Novel nucleotide analogues bearing (1H-1,2,3-triazol-4-yl)phosphonic acid moiety as inhibitors of *Plasmodium* and human 6-oxopurine phosphoribosyltransferases

Miloš Lukáč, Dana Hocková, Dianne T. Keough, Luke W. Guddat, Zlatko Janeba

PII: S0040-4020(16)31333-3
DOI: 10.1016/j.tet.2016.12.046
Reference: TET 28338

To appear in: *Tetrahedron*

Received Date: 21 October 2016
Revised Date: 7 December 2016
Accepted Date: 19 December 2016

Please cite this article as: Lukáč M, Hocková D, Keough DT, Guddat LW, Janeba Z, Novel nucleotide analogues bearing (1H-1,2,3-triazol-4-yl)phosphonic acid moiety as inhibitors of *Plasmodium* and human 6-oxopurine phosphoribosyltransferases, *Tetrahedron* (2017), doi: 10.1016/j.tet.2016.12.046.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
(R)- and (S)-

1-6 μM inhibition of plasmodial HGi(X)PRT

0.1-0.4 μM inhibition of human HGPRT
Novel nucleotide analogues bearing (1H-1,2,3-triazol-4-yl)phosphonic acid moiety as inhibitors of Plasmodium and human 6-oxopurine phosphoribosyltransferases

Miloš Lukáča, Dana Hockováa, Dianne T. Keoughb, Luke W. Guddatb, Zlatko Janebaa*

aInstitute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
bThe School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, QLD, Australia

Abstract
A novel family of acyclic nucleoside phosphonates (ANPs) bearing a (1H-1,2,3-triazol-4-yl)phosphonic acid group in the acyclic side chain have been prepared in order to study the influence of the hetaryl rigidizing element on the biological properties of such compounds. The key synthetic step consisted of a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) between diethyl ethynylphosphonate and the corresponding azidoalkyl precursor. Two ANPs in this family, bearing a guanine base, exhibited the highest potency for the human 6-oxopurine phosphoribosyltransferase irrespective of the stereochemistry on the C-2’ atom. Four compounds inhibited Plasmodium falciparum 6-oxopurine phosphoribosyltransferase with little differences in their Ki values irrespective of whether the base was guanine, hypoxanthine or xanthine but only two, with guanine as base, inhibited PvHGPRT.

Keywords: acyclic nucleoside phosphonates; 6-oxopurine; hypoxanthine-guanine-(xanthine) phosphoribosyltransferase, copper(I)-catalyzed azide-alkyne cycloaddition

Introduction
Acyclic nucleoside phosphonates (ANPs) represent an important class of antimetabolites that mimic the naturally occurring nucleoside monophosphates. Extensive structure-activity relationship (SAR) studies have been carried out and several distinct classes of ANPs with diverse biological activities have been identified. 2-(Phosphonomethoxy)ethyl or PME (e.g. PMEA, Fig. 1), 2-(phosphonomethoxy)propyl or PMP, and 3-hydroxy-2-

*Corresponding author. Tel.: +420 220 183 143.
E-mail addresses: janeba@uochb.cas.cz (Z. Janeba).
‡Current address: Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia
(phosphonomethoxy)propyl or HPMP (e.g. (S)-HPMPC, Fig. 1) analogues have antiviral properties,2-4 and 2-(phosphonoethoxy)ethyl or PEE derivatives (such as PEEHx and PEEG, Fig. 1), bisphosphonates (Fig. 1) and aza-ANPs (Fig. 1) have antimalarial5-9 and/or antimycobacterial10-11 activity. Several different chemical types of ANPs, including modified PMEA analogues, have also been studied as potent inhibitors of bacterial adenylate cyclases, namely adenylate cyclase toxin from *Bordetella pertussis* and edema factor from *Bacillus anthracis*.12-14 Such analogues may have potential for treatment or prevention of toxaemia caused by the invasion of these bacteria into the human host.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Examples of chemical structures of biologically active acyclic nucleoside phosphonates (ANPs). Top row: The antiviral compounds PMEA and (S)-HPMPC, and antimalarial compounds PEEHx and PEEG. Bottom row: an antiplasmodial bisphosphonate, the general structure of the aza-ANPs, and the general scaffold of the newly designed (1H-1,2,3-triazol-4-yl)phosphonates A.}
\end{figure}

Inhibition of plasmodial hypoxanthine-guanine-(xanthine) phosphoribosyltransferases (HG(X)PRTs) by the ANPs is well-correlated with their antimalarial activity.5-9 These enzymes catalyze the formation of the 6-oxopurine mononucleotides from the 6-oxopurine nucleobases and 5-phospho-\(\alpha\)-D-riboyl-1-pyrophosphate (Fig. 2).15 HG(X)PRTs are key enzymes of the purine salvage pathway and since malarial parasites lack the *de novo* pathway
for purine nucleotide synthesis, this enzyme is a validated target for the development of new antimalarials.5-9 Importantly, the mode of action of the ANPs is different from the currently used drugs, so represents a new approach to developing antimalarial therapeutics.

![Figure 2](image)

\textbf{Figure 2.} Reaction catalyzed by the HG(X)PRTs. The naturally occurring bases are hypoxanthine (R = H), guanine (R = NH\textsubscript{2}) and xanthine (R = OH).

Novel types of ANPs bearing (1H-1,2,3-triazol-4-yl)phosphonic acid group attached to the acyclic side chain (general structure A, Fig. 1) have been synthesized as a continuation of the extended SAR studies carried out by our group. Compounds A (Fig. 1) bearing 6-oxopurine bases were designed as potential inhibitors of plasmodial HG(X)PRTs since it has been reported16 that the optimal length of the aliphatic linker between the nucleobase and the phosphonate group is 5 or 6 atoms (in contrast to antiviral ANPs with 4-atom-linkers). In comparison to the flexible PEE or modified PEE analogues which are potent HG(X)PRTs inhibitors, derivatives A (Fig. 1) have the 1H-1,2,3-triazol-4-yl moiety integrated into the acyclic chain to rigidify the linker, thus, possibly leading to increased affinity.

An efficient synthetic methodology to access the desired 6-oxopurine ANPs with the (1H-1,2,3-triazol-4-yl)phosphonic acid moiety has been developed and optimized. To show the full scope of this synthetic approach, the whole series of ANPs with various purine or pyrimidine bases attached were prepared in good overall yields.

\textbf{Results and Discussion}

\textbf{Chemistry.}

Since the designed compounds A (Fig. 1) contain a stereogenic centre at the C-2’ atom, both (\textit{R})- and (\textit{S})-enantiomers were synthesized side by side for their subsequent biological evaluations. The key synthetic step involved the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) between diethyl ethynylphosphonate17 and suitable intermediate bearing an azido group. In general, two strategies could be utilized for the introduction of the
1,2,3-triazole ring into target ANPs: a) using the “click” CuAAC chemistry between diethyl ethynylphosphonate and acyclic nucleoside analogue having the azido group in the side aliphatic chain or b) the preparation of suitable intermediate bearing diethyl (1H-1,2,3-triazol-4-yl)phosphonate moiety for its subsequent attachment to purine or pyrimidine nucleobases.

The first approach was applied for the synthesis of adenine ANPs by analogy to previously reported procedures.18,19 The synthesis started with alkylation of adenine with commercially available enantiomerically pure tritylated (\textit{R})-(+)- and (\textit{S})-(−)-glycidols, (\textit{R})-2 and (\textit{S})-2 (Scheme 1), to give compounds (\textit{R})-3 and (\textit{S})-3, respectively.18 Intermediates (\textit{R})-3 and (\textit{S})-3 were then benzylation at the exocyclic amino group to form derivatives (\textit{R})-4 and (\textit{S})-4,18 which were further converted into their mesylate derivatives and, subsequently, to azido derivatives (\textit{R})-5 and (\textit{S})-5, respectively, using NaN\textsubscript{3} (Scheme 1).19

\begin{center}
\textbf{Scheme 1.} Reagents and conditions: a) NaH, DMF, 105 °C, 16 h; b) Me\textsubscript{3}SiCl, Py, rt, 2h and then PhCOCl, Py, rt, 2 h; c) MsCl, Py, rt, 4 h; d) NaN\textsubscript{3}, DMF/HMPA, 100 °C, 12 h; e) HC=\text{C}(P)(O)(\text{OE})\textsubscript{2}, CuI, DiPEA, DMF; f) MeNH\textsubscript{2} in MeOH (8M solution), toluene, rt, 4 h; g) 80% aq. CH\textsubscript{3}COOH, 90 °C, 4 h; h) Me\textsubscript{3}SiBr, MeCN, rt, 24 h, then aq. MeOH.
\end{center}

The CuAAC cycloaddition between azido compounds (\textit{R})-5 or (\textit{S})-5 and diethyl ethynylphosphonate,17 using CuI and DiPEA in DMF,20 provided the desired 1,4-substituted triazole derivatives (\textit{R})-6 or (\textit{S})-6 in good yields (Scheme 1). The removal of benzoyl and
trityl groups using methylamine in toluene21 and 80\% aq. acetic acid, respectively, followed by removal of phosphonate ethyl ester moieties with Me\textsubscript{3}SiBr/MeCN with ensuing hydrolysis,22 afforded final products (R)-8 or (S)-8 (Scheme 1).

The second synthetic strategy seems to be more efficient and more broadly applicable since the preformed aliphatic precursor bearing (1H-1,2,3-triazol-4-yl)phosphonate group can be directly attached to suitably modified purines or pyrimidines. At first, the starting tritylated (R)-(+) and (S)-(−)-glycidols, compounds (R)-2 and (S)-2 (Scheme 2), were successively treated with freshly prepared sodium benzyloxide in DMF (without isolation of the products),23 with MsCl in pyridine (to give (R)-9 and (S)-9, respectively), and finally with NaN\textsubscript{3} in a DMF/HMPA mixture to afford azido derivatives (R)-10 and (S)-10, respectively, in overall yields higher than 60\% (Scheme 2).

![Scheme 2](image)

Scheme 2. Reagents and conditions: a) NaH, DMF, PhCH\textsubscript{2}OH, 100 °C, 2 h; b) MsCl, Py, rt, 4 h; c)NaN\textsubscript{3}, DMF/HMPA; 100 °C, 5 h; d)NaBrO\textsubscript{3}, Na\textsubscript{2}S\textsubscript{2}O\textsubscript{4}, EtOAc, H\textsubscript{2}O; e)HC=C(P)(O)(OEt)\textsubscript{2}, CuI, DiPEA, DMF.

