high-complexity condition (6 participants vs. 2 participants in each of the other three conditions). These 12 participants were removed from all subsequent analyses, thus reducing the sample size to 111.

Preliminary analyses of participants’ initial ratings of the plaintiffs expert testimony also indicate that the complexity manipulation was quite successful. A 2 x 2 x 2 (Testimony Complexity x Expert Gender x Participant Gender) ANOVA conducted on participants’ ratings of the complexity of the testimony reveals, as expected, a main effect for complexity, \(F(1, 101) = 8.11, p < .01 \), with participants in the high-complexity condition rating the testimony as more complex \((M = 4.79, SD = 1.32) \) compared to participants in the low-complexity condition \((M = 4.08, SD = 1.19) \). Although participants’ initial ratings of the overall strength of the prosecution’s case did not differ as a function of either the manipulated variables or the gender of participant, a two-way interaction involving gender of participant and complexity was found on participants’ ratings of the persuasiveness of the testimony, \(F(1, 102) = 7.13, p < .01 \). Examination of the means comprising the interaction indicates that women rated the testimony as more persuasive in the low-complexity condition \((M = 5.37, SD = 1.09) \), compared to the high-complexity condition \((M = 4.49, SD = 0.85) \). In contrast, male participants’ judgments of the persuasiveness of the testimony did not differ.
as a function of the complexity manipulation \((M_s = 5.14 \text{ and } 5.25, SDs = 0.92 \text{ and } 1.13, \text{ for low and high complexity, respectively})\).

A series of 2 \times 2 \times 2 (Expert Gender \times Expert Complexity \times Participant Gender) ANOVAs was conducted on the two composite measures tapping participants’ degree of cognitive effort and level of distraction while reading the expert testimony provided by the plaintiff. The results of these analyses reveal a main effect for complexity on participants’ ratings of their level of distraction while reading the testimony, \(F(1, 103) = 6.66, p < .02\). Examination of the means comprising the main effect reveals that participants reported being more distracted in the high-complexity condition \((M = 4.12, SD = 1.45)\) than in the low-complexity condition \((M = 3.30, SD = 1.48)\).

Award Estimates and Case Judgments

The overall damage award rendered in the case was $326,482 \,(SD = $142,628; \text{range} = $42,000 \text{ to } $650,000). It was expected that the male expert would be more persuasive than his female counterpart, but only when the testimony was complex. Thus, to determine whether the impact of expert gender varied as a function of the complexity of the case, planned contrasts (male vs. female expert) within each level of complexity were conducted. As the means displayed in Table 1 indicate, and consistent with our predictions, the male expert, compared to his female counterpart, resulted in higher damage awards for the plaintiff in the high-complexity condition only, \((t(55) = 1.70, p < .05)\). In contrast, the damage awards rendered in the low-complexity condition did not differ as a function of the gender of the expert presenting the plaintiff’s case, \(t(52) = 0.63, \text{ns}\).

Also in line with our predictions, in the high-complexity condition, participants rated the impact of the price-fixing agreement on the plaintiffs net profits as significantly greater when the expert was male rather than female, \(t(54) = 1.75, p < .05\). Although not expected, the reverse pattern of results was found in the low-complexity condition, \(t(52) = 1.78, p < .05\). That is, in the low-complexity condition, the impact of the price-fixing agreement on the plaintiffs net profits was seen as greater when the plaintiffs expert was female, as opposed to male. A similar (although not statistically significant) pattern of results as that evidenced on participants’ ratings of the impact of the price-fixing agreement was found on participants’ confidence ratings of their damage award estimates (Table 1). In the high-complexity condition, participants appeared more confident in their decision when the expert was male, as opposed to female; while participants in the low-complexity condition appeared more confident when the expert was female, as opposed to male.

2 An initial 2 \times 2 \times 2 (Expert Gender \times Testimony Complexity \times Participant Gender) MANOVA conducted on the award and case judgments (ix., award, confidence, and impact of the agreement) reveals that the multivariate effect of the two-way interaction involving testimony complexity and expert gender approached significance (Wilks’s \(\Lambda = .93\)), \(F(3, 100) = 2.43, \text{ns} = .056\). As well, no main effect for gender of participant or interactions involving this variable was evidenced.
Expert and Testimony Judgments

To examine whether the independent variables influenced participants’ evaluations of each of the expert witnesses and the quality of their respective testimonies, a series of 2 x 2 x 2 x 2 (Expert Gender x Testimony Complexity x Participant Gender x Expert Type: Plaintiff vs. Defense) ANOVAs, with the latter variable treated as a within-subjects factor, was conducted across the three measures assessing participants’ evaluations of the expert (i.e., competence, objectivity) and his or her testimony (i.e., quality). No significant effects were found for the two measures tapping the expert (competence, objectivity), but a significant three-way interaction involving expert gender, complexity of testimony, and expert type was found on participants’ rating of the quality of the testimony provided by the experts, $F(1, 102) = 4.03, p < .05$.

