Message from the BLiSS organisers

Have you ever wondered what your peers do in their lab? What field they study? What fancy technique they are an expert of? Then found yourself bored out of your mind during a general conference because the talks are too specific and you still don’t get what the research is about?

BLiSS is a one-day symposium made for ECRs, by ECRs. This event will provide a unique opportunity for Life Science ECRs from all the major Universities and research institutes in and around Brisbane to:

- **meet** their peers
- **share** their research in an interesting and engaging format (digital interactive posters, short, punchy talks focusing on research impact and significance, showcasing cutting-edge technique)
- **grow** as a researcher (build meaningful connections, jump-start collaborations)

Other program highlights include a stellar plenary talk from Prof Marylin Renfree, panel discussions on “How to survive as a scientist” and “Gender equity in science”, and a fun-filled social mixer.

BLiSS Steering Committee members

Chair: Florence Cotel
Vice Chair: Kirsty Short
Treasurer: Ilaria Stefani
Quentin Kaas
Ronan Kapetanovic
David Poger
Alvin Lo
Nasim Amiralian

Alexandra Depelsenaire
Ella Trembizki
Linda Gallo
Frances Pearson
Sohinee Sarkar
Zach Houston
Maryam Ziaei
Sara McKee

Diahann Jansen
Ashik Ullah
Natalie Prow
Todd Shelper
Nathan Boase
Christiane Lang
Nela Durisic

Design: Nick Valmas
BLiSS 2016 themes
The overall theme for BLiSS 2016 is “Our Next Challenges”. We want to gather all of the Brisbane Life Sciences ECR community together for an opportunity to share their research in an effort to create new collaborations and research projects to help solve today's leading global issues.

Fighting disease and managing healthcare
This theme is aimed at research that aspires to prevent, better manage and develop innovative therapies to improve clinical and public health outcomes for both the population and the individual.

Sustaining the earth for 2100
Build Queensland’s and Australia’s capacity to respond to environmental change and integrate research outcomes from biological, physical, social and economic systems.

A head start on ageing and mental health
With census projections indicating the proportion of the population >65 years reaching 25% in the next 40 years, research on improving the physical and mental well-being of the ageing population in society is a major goal. This theme is aimed at research promoting a better lifestyle to the adult and senior population.

The new frontier:
technical and interdisciplinary advances
Breakthrough research often transcends the scope of a single discipline. This theme is aimed at research that integrates information, data, techniques, tools, and/or theories from two or more disciplines or bodies of specialized knowledge to accelerate scientific discovery.
Program

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Registration</td>
</tr>
<tr>
<td>9:00</td>
<td>Welcome address</td>
</tr>
<tr>
<td>9:15</td>
<td>Plenary speaker: Prof Marilyn Renfree</td>
</tr>
</tbody>
</table>
| 10:00 | Panel Discussion: **How to survive as a scientist** *(Chair: Dr Kirsty Short)*
A/Prof Kirsten Spann, Prof Bill von Hippel, Dr Amy Jennison, A/Prof Christian Gruber |

10:45 Morning tea + poster session 1

<table>
<thead>
<tr>
<th>11:30</th>
<th>The Auditorium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fighting disease and managing healthcare (Chair: Dr Ella Trembizki)</td>
</tr>
</tbody>
</table>
| | Oncology drug discovery in the next dimension
Dr Carrie Lovitt |
| | Rethinking the role of antibodies in infectious diseases
Dr Charles Armitage |
| | The underestimated potential of ultrasound
Dr Marie-Luise Wille |
| | A new way to fight bacterial infections
Ms Signe Christensen |
| | The antimicrobial effect of zinc
Dr Cheryl-Lynn Ong |