To prepare the desired 1,2,3-triazole intermediates (R)-12 and (S)-12 (Scheme 2), azides (R)-10 and (S)-10 can be either first debenzylated and then cyclized under the CuAAC cycloaddition conditions or first cyclized and then debenzylation. Both approaches were tentatively tested and the former approach was selected as it gave higher yields. Thus, removal of the benzyl group from compounds (R)-10 and (S)-10, using a NaBrO\textsubscript{3}/Na\textsubscript{2}S\textsubscript{2}O\textsubscript{4} reagent under two-phase conditions (a method compatible with the present azido group),24 afforded hydroxyl derivatives (R)-11 and (S)-11, respectively, which were then converted by the above described CuAAC cycloaddition20 with diethyl ethynylphosphonate17 to the desired precursors (R)-12 and (S)-12 in satisfactory overall yields (Scheme 2).

The next crucial synthetic step consisted of the attachment of 1,2,3-triazole intermediates (R)-12 and (S)-12 to appropriate purine or pyrimidine nucleobases \textit{via} Mitsunobu reaction. First,
6-chloropurine and 2-amino-6-chloropurine were reacted with compounds \((R)-12\) and \((S)-12\) in the presence of PPh\(_3\) and DIAD in dioxane at room temperature to give 6-chloropurine derivatives \((R)-13\) and \((S)-13\), and 2-amino-6-chloropurine analogues \((R)-16\) and \((S)-16\) in good yields (Scheme 3). The final free phosphonates \((R)-15\), \((S)-15\), \((R)-18\) and \((S)-18\) were obtained by simultaneous hydrolysis of the 6-chloropurine group and detritylation using 75% aq. CF\(_3\)COOH at room temperature (to give 6-oxopurine intermediates \(14\) and \(17\)), followed by the standard removal of the phosphonate ethyl ester moieties (Scheme 3).

![Scheme 3](image)

Scheme 3. Reagents and conditions: a) 6-chloropurine, PPh\(_3\), DIAD, dioxane, rt, 48 h; b) 75% aq. CF\(_3\)COOH, rt, 48 h; c) TMSBr, MeCN, rt, 24 h, then aq. MeOH; d) 2-amino-6-chloropurine, PPh\(_3\), DIAD, dioxane, rt, 48 h; e) isoamyl nitrite, 80% aq. CH\(_3\)COOH, rt, 12 h; f) NH\(_3\), EtOH, 100 °C, 24 h; g) 80% aq. CH\(_3\)COOH, 90 °C, 2 h.

The amino group at C-2 position of compounds \((R)-18\) and \((S)-18\) was replaced with an oxo group using standard diazotization-hydroxydediazoniation approach (treatment with isoamyl nitrite, 80% aq. CH\(_3\)COOH, rt, 12 h; f) NH\(_3\), EtOH, 100 °C, 24 h; g) 80% aq. CH\(_3\)COOH, 90 °C, 2 h.
nitrite in 80% acetic acid) to afford the corresponding xanthine derivatives (R)-19 and (S)-19, respectively, in 45% yields (Scheme 3).

Ammonolysis of 2-amino-6-chloropurine intermediates (R)-16 and (S)-16 gave 2,6-diaminopurine derivatives (R)-20 and (S)-20 which, after detritylation (to yield 21) and subsequent removal of the ethyl ester groups, afforded the final phosphonates (R)-22 and (S)-22 (Scheme 3).

Next, the corresponding ANPs containing pyrimidine nucleobases were synthesized. The Mitsunobu procedure25 (compounds (R)-12 or (S)-12, PPh\textsubscript{3}, DIAD, dioxane, room temperature), followed by nucleobase N-debenzoylation with propylamine in dioxane, was employed for alkylation of 3-benzoyluracil25 and 3-benzoylthymine25 to form pyrimidine intermediates (R)-23, (S)-23 and (R)-26, (S)-26, respectively (Scheme 4).26 Detritylation of compounds 23 and 26 (to yield hydroxy derivatives 24 and 27) and subsequent removal of the ethyl ester groups gave final phosphonates (R)-25, (S)-25 and (R)-28, (S)-28, respectively (Scheme 4).

\textbf{Scheme 4.} Reagents and conditions: a) N^3-benzoyluracil, PPh$_3$, DIAD, dioxane, rt, 48 h; b) propylamine, dioxane, rt, 12 h; c) 80\% aq. CH$_3$COOH, 90 °C, 2 h; d) TMSBr, MeCN, rt, 24 h, then aq. MeOH; e) N^3-benzoylthymine, PPh$_3$, DIAD, dioxane, rt, 48 h; f) N^4-benzoylcytosine, PPh$_3$, DIAD, dioxane, rt, 48 h.
Analogously, N^4-benzoylcytosine27 was treated with (R)-12 or (S)-12 under reported Mitsunobu reaction conditions,25 followed by a subsequent removal of the benzoyl and trityl groups to give cytosine derivatives (R)-29 and (S)-29, respectively (Scheme 4). Standard removal of the ethyl ester groups from (R)-29 and (S)-29 produced the final compounds (R)-30 and (S)-30, respectively (Scheme 4).

Biological activity

Considering the important biological properties of ANPs in general, free phosphonates (R)-8, (S)-8, (R)-15, (S)-15, (R)-18, (S)-18, (R)-19, (S)-19, (R)-22, (S)-22, (R)-25, (S)-25, (R)-28, (S)-28, (R)-30 and (S)-30 were tested in standard antiviral assays,28 but no significant antiviral activity was observed against viruses tested, *i.e.* against human immunodeficiency virus 1 (HIV-1), human rhinovirus (HRV) and hepatitis C virus (HCV).

ANPs bearing 6-oxopurine bases, namely analogues with hypoxanthine (compounds 15), guanine (compounds 18) or xanthine (compounds 19) as the purine base have been designed as potential inhibitors of hypoxanthine-guanine-(xanthine) phosphoribosyltransferases [HG(X)PRTs].$^{5-9}$ Thus, the compounds were tested as potential inhibitors of human HGPRT, *Plasmodium falciparum* HGXPRT and *Plasmodium vivax* HGPRT. The hypoxanthine derivatives (R)-15 and (S)-15 showed an inhibition of the human HGPRT and PfHGXPRT (only isomer (R)-15) with K_i values as low as 3 µM range (Table 1). These compounds did not inhibit the Pv enzyme. The most potent ANPs in this series are the guanine analogues (R)-18 and (S)-18 which are submicromolar inhibitors of human HGPRT and low micromolar inhibitors of both PfHGXPRT and PvHGPRT (Table 1). Interestingly, the potent inhibitory properties of compounds 18 did not depend distinctly on the stereochemistry on the C-2’ atom, as both (R)-18 and (S)-18 isomers exhibited similar K_i values against all three HG(X)PRTs tested (Table 1). On the other hand, in the case of xanthine analogues only isomer (R)-19 (similarly as in the hypoxanthine series) was a potent inhibitor and selective for PfHGXPRT (Table 1). This is because xanthine is not a substrate for the human or Pv enzymes and compounds containing this base cannot, in consequence, bind in the active site. However, if the orientation of the compound varies so that the location of the base is not identical to that of with hypoxanthine or guanine, there remains a possibility that they could bind to these two enzymes.
Table 1. K_i values of the ANPs bearing three different 6-oxopurine nucleobases for human HGPRT, PfHGXPRT and PvHGPR

<table>
<thead>
<tr>
<th>Compound</th>
<th>nucleobase</th>
<th>K_i [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>human</td>
<td>Pf</td>
</tr>
<tr>
<td>(R)-15</td>
<td>hypoxanthine</td>
<td>8</td>
</tr>
<tr>
<td>(S)-15</td>
<td>hypoxanthine</td>
<td>7</td>
</tr>
<tr>
<td>(R)-18</td>
<td>guanine</td>
<td>0.1</td>
</tr>
<tr>
<td>(S)-18</td>
<td>guanine</td>
<td>0.4</td>
</tr>
<tr>
<td>(R)-19</td>
<td>xanthine</td>
<td>>500</td>
</tr>
<tr>
<td>(S)-19</td>
<td>xanthine</td>
<td>>500</td>
</tr>
</tbody>
</table>

Conclusions

A methodology for the synthesis of acyclic nucleoside phosphonates (ANPs) bearing (1H-1,2,3-triazol-4-yl)phosphonate moiety in the acyclic side chain has been developed and a series of 16 compounds in both (R)- and (S)-conformations was prepared for their biological evaluation. Six of these compounds were investigated as inhibitors of the human, Pf and Pv HG(X)PRTs. Two of these ANPs with guanine as the purine base were found to be submicromolar inhibitors of human HGPRT, i.e. with lower K_i values than when hypoxanthine is the base. This is consistent with the fact that the K_m for guanine for this enzyme is lower than for hypoxanthine. The guanine analogues also inhibited the two *plasmodial* enzymes but with higher K_i values. Guanine bearing ANPs were the most potent HG(X)PRTs inhibitors, irrespectively of the stereochemistry on the C-2’ atom of the aliphatic linker, but they lack selectivity for the plasmodial enzymes. The xanthine compound (R)-19 with the K_i value of 2 µM against PfHGXPRT is analogue with best selectivity (no inhibition of human HGPRT) and, thus, represents the most promising compound for the future synthesis of suitable prodrugs and their further biological evaluations as potential antimalarial agents.

Experimental section

Starting compounds and reagents were purchase from commercial suppliers or were prepared according to the published procedures. Solvents were dried by standard procedures. Solvents were evaporated at 40 °C/2 kPa. Analytical TLC was performed on plates of Kieselgel 60 F$_{254}$ from Merck. NMR spectra were recorded on Bruker Avance 400 spectrometer (1H at 400 MHz, 13C at 100.6 MHz, 31P at 161.9 MHz) with TMS or dioxane (3.75 ppm for 1H, 67.19
ppm for 13C NMR) as internal standard or referenced to the residual solvent signal. Mass spectra were measured on UPLC-MS (Waters SQD-2). HR MS were taken on a LTQ Orbitrap XL spectrometer. The purity of the tested compounds was determined by HPLC (H_2O-CH$_3$CN, linear gradient) and was higher than 95%.