To examine the three-way interaction, separate ANOVAs were conducted for the plaintiff and defense expert ratings. No effects were found for participants’ ratings of the quality of the testimony provided by the defense expert witness. The two-way interaction involving complexity and gender of expert, however, was significant for participants’ ratings of the plaintiff’s expert witness, $F(1, 102) = 4.23, p < .05$. Tests of the simple main effects comparing the male versus female expert within each level of testimony complexity failed to reveal any significant differences. Examination of the means comparing the female expert under the two levels of testimony complexity, however, reveals that when the expert was a woman, the quality of her testimony was rated more positively when the complexity of her testimony was low ($M = 5.27, SD = 0.98$), as opposed to high ($M = 4.59, SD = 2.26$). In contrast, the quality of the testimony provided by the male expert did not vary as a function of testimony complexity ($Ms = 4.87$ and 4.80, $SDs = 1.09$ and 0.86, for low and high complexity, respectively).
Discussion

In line with Petty and Cacioppo’s (1986) model of persuasion, it was hypothesized that gender would operate as a heuristic cue that would be used by mock jurors to evaluate expert testimony, but only when the jurors’ ability to systematically process the content of the testimony was blocked. Thus, the potential for systematic processing was manipulated in the present study by varying the complexity of the expert’s testimony. This manipulation was successful. Participants in the high-complexity condition rated the testimony as more complex than did those in the low-complexity condition. Moreover, there is evidence that the manipulation did, indeed, affect the potential for systematic processing to the extent that participants indicated that they were more distracted in the high-complexity condition than in the low-complexity condition.

In accordance with Schuller et al.’s (2001) findings, there was clear evidence to support the expectation that expert gender would impact on participants’ receptivity to the expert witness’ testimony. The results also support the supposition that expert gender would be used as a heuristic cue that would be influential under conditions that limit the jurors’ ability to systematically evaluate and process the message. As expected, when participants were not able to process the testimony systematically (i.e., when it was complex), gender impacted on their receptivity to the testimony. Specifically, in the high-complexity condition, higher damages were awarded to the plaintiff when the expert was male, rather than female. Support for the view that gender acts as a heuristic cue for assessing expert testimony was also evident on participants’ ratings of the impact of the price-fixing agreement, with ratings of its impact significantly greater in the high-complexity condition when the expert was male, rather than female. Consistent with the findings of Schuller et al. (2001), the results found in the high-complexity condition suggest that gender was being used as a marker of source credibility.

The results in the low-complexity condition (where participants were able to process the testimony systematically) reveal a somewhat unexpected pattern. As opposed to exerting little influence on participants’ evaluations, there was a tendency for participants to favor the female over the male expert’s testimony. Specifically, the impact of the price-fixing arrangement was rated as higher when the female (rather than the male) expert presented the low-complexity testimony. Although not statistically significant, damage awards also tended to be higher for the female expert, as opposed to male expert, in the low-complexity condition. Although not providing overwhelming statistical support, this pattern of results suggests that when the materials did not engender cognitive overload, there was a tendency for participants to favor the female expert. This finding is quite intriguing, as it suggests that people may use gender differently depending on their ability to process the information.

It is possible that the female advantage in the low-complexity condition was a result of overcompensation in participants’ responses to a cue that is widely known to elicit stereotype-mediated judgments and evaluations. That is, in an effort to appear nonstereotypical, participants evaluating the female expert testimony may have succumbed to what Wegener, Kerr, Fleming, and Petty (2000) describe a flexible correction. Attempting to appear unbiased in their evaluation of the female expert, they may have overcorrected in their assessment of her testimony, thereby providing more favorable ratings of impact and higher damage awards. Alternatively, the female advantage in the low-complexity condition may be the result of participants processing the testimony presented by the female expert, compared to her male counterpart, more deeply. Along these lines, White and his colleagues (White & Harkins, 1994) found that individuals, particularly those low in prejudice (Petty, Fleming, & White, 1999), were more likely to process a message more carefully when it was presented by a stigmatized as opposed to a nonstigmatized source (e.g., Blacks as opposed to Whites, homosexual as opposed to heterosexual). Thus, it is possible that in an effort to guard against biases and prejudices that could color their evaluation of the female expert, participants may have scrutinized the message from the female expert more carefully and thoroughly than the information presented by her male counterpart.