11:30 The Forum

<table>
<thead>
<tr>
<th></th>
<th>Understanding the mechanisms of disease (Chair: Dr Alvin Lo)</th>
</tr>
</thead>
</table>
| | Microbiome and blood pressure in early pregnancy
Dr Marloes Dekker Nitert |
| | How mutations in sequence-specific transcription factors cause disease
Dr Kevin R. Gillinder |
| | Murine model to study macrophage contributions to prostate cancer
Dr Andy Wu |
| | Using transplantations to study chronic diseases and therapies
Dr Danielle Borg |
| | Dissecting immunological networks in HPV-associated cancers
Dr Zewen Kelvin Tuong |

12:40 Lunch

13:45 The Auditorium

<table>
<thead>
<tr>
<th></th>
<th>A head start on ageing and mental health (Chair: Dr Maryam Ziaei)</th>
</tr>
</thead>
</table>
| | Paying attention to sleep in fruit flies
Dr Leonie Kirszenblat |
| | Can our diet AGE us? Oral uptake and trafficking of dietary AGEs
Ms Amelia Fotheringham |
| | Two hundred million years in the making of brain circuits
Dr Rodrigo Suárez |
| | The contribution of neural crest to phenotypes in Down syndrome
Ms Anu Balachandran |
| | Concurrent physiological measures to aid clinical psychiatric diagnosis
Mr Saurabh Sonkusare |

14:25 Afternoon tea + poster session 2

15:40 Panel Discussion: **Gender equity** *(Chairs: Dr David Poger & Prof Marilyn Renfree)*
Prof Bob Williamson, Dr Wafa El-Adhami, Prof Melissa Brown, Ms Julienne Clifford

16:25 Concluding remarks & prizes

17:30 End of the symposium
Gold sponsors

Silver sponsors

Bronze sponsors
ANFF-Q helps researchers from areas as diverse as synthetic chemistry to waste water treatment, and from cell biology to organic electronics and everything in between.

We provide training, consultations, seminars and workshops to help you get the most out of our open-access state-of-the-art fabrication and characterisation equipment and facilities.

With simple and rapid access to cutting-edge tools and highly experienced staff, ANFF-Q can help you push for the next level of innovation.
Compounds Australia – A Snapshot

Compounds Australia seamlessly connects Australia’s chemistry research community with the global bioscience research community to accelerate new discoveries of bioactive molecules.

Compounds Australia was established in 2008 and remains Australia’s only integrated compound management facility, providing compound management research logistics (compound lodgement and storage, specialized formatting and reformatting into assay-ready microplates, quality control, data handling) to enhance drug discovery and translational research.

Compounds Australia enables health and medical researchers to outsource the complexity of compound storage and liquid handling robotics needed to prepare assay-ready microplates.

Playing a pivotal role in translation pathways to maximise opportunities for success

The demand for biochemical and cell-based assays to enable in-depth analysis of compound activities for medical research drives current drug discovery efforts.

Compounds Australia provides access to critical infrastructure and expertise to ensure flexible, efficient, reproducible and cost effective compound management supporting biological characterisation of compounds throughout the drug discovery pipeline.

"Compounds Australia was the only facility of its kind in Australia that could manage chemical libraries required for high throughput screening".

Universities Australia Chair, Professor Barney Glover, National Press Club, Mar 2016

Central to our facilities operations is expertise in laboratory automation, programming and customisation of software, large-scale data management, workflow and process development, quality control protocol development and, above all the needs of world-class drug discovery research.

Compound & Sample Storage

Compounds are curated, either in microtubes or microplates, under rigorous storage conditions (temperature, atmosphere, light, moisture) to maintain their integrity for an extended ‘shelflife’.

We have:

- Five TTP Labtech comPOUND® stores with total capacity to hold 600,000 1.2 mL microtubes. These **compound storage units are at 90% capacity**.
- Two Hamilton Storage Technologies PlateStoreII (ASM Platestore) with total capacity to hold 4,200 microplates. **The microplate storage units are at 90% capacity**.