General procedure 1 (GP1). Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Diisopropylethylamine (1.7 ml, 10 mmol) and CuI (190 mg, 1 mmol) were added to the mixture of starting azido derivative (5 mmol) and diethyl ethynylphosphonate (970 mg, 6 mmol) in anhydrous DMF (30 mL) under argon at room temperature. The reaction mixture was stirred at room temperature for 4 h and then diluted with EtOAc (50 mL). Organic phase was washed with water (3 × 50 mL) water, dried over anhydrous MgSO$_4$, filtered, concentrated in vacuo, and purified by chromatography over silica gel (CHCl$_3$ → CHCl$_3$/MeOH, 100/3, v/v) to give the corresponding (1H-1,2,3-triazol-4-yl)phosphonic acid derivative.

General procedure 2 (GP2). Synthesis of free phosphonic acids. A mixture of the corresponding diethyl ester phosphonate (1.0 mmol), acetonitrile (5 mL), and TMSBr (1.0 mL) was stirred at room temperature for 24 h. After evaporation and codistillation with acetonitrile (2 × 5 mL), the residue was treated with aqueous methanol (2:1, 10 mL) for 30 min, evaporated to dryness and crystallized/precipitated to afford the final phosphonic acids as crystals/solid.

General procedure 3 (GP3). Mitsunobu reaction. Diisopropylazadicarboxylate (DIAD, 14 mmol) was added dropwise to the solution of triphenylphosphine (15 mmol), alcohol (R)-12 or (S)-12 (5 mmol), and the corresponding heterocyclic base (7.5 mmol) in dry dioxane or THF (100 mL). The reaction mixture was stirred at room temperature for 48 h, evaporated in vacuo, and purified by column chromatography over silica gel.

General procedure 4 (GP4). Detritylation. A mixture of a trityl derivative (1.0 mmol) in 80% aq. acetic acid (2.5 mL) was heated at 90 °C for 2 h. Volatiles were evaporated and the crude product was purified by chromatography over silica gel.

(R)-1-(6-Amino-9H-purin-9-yl)-3-(trityloxy)propan-2-ol (R)-3 and (S)-1-(6-Amino-9H-purin-9-yl)-3-(trityloxy)propan-2-ol (S)-3. In analogy to the reported procedure, a mixture
of adenine (1, 4.73 g, 35 mmol) and NaH (60% in mineral oil, 280 mg, 7 mmol) in DMF (75 mL) was stirred at room temperature for 2 h. Tritylated glycidol (R)-2 or (S)-2 (9.5 g, 30 mmol) in DMF (100 mL) was added, and the resulting solution was heated at 105 °C for 16 h. Solvent was evaporated, the residue was extracted with EtOAc (2 × 50 mL), and purified by chromatography over silica gel (EtOAc → EtOAc/MeOH, 30/2, v/v) to give (R)-3 (51%) and (S)-3 (69%) as white foams. Compound (R)-3: ¹H NMR (400 MHz, CDCl₃) 3.06 (dd, 3J_H,H = 6.3 Hz, 2J_H,H = 9.6 Hz, 1H), 3.28 (dd, 3J_H,H = 5.4 Hz, 2J_H,H = 9.6 Hz, 1H), 4.15 – 4.23 (m, 1H), 4.28 (dd, 3J_H,H = 6.8 Hz, 2J_H,H = 14.2 Hz, 1H), 4.39 (dd, 3J_H,H = 2.2 Hz, 2J_H,H = 14.2 Hz, 1H), 5.85 (br s, 2H), 7.16 – 7.32 (m, 9H), 7.40 (d, 3J_H,H = 7.2 Hz, 6H), 7.68 (s, 1H), 8.22 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) 48.5, 64.7, 69.7, 87.2, 119.5, 127.4, 128.1, 128.6, 141.8, 143.6, 152.5, 155.5; HRMS m/z calcd for C₂₇H₂₆N₅O₂ [M+H]+ 452.20810, found 452.20799.

Compound (S)-3: ¹H and ¹³C NMR spectra are identical with (R)-3. HRMS m/z calcd for C₂₇H₂₆N₅O₂ [M+H]+ 452.20810, found 452.20800.

(R)-N-[9-[2-Hydroxy-3-(trityloxy)propyl]-9H-purin-6-yl]benzamide (R)-4 and (S)-N-[9-[2-Hydroxy-3-(trityloxy)propyl]-9H-purin-6-yl]benzamide (S)-4. In analogy to the reported procedure,¹⁸ compound (R)-3 or (S)-3 (6.77 g, 15 mmol) was dissolved in anhydrous pyridine (100 mL) and trimethylsilyl chloride (8 mL, 63 mmol) was added at room temperature. After stirring for 2 h, the mixture was cooled to 0 °C and benzoyl chloride (2.6 mL, 22.5 mmol) was added dropwise. The mixture was allowed to warm to room temperature and was stirred for additional 2 h. Water (20 mL) was added at 0 °C with stirring, and after 15 min, 25% aq. NH₄OH (40 mL) was added. After stirring for another 30 min, the mixture was extracted with EtOAc (2 × 100 mL). Solvents were partially removed in vacuo and the products were precipitated to give (R)-4 (51%) and (S)-4 (41%) as white powders. Compound (R)-4: ¹H NMR (400 MHz, CDCl₃) 3.16 (dd, 3J_H,H = 5.7 Hz, 2J_H,H = 9.7 Hz, 1H), 3.25 (dd, 3J_H,H = 5.5 Hz, 2J_H,H = 9.7 Hz, 1H), 4.16 – 4.24 (m, 1H), 4.32 (dd, 3J_H,H = 7.1 Hz, 2J_H,H = 14.2 Hz, 1H), 4.49 (dd, 3J_H,H = 2.2 Hz, 2J_H,H = 14.2 Hz, 1H), 7.18 – 7.33 (m, 9H), 7.40 (d, 3J_H,H = 7.3 Hz, 6H), 7.51 (t, 3J_H,H = 7.5 Hz, 2H), 7.61 (t, 3J_H,H = 7.4 Hz, 1H), 7.99 – 8.06 (m, 3H), 8.71 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) 48.0, 64.7, 69.7, 87.2, 119.5, 127.4, 128.1, 128.6, 128.9, 132.9, 133.8, 143.5, 144.3, 149.5, 152.1, 152.3 164.9; HRMS m/z calcd for C₃₄H₃₀N₅O₃ [M+H]+ 556.23432, found 556.23435. Compound (S)-4: ¹H and ¹³C NMR spectra are identical with (R)-4. HRMS m/z calcd for C₃₄H₃₀N₅O₃ [M+H]+ 556.23432, found 556.23435.
(R)-N-[9-[2-Azido-3-(trityloxy)propyl]-9H-purin-6-yl]benzamide \((R)-5\) and \((S)-N-[9-[2-Azido-3-(trityloxy)propyl]-9H-purin-6-yl]benzamide \((S)-5\). In analogy to reported procedure,\(^{19}\) compounds \((R)-4\) or \((S)-4\) (4.17 g, 7.5 mmol) was dissolved in anhydrous pyridine (70 mL). The mixture was cooled to 0 °C and methanesulfonyl chloride (1.2 mL, 15 mmol) was added drop-wise. The reaction mixture was then warmed up to room temperature and stirred for 4 h. Methanol (5 mL) was added at 0 °C and the solvents were evaporated in vacuo. The crude product was dissolved in CH\(_2\)Cl\(_2\) (200 mL), the solution was washed with saturated aq. NaHCO\(_3\) (2 × 100 mL), with brine (1 × 100 mL) and dried (anhydrous Na\(_2\)SO\(_4\)). After filtration the solvent was evaporated in vacuo. The resulting foam was dissolved in a DMF/HMPA mixture (1:1, 20 mL) and sodium azide (2.3 g, 35 mmol) was added. The reaction mixture was stirred at 100 °C for 12 h, cooled down to room temperature and poured into EtOAc (200 mL). The organic layer was washed with water (2 × 200 mL), dried over anhydrous Na\(_2\)SO\(_4\), filtered, evaporated in vacuo, and purified by silica gel chromatography (CHCl\(_3\) to CHCl\(_3\)/MeOH, 98/2, v/v) to afford \((R)-5\) (80%) and \((S)-5\) (51%) as white foams.

Compound \((R)-5\):

\(^1\)H NMR (400 MHz, CDCl\(_3\)) 3.30 (dd, \(^3\)J\(_{HH}\) = 6.3 Hz, \(^2\)J\(_{HH}\) = 10.2 Hz, 1H), 3.45 (dd, \(^3\)J\(_{HH}\) = 4.2 Hz, \(^2\)J\(_{HH}\) = 10.2 Hz, 1H), 3.95 – 4.03 (m, 1H), 4.18 (dd, \(^3\)J\(_{HH}\) = 8.6 Hz, \(^2\)J\(_{HH}\) = 14.3 Hz, 1H), 7.26 (t, \(^3\)J\(_{HH}\) = 7.2 Hz, 3H), 7.33 (t, \(^3\)J\(_{HH}\) = 7.4 Hz, 6H), 7.45 (d, \(^3\)J\(_{HH}\) = 7.2 Hz, 6H), 7.52 (t, \(^3\)J\(_{HH}\) = 7.5 Hz, 2H), 7.60 (t, \(^3\)J\(_{HH}\) = 7.4 Hz, 1H), 7.98 (s, 1H), 8.03 (d, \(^3\)J\(_{HH}\) = 7.2 Hz, 2H), 8.76 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) 44.8, 60.9, 64.0, 87.8, 122.8, 127.5, 128.0, 128.2, 128.6, 129.0, 132.9, 133.8, 143.3, 143.5, 149.7, 152.1, 152.7, 164.8; HRMS m/z calcd for C\(_{34}\)H\(_{29}\)N\(_8\)O\(_2\) [M+H]\(^+\) 581.24080, found 581.24086. \([\alpha]^{20}_D +9.5\) (c 0.59, MeOH).

Compound \((S)-5\):

\(^1\)H and \(^{13}\)C NMR spectra are identical with \((R)-5\). HRMS m/z calcd for C\(_{34}\)H\(_{29}\)N\(_8\)O\(_2\) [M+H]\(^+\) 581.24080, found 581.24086. \([\alpha]^{20}_D –8.6\) (c 0.50, MeOH).