Another potential explanation for the differential gender effects evidenced across the levels of complexity could be related to stereotypical gender biases in yet another way. It is possible that the testimony of the expert in the low-complexity condition may have been differentially viewed depending on whether it was presented by a male or a female expert. That is, participants may have found the simplistic form of the testimony in accordance with the language and presentation style a woman should employ. In contrast, the more technical language used by the expert in the high-complexity condition may have been viewed negatively when presented by a woman. Consistent with this notion, it is interesting to note that the quality of the female expert’s testimony was rated less positively when her testimony was presented in a complex, as opposed to a simplified fashion. In addition, participants were more likely to incorrectly note the gender of the expert when the expert was female and presented complex testimony.

3 The authors thank two anonymous reviewers for their suggestions regarding some of these possible interpretations.
Although this finding was not statistically significant. The implications of these unexpected findings challenge any straightforward, simplistic analysis of gender as a heuristic cue and highlight the need for additional research that investigates whether an expert’s language and presentational style might interact with the gender of the expert to influence people’s evaluations and judgments.

As with any study, there are some methodological limitations of the research that must be noted. Similar to other studies in the area (e.g., Schuller et al., 2001), and jury-simulation research in general (Weiten & Diamond, 1979), the artificial nature of the task limits the external validity of the findings. The fact that a number of participants failed to correctly note the gender of the expert is troubling and suggests that the salience of the expert’s gender perhaps could have been presented more powerfully. It is possible that a visual trial presentation (e.g., video) that more clearly conveys the expert’s gender will produce stronger gender effects. Moreover, although the stimulus trial employed in the present study was fairly lengthy and realistic in its format, it lacks the impact of a real trial in which jurors are asked to render a group (not an individual) and a real (not a hypothetical) decision.

On this count, the effects of expert characteristics such as gender may be stronger, however, when jurors are exposed to an actual trial situation. For instance, Chaiken and Eagly (1976) found that source attractiveness had more of an impact when a persuasive message was presented in a more realistic video format, rather than a written format. As well, there is some evidence to suggest that the effects of source characteristics (e.g., gender) in fact may be more pronounced when group decisions are rendered (McKimmie, Newton, Terry, & Schuller, 2004).

Finally, the fact that the sample was limited to university students is also a potential limitation of the research, especially given that this sample is characterized by less heterogeneity in terms of age and educational level than a jury would be in an actual trial situation. On this count, however, it is possible that the effects of expert gender may be more marked in a more heterogeneous and representative sample of jurors, since they are likely to find expert testimony more complex than would a sample of university students.

Although it remains an empirical question as to whether or not future research that presents a more heterogeneous sample with a more ecologically valid (perhaps video, as opposed to written) trial presentation would yield similar (or perhaps more pronounced) effects, some support of the methodology employed in the present study can be found in a recent review of jury-simulation research (Bomstein, 1999). In particular, this review reported little research that found differences between different mock-juror samples or different trial mediums. Similarly, other domains of jury inquiry have found support for the appropriateness of using undergraduates and written trial stimulus materials (Rose & Ogloff, 2001).

Notwithstanding these potential limitations, the findings from the present research, taken in their entirety, indicate that in line with previous research investigating stereotypes and gender-based evaluations (Eagly et al., 1992), people’s perceptions of expertise do appear to be influenced by gender. More specifically, the present research contributes to the recent evidence (e.g., Cooper et al., 1996; Cooper & Neuhaus, 2000) demonstrating the role played by peripheral source cues—specifically gender—in people’s responses to expert witness testimony. As suggested by social psychological research on persuasion, variables such as gender that may convey information about source credibility should have the most influence under conditions that limit the ability of the individual to systematically process and evaluate the content of a message. Highly complex messages are likely to preclude systematic processing (Cooper et al., 1996) and it is precisely for this reason that gender effects may occur in relation to jurors’ responses to expert testimony, which by its very nature tends to be complex in nature (i.e., it provides information that is deemed by the courts to be unique and novel).

Perhaps the most important contribution of the present research is that the impact of gender was not found to be constant. As in the high-complexity condition, gender was influential in participants’ processing of the testimony in the low-complexity condition, but in a different manner. The results of the present study suggest that the moderating role of gender-role congruency may extend beyond the expert’s area of expertise to encompass not only the domain of the expert’s expertise, but also the manner and style in which he or she presents the information.

In closing, although clearly warranting future replication, the unexpected finding that the female expert was more effective in the low-complexity condition suggests that the peripheral source characteristic of gender may operate in a less straightforward fashion than was originally expected.

References