Dedicated processing workflows

- Ability to provide nL and low uL quantities of samples in multiple assay-ready formats
- Microtube solubilisation and transfer into microplates
- Data tracking at all points of processing

- Plate replication in 96, 384 and 1536 formats (quadranted, dequadranted)
- Plate to plate cherry-picking in single- and multi-volume formats in 96, 384 and 1536 microplate
- Generate IC50 curves via ECHO source and designing custom plate layouts specific to customer needs

Compounds Australia Structure Portal

launched early 2016 enables researchers to browse or search the ‘Open’ Compound Collection via a web portal to further empower researchers with access to up-to-date information such as individual chemical properties

www.compoundsaustralia.com/casper.

www.compoundsaustralia.com
The Central Analytical Research Facility (CARF) is a group of specialist laboratories at QUT, supported by a team of expert technical staff and research fellows.

CARF is a multi-user facility with state-of-the-art instruments for analysing the physical, mechanical, chemical and biological properties of solids, liquids and gases.

Our research capabilities

- Analytical chemistry
- Genomics
- Histology
- Micro and nano fabrication
- Optical, electron and ion microscopy
- Proteomics and small molecule mass spectrometry
- Stable isotope mass spectrometry
- Surface analysis
- Physical and mechanical properties
- X-ray diffraction and fluorescence

Contact us to find out how we can help with your research.
Advancement through innovation

Queensland University of Technology’s Science and Engineering Faculty is advancing the frontiers of science and engineering to shape our future environments. We offer courses based on the real world in science, technology, engineering, mathematics (STEM) and urban development. This work drives the engines of growth that underpin modern society and have wide-reaching impact on our everyday lives.
IMB RESEARCH SUPPORT FACILITIES

IMB scientists have on-site access to a range of leading technologies and facilities, allowing them to conduct faster, more comprehensive research.

ACRF Cancer Biology Imaging Facility and ACRF Dynamic Imaging Facility

The Australian Cancer Research Foundation’s (ACRF) Cancer Biology Imaging Facility is one of the largest and most comprehensively equipped facilities in Australia for imaging and screening chemical and biological libraries. It is home to 23 high-performance microscopes and provides on-site expert technical support and training. It complements and extends the work of the ACRF Dynamic Imaging Facility, which was established in 2005.

imb.uq.edu.au/acrf-imaging-facilities

IMB Sequencing Facility

The IMB Sequencing Facility (ISF) provides sequencing services to IMB, UQ and the research community in the greater Brisbane region. The ISF provides services on Illumina’s NextSeq 500 and the MiSeq sequencing platforms. The facility offers sample preparation for sequencing of RNA from any species, whole exome sequencing for human DNA and whole genome sequencing for non-human species.

imb.uq.edu.au/genomic-sequencing-facility

Mass Spectrometry Facility

IMB’s Mass Spectrometry Facility (MSF) provides researchers with state-of-the-art mass spectrometry, high-performance liquid chromatography and robotic instrumentation. The MSF provides technical advice and research and training support in a number of mass spectrometric applications, including investigating protein interactions and structures, amino acid sequence determination, post-translational modification discovery and quantification, compound stability, and bioavailability of potential therapeutics in a range of biological systems.

imb.uq.edu.au/mass-spectrometry-facility
DELIVERING RESEARCH EXCELLENCE

Innovative and dynamic research specialising in stem cell ageing and regenerative engineering, precision nanomedicine, advanced materials, nanoagriculture, and industrial biotechnology.

AIBN
Australian Institute for Bioengineering and Nanotechnology

Discover more at aibn.uq.edu.au
Corning® Cryogenic Storage Solutions
A new and improved way to freeze your cells

Features
Unique features of controlled-rate freezing with Corning® CoolCell® include:
- Ease of use
- Alcohol and fluid-free freezing
- Lower cost of use than alcohol-based devices
- High cell recovery and cell viability
- Reproducibility
- Simple, consistent way to standardize controlled-rate freezing

Please contact us for promo details of Cool products: CLSANZ@corning.com
Australia/New Zealand +61 428331880