Diethyl \((R)-1-[1-(6-benzamido-9H-purin-9-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazole-4-ylphosphonate \((R)-6\) and Diethyl \((S)-1-[1-(6-benzamido-9H-purin-9-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazole-4-ylphosphonate \((S)-6\). Compounds \((R)-5\) and \((S)-5\) were treated by GP1 to give \((R)-6\) (68%) and \((S)-6\) (83%), respectively, as white powders. Compound \((R)-6\):

\(^1\)H NMR (400 MHz, CDCl\(_3\)) 1.28 and 1.30 (2 × t, \(^3\)J\(_{HH}\) = 7.1 Hz, 2 × 3H), 3.67 (dd, \(^3\)J\(_{HH}\) = 6.3 Hz, \(^2\)J\(_{HH}\) = 10.4 Hz, 1H), 3.71 (dd, \(^3\)J\(_{HH}\) = 4.9 Hz, \(^2\)J\(_{HH}\) = 10.4 Hz, 1H), 4.15 – 4.35 (m, 4H), 4.86 (dd, \(^3\)J\(_{HH}\) = 4.6 Hz, \(^2\)J\(_{HH}\) = 14.5 Hz, 1H), 5.01 (dd, \(^3\)J\(_{HH}\) = 9.4 Hz, \(^2\)J\(_{HH}\) = 14.5 Hz, 1H), 5.13 – 5.22 (m, 1H), 7.17 – 7.34 (m, 15H), 7.50 (t, \(^3\)J\(_{HH}\) = 7.6 Hz, 2H), 7.59 (t, \(^3\)J\(_{HH}\) = 7.4 Hz, 1H), 7.71 (s, 1H), 7.95 (s, 1H), 8.03 (d, \(^3\)J\(_{HH}\) = 7.2 Hz, 2H), 8.74 (s,
13C NMR (100 MHz, CDCl$_3$) 16.3 (d, $^3J_{C,P} = 6.4$ Hz), 44.6, 60.7, 63.2 and 63.3 (2 × d, $^2J_{C,P} = 5.8$ Hz), 63.9, 88.0, 122.7, 127.7, 128.0, 128.3, 129.0, 131.6 (d, $^2J_{C,P} = 32.8$ Hz), 133.0, 133.7, 137.9 (d, $^1J_{C,P} = 238.5$ Hz), 142.9, 143.1, 149.8, 151.9, 152.8, 164.8; 31P (161.9 MHz, CDCl$_3$) 6.57; HRMS m/z calcd for C$_{40}$H$_{39}$N$_8$NaO$_5$P [M+Na]$^+$ 765.26732, found 765.26705. $[\alpha]_{D}^{20}$ +36.0 (c 0.56, MeOH). Compound (S)-6: 1H and 13C NMR spectra are identical with (R)-6. HRMS m/z calcd for C$_{40}$H$_{39}$N$_8$NaO$_5$P [M+Na]$^+$ 765.26732, found 765.26727. $[\alpha]_{D}^{20}$ –34.0 (c 0.52, MeOH).

Diethyl (R)-1-[1-(6-amino-9H-purin-9-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-7 and Diethyl (S)-1-[1-(6-amino-9H-purin-9-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-7. In analogy to the reported procedure,21 methylamine in MeOH (4 mL, 8M solution) was added dropwise at room temperature to a solution of (R)-6 or (S)-6 (1.11 g, 1.5 mmol) in anhydrous toluene (20 mL). The reaction mixture was stirred for 4 h at room temperature, volatiles were evaporated and the residue was dissolved in 80% aq. acetic acid (20 mL). The mixture was heated at 90 °C for 4 h, cooled down to room temperature and solvents were evaporated. Column chromatography over silica gel (CHCl$_3$ → CHCl$_3$/MeOH, 100/20, v/v) afforded (R)-7 (74%) and (S)-7 (70%) as colourless solid. Compound (R)-7: 1H NMR (400 MHz, DMSO-d_6) 1.18 and 1.19 (2 × t, $^3J_{H,H} = 6.9$ Hz, 2 × 3H), 3.84 – 4.02 (m, 6H), 4.67 (dd, $^3J_{H,H} = 4.8$ Hz, $^2J_{H,H} = 14.5$ Hz, 1H), 4.75 (dd, $^3J_{H,H} = 9.7$ Hz, $^2J_{H,H} = 14.5$ Hz, 1H), 5.27 – 5.37 (m, 1H), 5.44 (t, $^3J_{H,H} = 5.4$ Hz, 1H), 7.22 (br s, 2H), 7.85 (s, 1H), 8.06 (s, 1H), 8.68 (s, 1H); 13C NMR (100 MHz, DMSO-d_6) 28.4 and 28.5 (2 × d, $^3J_{C,P} = 6.2$ Hz), 56.1, 73.2, 74.6 and 74.7 (2 × d, $^2J_{C,P} = 5.6$ Hz), 74.9, 130.8, 143.5 (d, $^2J_{C,P} = 33.6$ Hz), 148.5 (d, $^1J_{C,P} = 236.6$ Hz), 152.9, 161.9, 164.9, 168.4; 31P NMR (161.9 MHz, CDCl$_3$) 8.31; HRMS m/z calcd for C$_{14}$H$_{22}$N$_8$O$_4$P [M+H]$^+$ 397.14961, found 397.14949. $[\alpha]_{D}^{20}$ +101.9 (c 0.59, MeOH). Compound (S)-7: 1H, 13C and 31P NMR spectra are identical with (R)-7. HRMS m/z calcd for C$_{14}$H$_{22}$N$_8$O$_4$P [M+H]$^+$ 397.14961, found 397.14944. $[\alpha]_{D}^{20}$ –102.7 (c 0.59, MeOH).

(R)-1-[1-(6-Amino-9H-purin-9-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (R)-8 and (S)-1-[1-(6-Amino-9H-purin-9-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (S)-8. Compounds (R)-7 and (S)-7 were treated by GP2 to give (R)-8 (80%) and (S)-8 (70%), respectively, as white powders. Compound (R)-8: 1H NMR (400 MHz, DMSO-d_6) 3.88 (d, $^3J_{H,H} = 5.5$ Hz, 2H), 4.69 (dd, $^3J_{H,H} = 4.9$ Hz, $^2J_{H,H} = 14.5$ Hz, 1H), 4.78 (dd, $^3J_{H,H} = 9.5$ Hz, $^2J_{H,H} = 14.5$ Hz, 1H), 5.25 – 5.35 (m, 1H), 7.44 (br s,
(R)-1-Benzyl-2-mesyl-3-tritylglycerol (R)-9 and (S)-1-Benzyl-2-mesyl-3-tritylglycerol (S)-9. 60% NaH in mineral oil (190 mmol, 7.6 g) was suspended in anhydrous DMF (200 mL) and benzyl alcohol (20 mL, 190 mmol) was added dropwise. The reaction mixture was stirred at room temperature for 20 min and a mixture of tritylated glycidol (R)-2 or (S)-2 (158 mmol, 50 g) in DMF (100 mL) was added. The mixture was stirred at 100 °C for 2 h, cooled down to room temperature and diluted with water (50 mL). The mixture was extracted with EtOAc (3 × 250 mL). Joint organic portions were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to afford (R)-1-benzyl-3-tritylglycerol and (S)-1-benzyl-3-tritylglycerol, respectively. Each crude intermediate was dissolved in anhydrous pyridine (200 mL) and methanesulfonyl chloride (40 mL) was added dropwise at 0 °C. The reaction mixture was then stirred at room temperature for 4 h. Methanol (50 mL) was added at 0 °C and solvents were evaporated in vacuo. The residue was dissolved in CH₂Cl₂ (500 mL) and washed with H₂O (200 mL), solution of sat. NaHCO₃ (2 × 200 mL), and brine (50 mL). The organic solution was dried (anhydrous Na₂SO₄), filtered, and concentrated in vacuo. Precipitation from a Et₂O/hexane (10/3, v/v) mixture gave (R)-9 (68%) and (S)-9 (63%) as white powders. Compound (R)-9: ¹H NMR (400 MHz, CDCl₃) 3.03 (s, 3H), 3.37 (dd, ³J_H,H = 5.6 Hz, ²J_H,H = 10.6 Hz, 1H), 3.43 (dd, ³J_H,H = 4.3 Hz, ²J_H,H = 10.6 Hz, 1H), 3.68 (dd, ³J_H,H = 3.9 Hz, ²J_H,H = 10.8 Hz, 1H), 3.75 (dd, ³J_H,H = 6.8 Hz, ²J_H,H = 10.8 Hz, 1H), 4.53 (s, 2H), 4.86 – 4.93 (m, 1H), 7.23 – 7.48 (m, 20H); ¹³C NMR (100 MHz, CDCl₃) 38.7, 63.3, 69.6, 73.5, 80.8, 87.3, 127.4, 127.9, 128.0, 128.1, 128.6, 128.7, 137.6, 143.5; HRMS m/z calced for C₃₀H₃₀NaO₅S [M+Na]⁺ 525.17062, found 525.17078. [α]²⁰D +6.7 (c 1.12, CHCl₃). Compound (S)-9: ¹H and ¹³C NMR spectra are identical with (R)-9. HRMS m/z calced for C₃₀H₃₀NaO₅S [M+Na]⁺ 525.17062, found 525.17078. [α]²⁰D −5.1 (c 1.65, CHCl₃).

(R)-2-Azido-3-benzyloxy-1-(trityloxy)propane (R)-10 and (S)-2-Azido-3-benzyloxy-1-(trityloxy)propane (S)-10. According to the reported procedure,¹⁹ sodium azide (300 mmol, 19.5 g) was added to the mixture of compound (R)-9 or (S)-9 (0.1 mol, 50.3 g) in
HMPA/DMF (200 mL, 1:1) and the mixture was stirred at 100 °C for 5h and then diluted with EtOAc (500 mL). The organic phase was washed with water (2 × 400 mL), dried (anhydrous Na₂SO₄), filtered, and evaporated in vacuo. A column chromatography over silica gel (hexane → hexane/EtOAc, 90/10, v/v) afforded (R)-10 (99%) and (S)-10 (97%) as colourless oils.