Scientifix Product Portfolio

Promotions
- Ligation Free In-Fusion Cloning – 20% OFF
- qPCR Premixes Enzymes – 40% OFF
- EmeraldAmp GT PCR – 20% OFF
- One-Step RT- qPCR – 20% OFF
- PrimeSTAR GXL – 20% OFF
- His-Tag Protein Purification – 15% OFF
- Oncogene Research ELISA Kits / Antibodies – 10% OFF + FREE plush toy

CONTACT
Idris Mohammed
Ph 1800 007 900
M 0401 649 242
E idris@scientifix.com.au
Tools for Your Immunology Research

SOURCE.
Ready-to-use primary cells

ISOLATE.
Fast & easy, column-free
EasySep™ and RosetteSep™
cell isolation

CULTURE.
Optimized ImmunoCult™
reagents for culturing
T cells & DCs

ANALYZE.
Assess phenotype and function using
STEMCELL’s antibodies

SARSTEDT
Your Partner in Medicine and Science Worldwide

PCR & Molecular Biology
- Filter and Low Retention Tips
- PCR Tubes, Strips & Plates
- qPCR Products Strips & Plates
- Adhesive Sealing Tapes
- Low Binding Micro Tubes

Diagnostic Products
- Venous Blood Collection
- Capillary Blood Collection
- Safety Lancets
- Prepared Tubes
- Urine & Faeces Program
- Sharps Containers
- Hygienic Saliva Collection

Laboratory Products
- Reagent & Centrifuge Tubes
- Push & Screw Cap Micro Tubes
- 70 to 500 ml Containers
- Petri Dishes, Serological Pipettes,
 Inoculation Loops and Cuevettes
- Cell & Tissue Culture, Cryopreservation
- Microtast & ELISA Plates

These are just some of our products.
Visit our website www.sarstedt.com to view our full range of products
including our hospital and transfusion medicine product ranges.

info.au@sarstedt.com • www.sarstedt.com

SARSTEDT Australia Pty Ltd • 16 Park Way, Mawson Lakes • South Australia, 5095 • Tel: (08) 8349 6555 • Fax: (08) 8349 6882
Australian Biosearch supports the Australian research community with innovative, and enabling, technologies and tools from world class suppliers. We provide antibodies, reagents, primary cells, media, ECM and kits for the emerging research areas of Epigenetics, Cancer research, Immunology, Neuroscience and all cell based Omics research.

Want to contact us?

Andrew Rayfield
BSc PhD
Life Science Consultant
Queensland

Australian Biosearch
Mobile: 0404 488 830
Phone: 08 - 9302 2766
Toll Free: 1800 858 797
Fax: (08) 9302 4825
Email: andrew@aust-biosearch.com.au
Website: www.aust-biosearch.com.au

Call 1800 LabGear

sales@labgearaustralia.com.au
www.labgearaustralia.com.au

Akira Nakamoto
President

We strive to contribute to people’s health and well-being since our inception in 1875, by consistently challenging ourselves to develop state-of-the-art technology that creates new values in a variety of fields. Our corporate philosophy, ‘Contributing to Society through Science and Technology,’ and our core management principle, ‘For the Well-being of both Mankind and the Earth,’ is enshrined in our values.

Akira Nakamoto
President

CHROMATOGRAPHY | UHPLC & HPLC | LCMS & LCMSMS | GC | GCMS & GCMSMS | Wyatt Light Scattering
LIFE SCIENCE | MALDI-TOF MS | LC-MALDI | DNA/RNA Analysers | Protein Sequencer | fNIR Imaging
SPECTROSCOPY | XP5 | EDX & OES | AAS & ICP | UV-Vis/NIR | FTIR
ANALYSERS | TOC | TN | Particle Size
BALANCES | Analytical | Top Loading | Platform | Moisture
MATERIALS TESTING | Autograph | Universal Hydraulic | Table Top

AUS: 1800 800 950
NZ: 0800 127 446
info@shimadzu.com.au
shimadzu.com.au
Australian Biosearch supports the Australian research community with innovative, and enabling, technologies and tools from world class suppliers. We provide antibodies, reagents, primary cells, media, ECM and kits for the emerging research areas of Epigenetics, Cancer research, Immunology, Neuroscience and all cell based Omics research.