Compound (R)-10: ¹H NMR (400 MHz, CDCl₃) 3.26 (dd, 3 J₁,H₁ = 6.2 Hz, 2 J₁,H₂ = 9.8 Hz, 1H), 3.29 (dd, 3 J₁,H₁ = 4.8 Hz, 2 J₁,H₂ = 9.8 Hz, 1H), 3.57 (dd, 3 J₁,H₁ = 6.8 Hz, 2 J₁,H₂ = 9.9 Hz, 1H), 3.61 (dd, 3 J₁,H₁ = 4.5 Hz, 2 J₁,H₂ = 9.9 Hz, 1H), 4.53 (s, 2H), 7.22 – 7.38 (m, 15H), 7.42 – 7.48 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) 61.4, 63.5, 70.0, 73.5, 87.3, 127.3, 127.7, 127.9, 128.0, 128.5, 128.8, 137.9, 143.8; HRMS m/z calcd for C₂₉H₂₇N₃NaO₂ [M+Na]+ 472.19955, found 472.19951. [α]²⁰D –1.4 (c 2.58, MeOH).

Diacetyl (R)-1-[1-hydroxy-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-12 and Diacetyl (S)-1-[1-hydroxy-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-12. In analogy to the reported procedure,²⁴ to a solution of compound (R)-10 or (S)-10 (27.0 g, 60.0 mmol) in EtOAc (200 mL) was added a solution of NaBrO₃ (27.2 g, 0.18 mol) in water (200 mL). A solution of Na₂S₂O₄ (31.3 g, 0.18 mol) in water (200 mL) was added to the reaction mixture over 1 h and the mixture was vigorously stirred for 2.5 h at room temperature. The mixture was diluted with EtOAc (150 mL), quenched with 10% Na₂S₂O₄ (50 mL) and extracted with water (3 × 150 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. The residue was purified by flash chromatography (hexane → hexane/EtOAc, 80/20, v/v) to give (R)-11 (89%) and (S)-11 (91%), respectively, as yellowish oils. Treatment of crude compound (R)-11 or (S)-11 by GP1 afforded compounds (R)-12 (87%) and (S)-12 (73%) as colourless solid. Compound (R)-12: ¹H (400 MHz, CDCl₃) 1.27 and 1.28 (2 × t, 3 J₁,H₁ = 7.1 Hz, 2 × 3H), 3.58 (dd, 3 J₁,H₁ = 5.1 Hz, 2 J₁,H₂ = 10.1 Hz, 1H), 3.64 (dd, 3 J₁,H₁ = 7.1 Hz, 2 J₁,H₂ = 10.1 Hz, 1H), 3.96 – 4.19 (m, 7H), 4.76 – 4.86 (m, 1H), 7.17 – 7.30 (m, 15H), 8.20 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) 16.3 (2 × d, 3 J₁,P = 6.2 Hz), 61.9, 63.0, 63.3 and 63.5 (2 × d, 2 J₁,P = 5.9 Hz), 63.4, 87.4, 127.5, 128.1, 128.5, 131.4 (d, 2 J₁,P = 33.4 Hz), 136.6 (d, 1 J₁,P = 239.7 Hz), 143.2; HRMS m/z calcd for C₂₈H₃₂N₃NaO₆P [M+Na]+ 544.19718, found 544.19706. [α]²⁰D –10.1 (c 1.32, MeOH).

Compound (S)-12: ¹H and ¹³C NMR spectra are identical with (R)-12. HRMS m/z calcd for C₂₈H₃₂N₃NaO₆P [M+Na]+ 544.19718, found 544.19705. [α]²⁰D +10.9 (c 1.44, MeOH).
Diethyl (R)-1-[1-(6-chloro-9H-purin-9-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-13 and Diethyl (S)-1-[1-(6-chloro-9H-purin-9-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-13. Treatment of (R)-12 or (S)-12 with 6-chloropurine by GP3, followed by purification by column chromatography over silica gel (CHCl3/MeOH, 98/2, v/v), afforded (R)-13 (64%) and (S)-13 (67%), respectively, as colourless foams. Compound (R)-13: 1H NMR (400 MHz, CDCl3) 1.29 and 1.30 (2 × t, JH,H = 7.1 Hz, 2 × 3H), 3.62 – 3.73 (m, 2H), 4.04 – 4.22 (m, 4H), 4.87 (dd, JH,H = 4.8 Hz, JH,H = 14.4 Hz, 1H), 5.02 (dd, JH,H = 9.2 Hz, JH,H = 14.4 Hz, 1H), 5.08 – 5.17 (m, 1H), 7.19 – 7.35 (m, 15H), 7.82 (s, 1H), 7.94 (s, 1H), 8.69 (s, 1H); 13C NMR (100 MHz, CDCl3) 16.4 (d, JC,P = 6.5 Hz), 44.6, 60.5, 63.3 (d, JC,P = 5.7 Hz), 63.6, 88.0, 127.7, 128.3, 128.4, 131.5 (d, JC,P = 33.0 Hz), 131.6, 138.0 (d, JC,P = 238.3 Hz), 142.8, 145.4, 147.0, 151.6, 152.2; 31P NMR (161.9 MHz, CDCl3) 6.23; HRMS m/z calcd for C33H33ClN7NaO4P [M+Na]+ 680.19124, found 680.19119. [α]20D +30.0 (c 0.26, MeOH). Compound (S)-13: 1H, 13C and 31P NMR spectra are identical with (R)-13. HRMS m/z calcd for C33H33ClN7NaO4P [M+Na]+ 680.19124, found 680.19125. [α]20D –26.3 (c 0.32, MeOH).

Diethyl (R)-1-[1-hydroxy-3-(6-oxo-1H-purin-9(6H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-14 and Diethyl (S)-1-[1-hydroxy-3-(6-oxo-1H-purin-9(6H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-14. A mixture of (R)-13 or (S)-13 (2.3 mmol) in 75% aq. trifluoroacetic acid (20 mL) was stirred at room temperature for 48 h. Solvents were evaporated and the crude product was purified by chromatography over silica gel (CHCl3/MeOH, 95/5, v/v → CHCl3/MeOH, 80/20, v/v). Crystallization from a mixture of MeOH/Et2O (1:1) gave (R)-14 (80%) and (S)-14 (91%) as colourless crystals. Compound (R)-14: mp 185 °C; 1H NMR (400 MHz, DMSO-d6) 1.19 and 1.20 (2 × t, JH,H = 7.0 Hz, 2 × 3H), 3.86 – 4.06 (m, 6H), 4.63 – 4.78 (m, 2H), 5.20 – 5.30 (m, 1H), 5.44 (t, JH,H = 5.4 Hz, 1H), 7.82 (s, 1H), 7.95 (s, 1H), 8.66 (s, 1H), 12.30 (br s, 1H); 13C NMR (100 MHz, DMSO-d6) 16.0 (d, JC,P = 6.2 Hz), 44.1, 60.6, 62.1 and 62.2 (2 × d, JC,P = 5.6 Hz), 62.6, 123.6, 131.1 (d, JC,P = 33.6 Hz), 136.1 (d, JC,P = 236.9 Hz), 140.0, 145.5, 148.3, 156.4; 31P NMR (161.9 MHz, DMSO-d6) 8.32; HRMS m/z calcd for C14H20N7NaO3P [M+Na]+ 420.11557, found 420.11561. [α]20D +101.1 (c 0.27, MeOH). Compound (S)-14: mp 185 °C; 1H, 13C and 31P NMR spectra are identical with (R)-14. HRMS m/z calcd for C14H20N7NaO3P [M+Na]+ 420.11557, found 420.11547. [α]20D –97.0 (c 0.36, MeOH).
(R)-1-[1-Hydroxy-3-(6-oxo-1H-purin-9(6H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (R)-15 and (S)-1-[1-Hydroxy-3-(6-oxo-1H-purin-9(6H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (S)-15. Treatment of (R)-14 or (S)-14 by PG2 afforded (R)-15 (54%) and (S)-15 (59%), respectively, as white amorphous powders. Compound (R)-15: \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) 3.91 (d, 3\(J_{HH} = 5.6\) Hz, 2H), 4.69 (dd, 3\(J_{HH} = 4.8\) Hz, 2\(J_{HH} = 14.5\) Hz, 1H), 4.76 (dd, 3\(J_{HH} = 9.5\) Hz, 2\(J_{HH} = 14.5\) Hz, 1H), 5.18 – 5.28 (m, 1H), 7.79 (s, 1H), 8.00 (s, 1H), 8.43 (s, 1H), 12.35 (br s, 1H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) 44.2, 61.0, 61.9, 123.5, 128.8 (d, 2\(J_{CP} = 32.2\) Hz), 140.0, 141.3 (d, 2\(J_{CP} = 229.4\) Hz), 145.7, 148.3, 156.4; \(^{31}\)P NMR (161.9 MHz, DMSO-\(d_6\)) 3.40; HRMS m/z calc'd for C\(_{10}\)H\(_{11}\)N\(_{2}\)O\(_3\)P [M-H] \(\pm 80.5\) (c 0.33, H\(_2\)O). Compound (S)-15: \(^1\)H, \(^{13}\)C and \(^{31}\)P NMR spectra are identical with (R)-15; HRMS m/z calc'd for C\(_{10}\)H\(_{11}\)N\(_{2}\)O\(_3\)P [M-H] 340.05648, found 340.05634. [\(\alpha\)]\(^D\) +80.5 (c 0.33, H\(_2\)O).

Diethyl (R)-1-[1-(2-amino-6-chloro-9H-purin-9-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphate (R)-16 and Diethyl (S)-1-[1-(2-amino-6-chloro-9H-purin-9-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphate (S)-16. Treatment of (R)-12 or (S)-12 with 2-amino-6-chloropurine by GP3, followed by purification by column chromatography over silica gel (hexane/CHCl\(_3\)/MeOH, 6/4/0.1 → hexane/CHCl\(_3\)/MeOH, 6/4/0.3), afforded (R)-16 (31%) and (S)-16 (46%), respectively, as whitish foams. Compound (R)-16: \(^1\)H NMR (400 MHz, CDCl\(_3\)) 1.30 and 1.31 (2 × t, 3\(J_{HH} = 7.2\) Hz, 2 × 3H), 3.65 (d, 3\(J_{HH} = 5.6\) Hz, 2H), 4.06 – 4.22 (m, 4H), 4.63 (dd, 3\(J_{HH} = 4.9\) Hz, 2\(J_{HH} = 14.6\) Hz, 1H), 4.79 (dd, 3\(J_{HH} = 9.0\) Hz, 2\(J_{HH} = 14.6\) Hz, 1H), 5.02 – 5.11 (m, 1H), 5.21 (br s, 2H), 7.21 – 7.32 (m, 15H), 7.45 (s, 1H), 8.08 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) 16.4 (d, 2\(J_{CP} = 5.7\) Hz), 63.6, 88.0, 125.1, 127.7, 128.3, 128.5, 131.6 (d, 2\(J_{CP} = 33.0\) Hz), 137.8 (d, 2\(J_{CP} = 238.1\) Hz), 142.1, 142.9, 151.8, 153.6, 159.2; \(^{31}\)P NMR (161.9 MHz, CDCl\(_3\)) 6.58; HRMS m/z calc'd for C\(_{33}\)H\(_{34}\)N\(_8\)NaO\(_4\)P [M+Na]+ 695.20214, found 695.20209. [\(\alpha\)]\(^D\) +36.2 (c 0.41, MeOH). Compound (S)-16: \(^1\)H, \(^{13}\)C and \(^{31}\)P NMR spectra are identical with (R)-16. HRMS m/z calc'd for C\(_{33}\)H\(_{34}\)N\(_8\)NaO\(_4\)P [M+Na]+ 695.20214, found 695.20212. [\(\alpha\)]\(^D\) −36.3 (c 0.38, MeOH).

Diethyl (R)-1-[1-(2-amino-6-oxo-1H-purin9(6H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphate (R)-17 and Diethyl (S)-1-[1-(2-amino-6-oxo-1H-purin9(6H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphate (S)-17. A mixture of (R)-16 or (S)-16 (2.3 mmol) in 75% aq. trifluoroacetic acid (20 mL) was stirred at room temperature for
48 h. Solvents were evaporated and the crude product was purified by chromatography over silica gel (CHCl3/MeOH, 98/2 → CHCl3/MeOH, 80/30) to give (R)-17 (90%) and (S)-17 (91%), respectively, as white amorphous solids. Compound (R)-17: 1H NMR (400 MHz, DMSO-d6) 1.20 and 1.21 (2 × J H,H = 7.1 Hz, 2 × 3H), 3.86 – 4.05 (m, 6H), 4.48 (dd, J H,H = 5.0 Hz, 2JH,H = 14.5 Hz, 1H), 4.56 (dd, J H,H = 9.7 Hz, 2JH,H = 14.5 Hz, 1H), 5.18 – 5.28 (m, 1H), 5.36 – 5.57 (m, 1H), 6.55 (br s, 2H), 7.34 (s, 1H), 8.66 (s, 1H), 10.67 (br s, 1H); 13C NMR (100 MHz, DMSO-d6) 16.0 (d, J C,P = 6.2 Hz), 43.4, 60.7, 62.1, 62.2 and 62.3 (2 × d, J C,P = 5.6 Hz), 116.2, 131.1 (d, J C,P = 33.7 Hz), 136.0 (d, J C,P = 236.8 Hz), 136.9, 151.1, 153.7, 156.6; 31P NMR (161.9 MHz, DMSO-d6) 8.39; HRMS m/z calcd for C14H21N3NaO3P [M+Na]+ 435.12647, found 435.12651. [α]20D +72.7 (c 0.97, MeOH). Compound (S)-17: 1H, 13C and 31P NMR spectra are identical with (R)-17; HRMS m/z calcd for C14H21N3NaO3P [M+Na]+ 435.12647, found 435.12644. [α]20D –82.4 (c 0.95, MeOH).

(R)-1-[1-(2-Amino-6-oxo-1H-purin9(6H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (R)-18 and (S)-1-[1-(2-Amino-6-oxo-1H-purin9(6H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (S)-18. Treatment of (R)-17 or (S)-17 by PG2 afforded (R)-18 (59%) and (S)-18 (86%), respectively, as white amorphous powders. Compound (R)-18: 1H NMR (400 MHz, DMSO-d6) 3.82 (d, J H,H = 5.5 Hz, 2H), 4.48 (dd, J H,H = 5.9 Hz, 2JH,H = 14.5 Hz, 1H), 4.57 (dd, J H,H = 9.3 Hz, 2JH,H = 14.5 Hz, 1H), 5.14 – 5.23 (m, 1H), 5.30 – 5.50 (m, 1H), 6.48 (br s, 1H), 7.30 (s, 1H), 8.45 (s, 1H), 10.59 (br s, 1H); 13C NMR (100 MHz, DMSO-d6) 43.9, 61.0, 61.3, 116.3, 128.9 (d, J C,P = 32.1 Hz), 137.1, 141.4 (d, J C,P = 229.4 Hz), 150.9, 154.0, 155.9; 31P NMR (161.9 MHz, DMSO-d6) 3.56; HRMS m/z calcd for C10H12N3O3P [M-H]− 355.06738, found 355.06726. [α]20D +92.7 (c 0.23, H2O). Compound (S)-18: 1H, 13C and 31P NMR spectra are identical with (R)-18; HRMS m/z calcd for C10H12N3O3P [M-H]− 355.06738, found 355.06726. [α]20D −87.7 (c 0.25, H2O).

(R)-1-[1-(2,6-Dioxo-2,3-dihydro-1H-purin-9(6H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (R)-19 and (S)-1-[1-(2,6-Dioxo-2,3-dihydro-1H-purin-9(6H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (S)-19. Isoamyl nitrite (1.74 g, 2.0 mL) was added to a solution of (R)-18 or (S)-18 (0.4 mmol) in 80% acetic acid (50 mL) and the reaction mixture was stirred at room temperature overnight. Solvents were evaporated and the residues were crystallized from a water-methanol-acetone mixture to offer (R)-19 (45%) and (S)-19 (45%), respectively, as yellowish crystals. Compound (R)-19: not melting up to 265 °C; 1H NMR (400 MHz, DMSO-d6) 3.76 – 3.90 (m, 2H), 4.51 (dd, J H,H =
4.9 Hz, $^2J_{H,H} = 14.8$ Hz, 1H), 4.68 (dd, $^3J_{H,H} = 9.9$ Hz, $^2J_{H,H} = 14.8$ Hz, 1H), 5.02 – 5.10 (m, 1H), 7.19 (s, 1H), 8.43 (s, 1H), 10.84 (br s, 1H), 12.02 (br s, 1H); 1C NMR (100 MHz, DMSO-d_6) 44.2, 60.7, 61.6, 115.2, 129.2 (d, $^2J_{C,P} = 32.1$ Hz), 136.5, 140.2, 141.3 (d, $^1J_{C,P} = 228.6$ Hz), 150.7, 157.7; 31P NMR (161.9 MHz, DMSO-d_6) 3.38; HRMS m/z calcd for C$_{10}$H$_{11}$N$_7$O$_6$P [M-H] - 356.05139, found 356.05141. $[^\alpha]_{20}D$ +70.0 (c 0.08, H$_2$O). Compound (S)-19: not melting up to 265 °C; 1H, 13C and 31P NMR spectra are identical with (R)-19; HRMS m/z calcd for C$_{10}$H$_{11}$N$_7$O$_6$P [M-H] - 356.05139, found 356.05109. $[^\alpha]_{20}D$ –81.5 (c 0.07, H$_2$O).

Diethyl (R)-1-[1-(2,6-diamino-9H-purin-9-y1)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-20 and Diethyl (S)-1-[1-(2,6-diamino-9H-purin-9-y1)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-20. A mixture of (R)-16 or (S)-16 (1.0 mmol) was dissolved in the ethanolic solution of NH$_3$ (3.5 M, 65 mL) and the reaction mixture was heated in an autoclave at 100 °C for 24 h. Volatiles were evaporated and the residues were purified by flash chromatography over silica gel (hexane/CHCl$_3$/MeOH, 6/4/0.2 → hexane/CHCl$_3$/MeOH, 6/4/1) to give (R)-20 (32%) and (S)-20 (34%), respectively, as yellowish foams. Compound (R)-20: 1H NMR (400 MHz, CDCl$_3$) 1.26 and 1.30 (2 × t, $^3J_{H,H} = 7.1$ Hz, 2 × 3H), 3.57 – 3.67 (m, 2H), 4.00 – 4.21 (m, 4H), 4.54 (dd, $^3J_{H,H} = 4.8$ Hz, $^2J_{H,H} = 14.4$ Hz, 1H), 4.72 (dd, $^3J_{H,H} = 9.2$ Hz, $^2J_{H,H} = 14.4$ Hz, 1H), 4.89 (s, 2H), 5.16 – 5.25 (m, 1H), 5.64 (s, 1H), 7.13 (s, 1H), 7.18 – 7.31 (m, 15H), 8.16 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) 16.4 (d, $^3J_{C,P} = 6.5$ Hz), 44.0, 60.8, 63.2 (d, $^2J_{C,P} = 5.6$ Hz), 63.6, 87.8, 114.3, 127.6, 128.2, 128.5, 132.2 (d, $^2J_{C,P} = 33.2$ Hz), 137.4 (d, $^1J_{C,P} = 237.8$ Hz), 137.8, 142.9, 151.9, 156.1, 160.1; 31P NMR (161.9 MHz, CDCl$_3$) 6.63; HRMS m/z calcd for C$_{33}$H$_{36}$N$_9$NaO$_4$P [M+Na]$^+$ 676.25201, found 676.25163. $[^\alpha]_{20}D$ –45.0 (c 0.14, MeOH). Compound (S)-20: 1H, 13C and 31P NMR spectra are identical with (R)-20; HRMS m/z calcd for C$_{33}$H$_{36}$N$_9$NaO$_4$P [M+Na]$^+$ 676.25201, found 676.25168. $[^\alpha]_{20}D$ +50.0 (c 0.20, MeOH).

Diethyl (R)-1-[1-(2,6-diamino-9H-purin-9-y1)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-21 and Diethyl (S)-1-[1-(2,6-diamino-9H-purin-9-y1)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-21. Treatment of (R)-20 or (S)-20 by GP4, followed by purification by chromatography over silica gel (CHCl$_3$/MeOH, 98/2 → CHCl$_3$/MeOH, 70/30) gave (R)-21 (96%) and (S)-21 (97%), respectively, as white amorphous solids. Compound (R)-21: 1H NMR (400 MHz, DMSO-d_6) 1.20 and 1.21 (2 × t, $^3J_{H,H} = 7.0$ Hz, 2 × 3H), 3.83 – 4.07 (m, 6H), 4.49 (dd, $^3J_{H,H} = 5.1$ Hz, $^2J_{H,H} = 14.5$ Hz, 1H),
afforded (81%) 127.8 (d, 3J,C,H = 5.7 Hz), 112.8, 131.0 (d, 2J,C,H = 33.6 Hz), 136.0 (d, 1J,C,H = 237.0 Hz), 136.9, 151.6, 156.0, 160.3; 31P NMR (161.9 MHz, DMSO-d6) 8.18; HRMS m/z calcd for C14H22NO4P [M+Na]+ 343.14246, found 343.14229. [α] D 34.0 (c 0.21, H2O).