Want to contact us?

Andrew Rayfield BSc PhD
Life Science Consultant -
Queensland
Australian Biosearch

Mobile: 0404 488 830
Phone: 08-9302-2766
Toll Free: 1800 858 797
Fax: (08) 9302-4825

Email: andrew@aust-biosearch.com.au
Website: www.aust-biosearch.com.au
From classroom to clinic

Inspiring tomorrow’s thinkers

The brain is the most complex and intricate machine known to humanity. It moves us, motivates us and defines us. The Queensland Brain Institute (QBI) at The University of Queensland is a world-leading neuroscience research hub.

At QBI, we are learning how the brain functions from biological, engineering and computational perspectives so that we can better treat diseases as diverse as dementia, schizophrenia, motor neuron disease, depression and anxiety.

We are also working on improving educational outcomes for school children by understanding how the brain learns. Inspired by imagination, our work is powered by science.

For more information visit: www.qbi.edu.au
Providing leadership for research and teaching in Biomedical Sciences

For information on:
Student opportunities: www.uq.edu.au/sbms/our-research-students
Staff opportunities: www.uq.edu.au/sbms/programs/all
Or contact The Head of School (Acting): Professor Rod Minchin at r.minchin@uq.edu.au

Future proof your career in the life sciences

With a worldwide shortage of bioinformaticians, career opportunities for skilled bioinformatics specialists are extensive and demand is increasing.

With a range of study options available you can choose from a 6 month Graduate Certificate, a 1.5 year Masters program, or a 2 year Research Extensive Masters program to meet your training needs and career goals.

Find out more: scmb.uq.edu.au
The Institute of Health and Biomedical Innovation uses the latest technology and brings together the best minds from around the world to conduct research into ways of improving health and wellbeing.

Our research aims to develop new and innovative solutions to global health issues and bridge the gap between clinical science and better health.

www.qut.edu.au/ihbi

Better health IN OUR LIFETIME
Prevention ■ Intervention ■ Translation

a university for the real world

SAPPHIRE BIOSCIENCE
QIMR Berghofer Medical Research Institute

THE UNIVERSITY OF QUEENSLAND
Centre for Advanced Imaging
LIBRARY
Your partner in scholarship

THE UNIVERSITY OF QUEENSLAND
DIAMANTINA INSTITUTE

bluebox
innovations for the real world
BLiSS online

Share your thoughts with us on the "Brisbane Life Science ECR Symposium" Facebook page.

Connect on Twitter
@BLiSS_2016
#ecr_bliss16

Any questions you want to ask during the panel discussions or the general discussion of each oral "Big challenge" session? Tweet and tag your burning question!
#ecr_bliss16

Find out more about BLiSS at:
bliss2016.org

What's your BLiSS? the competition
We are excited to announce an Instagram/Twitter competition themed ‘What’s your BLiSS at work?’ Is it the perfect experiment, a publication acceptance or just hanging out with your group over that steaming cuppa? Upload a photo and tag #ecr_bliss16 any time before or during BLiSS for a chance to win prizes on the day!

Passport Stamp Competitions
Visit our Sponsor Expo and collect all 10 stamps. Post in the Sponsor Passport Box to get a chance to win a great prize!

Visit our Facility Expo and collect 5 out of 10 stamps. Post in the Facility Passport Box to get a chance to win a great prize!
Drug discovery and development programs depend on disease-relevant in vitro models. In the field of oncology, cells cultured in monolayer conditions are often employed, however these pre-clinical models do not always mimic the complex milieu of cancer (Figure 1) and drug candidates for this disease may lack clinical efficacy. The objective of this research was to increase the relevancy of in vitro pre-clinical models for cancer drug discovery through development of advanced three-dimensional (3D) cell culture models suitable for examination novel chemical compounds, profiling drug candidates and elucidation of drug resistance mechanisms. For this research, cutting-edge technology including liquid handling robotics and automated high content imaging and analysis methodology was utilised to evaluate drug candidates and deconstruct molecular mechanisms in advanced 3D cellular models.

Figure 1. The complex, heterogeneous microenvironment of tumours. The main elements of a tumour are tumour-specific and tumour-associated cells, structural components and chemical gradients. Modelling tumours utilising 3D cell culture technologies facilitates recapitulation many pertinent tumour elements.

1 C Lovitt, T Shelper, V Avery. Expert Opinion Drug Discovery. 2016, 11, 885-
Rethinking the role of antibodies in mucosal infections

Charles W Armitage¹, Richard S Blumberg², Kenneth W Beagley¹

¹Institute of Health and Biomedical Innovation, QUT, Brisbane, QLD, AUS
²Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

How your research fits into the bigger picture: The majority of successful vaccines rely on antibody-mediated protection targeting a pathogen’s surface proteins, yet many pathogens also have an intracellular niche. *Chlamydia trachomatis* is an intracellular bacterium that replicates inside host cells allowing it to hide from the immune system, thus the vast majority of vaccines have targeted the extracellular phase of infection. We have demonstrated that antibodies to the extracellular phase bind *Chlamydia* and paradoxically enhance epithelial uptake and infection¹⁻². Furthermore we provided the first evidence that antibodies travelling through epithelia can bind and neutralise intracellular chlamydial growth¹⁻³. These data provide evidence that targeting intracellular antigens is an interesting avenue in vaccine design.

The key questions that you are trying to answer: Identifying additional antigens and the mechanism of intracellular antibody neutralisation, and how the immune system clears infection represents a novel approach in vaccine design to intracellular pathogens.

The unique techniques you use in your experiments: GMO cells and mice, protein production and purification, flow cytometry, confocal microscopy, microbiology and immunology techniques.

Figure 1. Antibodies play an intracellular and extracellular role in pathogen clearance. Immunoglobulin G (IgG) trafficking through the epithelial cytoplasm can interact with chlamydial inclusion membrane and Type 3 Secretion System (T3SS) proteins which upregulates lysosomal fusion, protein degradation and flagging infected cells for killing by cytotoxic CD8+ T cells.

¹C Armitage, C O’Meara, M Harvie, P Timms, R Blumberg, K Beagley. *Immunol Cell Biol.* 2014 92(5) 417-26
³C Armitage, R Blumberg, K Beagley. 2016 In preparation
The underestimated potential of ultrasound

Marie-Luise Wille, Christian M. Langton, Scott Wearing
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia

In a clinical context, ultrasound is commonly known as an imaging modality and primarily used in monitoring the developing foetus in obstetrics. Other applications include monitoring of the blood flow in the heart, guiding a biopsy needle in oncology, and assessing musculoskeletal tissues after injury. However, we are far from having exploited the full potential that ultrasound has to offer and while innovation and technology are focussing on improving X-ray, PET, and MRI, the feasibility and associated costs for the patient are usually ignored.

In my research I take advantage of the fact that ultrasound is a mechanical wave and therefore highly dependent upon density and structure of the propagated material. By applying a novel ultrasound signal processing technique, I am exploring new avenues to find alternative and cost-effective methods to predict osteoporotic fracture risk or to monitor tissue composition changes in the diabetic foot in order to prevent ulceration.

Figure 1. Prototype design of an ultrasound heel scanner which can measure the bone density or the tissue composition of the plantar fat pad. This handheld device may be easily transported in a carry bag and transmit the ultrasound signals via Bluetooth to a tablet computer.