Compound (S)-21: 1H, 13C and 31P NMR spectra are identical with (R)-21; HRMS m/z calcd for C14H23N5O3P [M+H]+ 412.16051, found 412.16057. [α] D 29.0 (c 0.17, H2O).

(R)-1-[1-(2,6-Diamino-9H-purin-9-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (R)-22 and (S)-1-[1-(2,6-Diamino-9H-purin-9-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (S)-22. Treatment of (R)-21 or (S)-21 by PG2 afforded (R)-22 (74%) and (S)-22 (86%), respectively, as colorless solids. Compound (R)-22: 1H NMR (400 MHz, D2O+NaOD) 4.06 – 4.20 (m, 2H), 4.53 – 4.64 (m, 2H), 5.09 – 5.20 (m, 1H), 7.30 (s, 1H), 7.97 (s, 1H); 13C NMR (100 MHz, D2O+NaOD) 44.7, 61.3, 62.6, 113.3, 127.8 (d, 2J,C,H = 26.5 Hz), 140.2, 148.4 (d, 1J,C,H = 201.6 Hz), 151.5, 156.6, 160.6; 31P NMR (161.9 MHz, DMSO-d6) 0.44; HRMS m/z calcd for C10H13N5O4P [M-H]− 354.08226, found 354.08226; [α] D 166.2 (c 0.18, 0.1 M aq. solution of NaOH). Compound (S)-22: 1H, 13C and 31P NMR spectra are identical with (R)-22; HRMS m/z calcd for C10H13N5O4P [M-H]− 354.08226, found 354.08194. [α] D 162.1 (c 0.18, 0.1 M aq. solution of NaOH).

Diethyl (R)-1-[1-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-23 and Diethyl (S)-1-[1-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-(trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-23. Treatment of (R)-12 or (S)-12 with N3-benzylluracil by GP3, followed by column chromatography over silica gel, afforded crude N3-benzylluracil intermediates. Propylamine (3 mL) was added to the solutions of the crude intermediates in dioxane (30 mL) and the reaction mixture was stirred at room temperature for 12 h. Column chromatography over silica gel (hexane/CHCl3/MeOH, 6/4/0.1 → hexane/CHCl3/MeOH, 6/4/0.35) afforded (R)-23 (81%) and (S)-23 (79%), respectively, as white foams. Compound (R)-23: 1H NMR (400 MHz, CDCl3) 1.30 and 1.32 (2 × t, 3J,H,H = 7.1 Hz, 2 × 3H), 3.52 (dd, 3J,H,H = 6.1 Hz, 2J,H,H = 10.2 Hz, 1H), 3.57 (dd, 3J,H,H = 4.4 Hz, 2J,H,H = 10.2 Hz, 1H), 4.06 – 4.30 (m, 5H), 4.44 (dd, 3J,H,H = 4.8 Hz, 2J,H,H = 14.2 Hz, 1H), 5.05 – 5.14 (m, 1H), 5.42 (d, 3J,H,H = 7.9 Hz, 1H), 6.91 (d, 3J,H,H = 7.9 Hz, 1H), 7.12 – 7.32 (m, 15H), 8.21 (s, 1H), 9.46 (br s, 1H); 13C NMR (100 MHz, CDCl3) 16.4 (d, 3J,C,H = 6.4 Hz), 49.7, 59.8, 63.3 and 63.4 (2 × d, 2J,C,H = 5.6 Hz), 63.5,
Diethyl \((R)-1-[1-(2,4-dioxo-3,4-dihydropyrimidin-1(2\text{H})-y1)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate\) \((R)-24\) and Diethyl \((S)-1-[1-(2,4-dioxo-3,4-dihydropyrimidin-1(2\text{H})-y1)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate\) \((S)-24\). Treatment of \((R)-23\) or \((S)-23\) by GP4, followed by flash chromatography over silica gel (CHCl\(_3$/MeOH, 95/5$ or $CHCl_3$/MeOH, 90/10) afforded \((R)-24\) (80\%) and \((S)-24\) (67\%), respectively, as white hygroscopic foams. Compound \((R)-24\): \(^1\)H NMR (400 MHz, DMSO-d_6) 1.22 and 1.23 (2 x t, \(^3\)J$_{HH} = 7.0$ Hz, 2 x 3H), 3.82 – 4.09 (m, 6H), 4.14 (dd, \(^3\)J$_{HH} = 9.6$ Hz, \(^2\)J$_{HH} = 14.3$ Hz, 1H), 4.21 (dd, \(^3\)J$_{HH} = 4.9$ Hz, \(^2\)J$_{HH} = 14.3$ Hz, 1H), 5.02 – 5.12 (m, 1H), 5.39 (d, \(^3\)J$_{HH} = 7.9$ Hz, 1H), 7.26 (d, \(^3\)J$_{HH} = 7.9$ Hz, 1H), 8.74 (s, 1H), 11.27 (br s, 1H); \(^13\)C NMR (100 MHz, DMSO-d_6) 16.0 (d, \(^1\)J$_{CP} = 6.2$ Hz), 48.4, 60.5, 61.3, 62.2 and 62.3 (2 x d, \(^2\)J$_{CP} = 5.4$ Hz), 101.0, 131.2 (d, \(^2\)J$_{CP} = 33.6$ Hz), 136.2 (d, \(^1\)J$_{CP} = 236.4$ Hz), 145.0, 150.7, 163.4; \(^31\)P NMR (161.9 MHz, DMSO-d_6) 8.14; HRMS m/z calcd for \(C_{13}H_{20}N_5NaO_6P\) [M+Na]$^+$ 396.10434, found 396.10429. \([\alpha]^{20}_D +156.5\) (c 0.41, MeOH). Compound \((S)-24\): \(^1\)H, \(^13\)C and \(^31\)P NMR spectra are identical with \((R)-24\); HRMS m/z calcd for \(C_{13}H_{20}N_5NaO_6P\) [M+Na]$^+$ 396.10434, found 396.10425. \([\alpha]^{20}_D -148.5\) (c 0.34, MeOH).

\((R)-1-[1-(2,4-Dioxo-3,4-dihydropyrimidin-1(2\text{H})-y1)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid\) \((R)-25\) and \((S)-1-[1-(2,4-Dioxo-3,4-dihydropyrimidin-1(2\text{H})-y1)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid\) \((S)-25\). Treatment of \((R)-24\) or \((S)-24\) by GP2 afforded, after crystallization from a water-MeOH (1:5) mixture, \((R)-25\) (91\%) and \((S)-25\) (98\%), respectively, as white crystals. Compound \((R)-25\): decomposition at 260 °C; \(^1\)H NMR (400 MHz, DMSO-d_6) 3.78 – 3.87 (m, 2H), 4.14 (dd, \(^3\)J$_{HH} = 9.5$ Hz, \(^2\)J$_{HH} = 14.3$ Hz, 1H), 4.23 (dd, \(^3\)J$_{HH} = 4.9$ Hz, \(^2\)J$_{HH} = 14.3$ Hz, 1H), 4.99 – 5.09 (m, 1H), 5.40 (d, \(^3\)J$_{HH} = 7.9$ Hz, 1H), 7.22 (d, \(^3\)J$_{HH} = 7.9$ Hz, 1H), 8.44 (s, 1H), 11.31 (s, 1H); \(^13\)C NMR (100 MHz, DMSO-d_6) 48.6, 60.8, 60.9, 101.0, 128.9 (d, \(^2\)J$_{CP} = 32.3$ Hz), 141.4 (d, \(^1\)J$_{CP} = 229.7$ Hz), 145.1, 150.8, 163.5; \(^31\)P NMR (161.9 MHz, DMSO-d_6) 3.26; HRMS m/z calcd for \(C_9H_{11}N_5O_6P\) [M-H]$^-$ 316.04524, found 316.04542. \([\alpha]^{20}_D +169.9\) (c 0.35, H$_2$O).
Diethyl (R)-1-[1-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-26 and Diethyl (S)-1-[1-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-trityloxy)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-26. Treatment of (R)-12 or (S)-12 with N3-benzoylthymine by GP3, followed by column chromatography over silica gel (hexan/CHCl3/MeOH, 6/4/0.1 → hexan/CHCl3/MeOH, 6/4/0.4), afforded crude N3-benzoylthymine intermediates. Propylamine (3 mL) was added to the solutions of the crude intermediates in dioxane (30 mL) and the reaction mixture was stirred at room temperature for 12 h. Column chromatography over silica gel (hexane/CHCl3/MeOH, 6/4/0.2) afforded (R)-26 (64%) and (S)-26 (65%), respectively, as white foams. Compound (R)-26: 1H NMR (400 MHz, CDCl3) 1.30 and 1.32 (2 × t, 3JH,H = 7.1 Hz, 2 × 3H), 1.71 (s, 3H), 3.51 – 3.61 (m, 2 H), 4.08 – 4.27 (m, 5H), 4.40 (dd, 3JH,H = 4.7 Hz, 2JH,H = 14.2 Hz, 1H), 5.05 – 5.15 (m, 1H), 6.72 (s, 1H), 7.18 – 7.35 (m, 15H), 8.18 (s, 1H), 9.17 (s, 1H); 13C NMR (100 MHz, CDCl3) 12.2, 16.4 (d, 3JC,P = 6.5 Hz), 49.7, 60.0, 60.1, 63.2 and 63.3 (2 × d, 2JC,P = 5.6 Hz), 63.6, 87.7, 111.1, 127.4, 127.6, 128.0, 128.1, 128.3, 128.5, 126.1 (d, 2JC,P = 33.0 Hz), 137.9 (d, 1JC,P = 238.8 Hz), 140.4, 142.9, 150.9, 163.8; 31P NMR (161.9 MHz, CDCl3) 6.98; HRMS m/z calcd for C33H36N5NaO6P [M+Na]+ 652.22954, found 652.22952. [α]20D +54.7 (c 0.49, MeOH). Compound (S)-26: 1H, 13C and 31P NMR spectra are identical with (R)-26; HRMS m/z calcd for C33H36N5NaO6P [M+Na]+ 652.22954, found 652.22951. [α]20D –47.2 (c 0.50, MeOH).