Dr Marie-Luise Wille
Affiliation, Country: Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
Phone: +61 3138 6236 E-mail: m.wille@qut.edu.au
Personal History: 2008 MSc (Physics), University of Basel, Switzerland
2009-2010 Research Fellow, Fraunhofer Institute, Germany
Since 3/2015 Postdoctoral Research Fellow, IHBI, QUT
Research interests: ultrasound, medical imaging, signal processing, astrophysics
A new way to fight bacterial infections

Signe Christensen¹, Morten Grøftehauge¹,², Begoña Hera¹,³, Róisín McMahon¹ and Jennifer L. Martin¹,⁴

¹Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
²School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
³La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
⁴The Eskitis Institute, Griffith University, Brisbane Innovation Park, Nathan QLD 4111, Australia

The rise in antibiotic resistance is undermining our ability to treat an increasing range of bacterial infections and is a huge threat to public health worldwide¹. Disulfide bonds provide structural bracing to numerous proteins including those involved in bacterial pathogenesis². Bacterial disulfide bond (DSB) proteins catalyze the formation of disulfide bonds and thus are potential targets for drug development. The primary enzyme in the DSB family is DsbA. DsbA enzymes share the same overall fold but have subtle variations on their surface³. A broader knowledge of the diversity of DsbAs supports the development of broad and narrow spectrum inhibitors of DsbAs. Here I present the characterization of the DsbA from the intracellular pathogen Chlamydia trachomatis (CtDsbA). The structure of CtDsbA was solved by X-ray crystallography and reveals a typical DsbA fold (Figure 1). Functional assays shows that CtDsbA is an oxidase, although the least oxidizing DsbA studied to date.

Figure 1. The structure of CtDsbA was solved by X-ray crystallography to a resolution of 2.7Å. CtDsbA has a typical DsbA structure with a thioredoxin fold (dark blue) containing the active CXXC motif (yellow). In light blue is the inserted helical domain. CtDsbA has an additional, non-catalytic, disulfide (orange) only seen in three other DsbAs, as well as an unpaired cysteine (red), which has not been previously reported in a DsbA.

Oral presentations

Fighting disease and managing healthcare
Zinc deficiency is associated with increased susceptibility to bacterial infection. Here, we investigated the role of zinc in innate immune defense against Group A *Streptococcus* (GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases. We found that deletion of the *czcD* gene (encoding a zinc efflux pump) reduced the ability of GAS to grow in the presence of zinc and increased accumulation of internal zinc. Furthermore, the mutant displayed attenuation in the mouse and neutrophil assays and show that zinc at the site of infection is critical for host immune defense. We also demonstrated the mechanisms by which zinc exerts its toxic effect in GAS. As such, zinc efflux is an important contributor to GAS pathogenesis and zinc may play a direct antibacterial role in innate immune defense against infection. To date, our data has provided new insight into the potential use of zinc as therapeutics against bacterial infections.
O-06

Microbiome and blood pressure in early pregnancy

Luisa F Gomez–Arango, Helen L. Barrett, H. David McIntyre, Leonie K. Callaway, Mark Morrison, Marloes Dekker Nitert for the SPRING trial group

1School of Medicine, The University of Queensland, Brisbane Australia
2UQ Centre for Clinical Research, The University of Queensland, Brisbane Australia
3Obstetric Medicine, Royal Brisbane and Women’s Hospital, Brisbane Australia
4Mater Research, The University of Queensland, Brisbane Australia
5Diamantina Institute, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane Australia
6School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Australia

Background: Obese pregnant women have a higher risk of developing pregnancy-induced hypertension and preeclampsia. Outside pregnancy, the gut microbiome of obese individuals is different from normal-weight individuals. Low-grade inflammation is a hallmark of obesity. Metabolites excreted by bacteria in the gut microbiome may contribute to hypertension and inflammation. This study aimed to investigate if blood pressure and level of the inflammatory marker PAI-1 are associated with altered gut microbiome composition in overweight and obese women in early pregnancy.

Methods: The composition of the gut microbiota was determined in 205 women at 16 weeks gestation from the SPRING study with 16S rRNA sequencing. The expression of butyrate-producing genes in the gut microbiota was assessed by real-time PCR. PAI-1 levels were measured in fasting serum of a subset of 70 women at 16 weeks gestation.