Diethyl (R)-1-[1-hydroxy-3-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-27 and Diethyl (S)-1-[1-hydroxy-3-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-27. Treatment of (R)-26 or (S)-26 by GP4, followed by flash chromatography over silica gel (CHCl3/MeOH, 95/5 → CHCl3/MeOH, 90/10) afforded (R)-27 (82%) and (S)-27 (84%), respectively, as white hygroscopic foams. Compound (R)-27: 1H NMR (400 MHz, DMSO-d6) 1.22 and 1.23 (2 × t, 3JH,H = 7.0 Hz, 2 × 3H), 1.60 (s, 3H), 3.82 – 4.08 (m, 6H), 4.10 (dd, 3JH,H = 9.7 Hz, 2JH,H = 14.3 Hz, 1H), 4.17 (dd, 3JH,H = 4.8 Hz, 2JH,H = 14.3 Hz, 1H), 5.02 – 5.12 (m, 1H), 5.35 (t, 3JH,H = 5.4 Hz, 1H), 7.14 (s, 1H), 8.73 (s, 1H), 11.26 (s, 1H); 13C NMR (100 MHz, DMSO-d6) 11.7, 16.0 (d, 3JC,P = 6.2 Hz), 48.2, 60.5, 61.4, 62.2 and 62.3 (2 × d, 2JC,P =
5.9 Hz), 108.5, 131.2 (d, $^2J_{C,P} = 33.7$ Hz), 136.2 (d, $^1J_{C,P} = 236.6$ Hz), 140.7, 150.7, 164.0; 31P NMR (161.9 MHz, DMSO-d_6) 8.17; HRMS m/z calcd for C$_{14}$H$_{22}$N$_{5}$O$_6$P $[M+Na]^+$ 410.11999, found 410.11997. $[\alpha]^{20}_D +131.0$ (c 0.29, MeOH). Compound (S)-27: 1H, 13C and 31P NMR spectra are identical with (R)-27; HRMS m/z calcd for C$_{14}$H$_{22}$N$_{5}$O$_6$P $[M+Na]^+$ 410.11999, found 410.12012. $[\alpha]^{20}_D –136.3$ (c 0.57, MeOH).

(R)-1-[1-Hydroxy-3-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (R)-28 and (S)-1-[1-Hydroxy-3-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)propan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (S)-28. Treatment of (R)-27 or (S)-27 by GP2 afforded, after crystallization from a water-EtOH-EtOAc-acetone (1:5:30:30) mixture, (R)-28 (88%) and (S)-28 (91%), respectively, as white crystals. Compound (R)-28: decomposition at 250 °C; 1H NMR (400 MHz, DMSO-d_6) 1.62 (s, 3H), 3.78 – 3.89 (m, 2H), 4.09 (dd, $^3J_{H,H} = 9.4$ Hz, $^2J_{H,H} = 14.3$ Hz, 1H), 4.18 (dd, $^3J_{H,H} = 5.0$ Hz, $^2J_{H,H} = 14.3$ Hz, 1H), 4.99 – 5.09 (m, 1H), 7.10 (s, 1H), 8.43 (s, 1H); 13C NMR (100 MHz, DMSO-d_6) 11.8, 48.2, 60.8, 60.9, 108.5, 128.9 (d, $^2J_{C,P} = 32.4$ Hz), 140.8, 141.4 (d, $^1J_{C,P} = 229.9$ Hz), 150.8, 164.0; 31P NMR (161.9 MHz, DMSO-d_6) 3.62; HRMS m/z calcd for C$_{10}$H$_{13}$N$_{5}$O$_6$P $[M-H]^-$ 330.06089, found 330.06086. $[\alpha]^{20}_D +151.1$ (c 0.32, H$_2$O). Compound (S)-28: decomposition at 238 °C; 1H, 13C and 31P NMR spectra are identical with (R)-28; HRMS m/z calcd for C$_{10}$H$_{13}$N$_{5}$O$_6$P $[M-H]^-$ 330.06089, found 330.06120. $[\alpha]^{20}_D –149.1$ (c 0.46, H$_2$O).

Diethyl (R)-1-[1-(4-amino-2-oxopyrimidin-1(2H)-yl-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (R)-29 and Diethyl (S)-1-[1-(4-amino-2-oxopyrimidin-1(2H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonate (S)-29. Treatment of (R)-12 or (S)-12 with N-benzoylcytosine by GP3, followed by column chromatography over silica gel, afforded crude N-benzoylcytosine intermediates. Propylamine (3 mL) was added to the solutions of the crude intermediates in dioxane (30 mL) and the reaction mixture was stirred at room temperature for 12 h. Column chromatography over silica gel (hexane/CHCl$_3$/MeOH, 6/4/0.1 → hexane/CHCl$_3$/MeOH, 6/4/0.7) afforded debenzoylated cytosine intermediates as white foams. Treatment of the cytosine intermediates by GP4, followed by flash chromatography over silica gel (CHCl$_3$/MeOH, 95/5 → CHCl$_3$/MeOH, 7/3) afforded (R)-29 (40%) and (S)-29 (38%), respectively, as white hygroscopic foams. Compound (R)-29: 1H NMR (400 MHz, DMSO-d_6) 1.22 and 1.23 (2 × t, $^3J_{H,H} = 7.0$ Hz, 2 × 3H), 3.78 – 3.91 (m, 2H), 3.94 – 4.10 (m, 5H), 4.24 (dd, $^3J_{H,H} = 4.6$ Hz,
$J_{HH} = 13.9$ Hz, 1H), 5.09 – 5.18 (m, 1H), 5.43 (d, $J_{HH} = 7.2$ Hz, 1H), 6.99 (br s, 1H), 7.07 (br s, 1H), 7.12 (d, $J_{HH} = 7.2$ Hz, 1H), 8.69 (s, 1H); 1H NMR (100 MHz, DMSO-d_6) 6.99 (br s, 1H), 7.07 (br s, 1H), 7.12 (d, $J_{HH} = 7.2$ Hz, 1H), 8.69 (s, 1H); 1C NMR (100 MHz, DMSO-d_6) 16.0 (d, $J_{CP} = 6.2$ Hz), 49.8, 60.9, 61.4, 62.2 and 62.3 (2 × d, $J_{CP} = 5.5$ Hz), 93.3, 131.2 (d, $J_{CP} = 33.4$ Hz), 136.1 (d, $J_{CP} = 236.6$ Hz), 145.4, 155.5, 165.9; 31P NMR (161.9 MHz, DMSO-d_6) 8.49; HRMS m/z calcd for C$_{13}$H$_{21}$N$_6$NaO$_5$P [M+Na]$^+$ 395.1203, found 395.1202. [α]$^D_{20}$ +182.5 (c 0.32, MeOH). Compound (S)-29: 1H, 1C and 31P NMR spectra are identical with (R)-29; HRMS m/z calcd for C$_{13}$H$_{21}$N$_6$NaO$_5$P [M+Na]$^+$ 395.1203, found 395.1203. [α]$^D_{20}$ – 172.1 (c 0.41, MeOH).

(R)-1-[1-(4-Amino-2-oxopyrimidin-1(2H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (R)-30 and (S)-1-[1-(4-Amino-2-oxopyrimidin-1(2H)-yl)-3-hydroxypropan-2-yl]-1H-1,2,3-triazol-4-ylphosphonic acid (S)-30. Treatment of (R)-29 or (S)-29 by GP2 afforded, after crystallization from a water-EtOH (1:1) mixture, (R)-30 (71%) and (S)-30 (87%), respectively, as white crystals. Compound (R)-30: decomposition at 265 °C; 1H NMR (400 MHz, DMSO-d_6) 3.82 (d, $J_{HH} = 5.2$ Hz, 2H), 4.07 – 4.21 (m, 1H), 4.23 – 4.35 (m, 1H), 5.01 – 5.13 (m, 1H), 5.66 (d, $J_{HH} = 7.2$ Hz, 1H), 7.33 (d, $J_{HH} = 7.2$ Hz, 1H), 8.15 (br s, 2H), 8.38 (s, 1H); 1C NMR (100 MHz, DMSO-d_6) 49.8, 60.6, 61.0, 93.5, 128.5 (d, $J_{CP} = 31.8$ Hz), 142.3 (d, $J_{CP} = 226.5$ Hz), 147.1, 152.5, 163.3; 31P NMR (161.9 MHz, DMSO-d_6) 2.94; HRMS m/z calcd for C$_9$H$_{12}$N$_6$O$_5$P [M-H]$^-$ 315.0612, found 315.0612. [α]$^D_{20}$ +204.4 (c 0.45, H$_2$O). Compound (S)-30: decomposition at 265 °C; 1H, 1C and 31P NMR spectra are identical with (R)-30; HRMS m/z calcd for C$_9$H$_{12}$N$_6$O$_5$P [M-H]$^-$ 315.0612, found 315.0612. [α]$^D_{20}$ – 198.2 (c 0.53, H$_2$O).

Determination of K_i values for human HGPRT, PfHGXPRT and PvHGPRT. 8
Human HGPRT and PvHGPRT were stored in 0.1 M Tris-HCl, 0.01 M MgCl$_2$, pH 7.4, 200 µM PRib-PP, 1 mM dithiothreitol (DTT), at −80 °C, while PfHGXPRT in 0.01 M phosphate, 60 µM hypoxanthine, 200 µM PRib-PP, at pH 7.2, 1 mM DTT as previously described. 9 The buffer was 0.1 M Tris-HCl, 0.01 M MgCl$_2$, pH 7.4 for the enzyme assays. For the Pf and Pv enzymes, the assays were performed in this buffer and also in 0.01 M phosphate, 5 mM DTT as described by Hazelton and colleagues. 9 The K_i values were calculated by Hanes’ plots at a fixed concentration of guanine (60 µM) and at variable concentrations of PRib-PP (14–1000 µM) depending on the K_m(app) in the presence of the inhibitor.
This work was supported by the subvention for development of Institute of Organic Chemistry and Biochemistry (RVO 61388963), by Czech Science Foundation (16-06049S), by Gilead Sciences (Foster City, CA, USA) and by the Australian NHMRC (Grant No. 1030353).

References