Results: Obese women had significantly higher systolic and diastolic blood pressure than overweight women in early pregnancy. Systolic blood pressure was negatively correlated with abundance of the butyrate-producing genus Odoribacter in the gut microbiome. Butyrate production capacity by the bacteria in the gut microbiome was decreased in women with higher blood pressure. PAI-1 concentrations were increased in obese pregnant women. PAI-1 was inversely correlated with expression of butyrate kinase and abundance of Odoribacter.

Conclusion: The results of this study show that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with PAI-1. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in overweight and obese pregnant women.
How mutations in the DNA-binding domain of sequence-specific transcription factors cause disease

Kevin R. Gillinder¹, Graham W. Magor¹, Andrew C. Perkins¹,²

¹Mater Research – University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
²The Princess Alexandra Hospital, Brisbane, QLD 4102, Australia

The average human genome contains nearly 100 missense mutations within the DNA-binding domain (DBD) of various sequence-specific transcription factors (TFs). Missense mutations in the DBD of TFs can alter both the affinity and the specificity of DNA-binding leading to disruption of gene regulation. Despite their medical importance, the consequence of these mutations remains largely unknown. To investigate this, we have generated missense mutations, modeling human disease, in critical DBD residues of Krüppel-like factor-1 (KLF1), an essential TF required for nearly every aspect of red blood cell formation. Combining Next-Generation sequencing techniques including chromatin immunoprecipitation (ChIP), chromatin conformation capture (Capture-3C), ATAC-seq, and 4sU-labelled RNA-seq, we aim to understand how these mutations alter the affinity and specificity of DNA-binding, and distort transcription of direct target genes.

Figure 1. A missense mutation in KLF1 confers an altered DNA specificity leading to anemia. During normal red cell formation KLF1 regulates target genes like β-globin and Alas2, through binding the sequence GGT-[CT]G-GGN in the promoter or enhancer of genes. However, the E339D mutation, also known as Neonatal Anemia (Nan-KLF1) alters the specificity and affinity of this sequence, leading to dysregulation and ectopic gene expression.

3MR Tallack & AC Perkins. IUBMB Life. 2010 62, 886–890

Dr Kevin Gillinder
Affiliation: Mater Research – University of Queensland, Australia:
Phone: +61 73343 7531 E-mail: kevin.gillinder@mater.uq.edu.au
Personal History: 1999–2002 BSc. Science (Hons)
2009–2012 PhD in Stem Cell Science, Newcastle University UK
Since 2013 Research Officer, Cancer Genomics Group, Mater Research – University of Queensland
Research interests: Genetics, Genomics, Bioinformatics, Transcription and Gene Therapy
O-08
Murine model to study macrophage functional contributions to prostate cancer lesion development

Andy C Wu1, Yaowu He1, Amy Broomfield2, Nicoll J Paatan1,3, Brittney S Harrington1, Hsu–Wen Tseng1, Elizabeth A Beaven2, Deirdre M Kiernan4, Peter Swindle4, Adrian B Clubb4, Jean–Pierre Levesque1, Ingrid G Winkler1, Ming–Tat Ling3,5, Bhuvana Srinivasan2, John D Hooper1, Allison R Pettit1

1Faculty of Medicine and Biomedical Sciences, Mater Research Institute – The University of Queensland, Translational Research Institute, Woolloongabba, Qld 4102, Australia.
2Department of Anatomical Pathology, Mater Health Services, South Brisbane, Qld 4101, Australia.
3School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, Qld 4102, Australia.
4Department of Urology, Mater Health Services, South Brisbane, Qld 4101, Australia.
5Institute for Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, Qld 4102, Australia.

Prostate cancer (PCa) is the most commonly diagnosed cancer in Australian men with high propensity to metastasise to bone which disrupt bone homeostasis and leads to tumour growth and development of pathological osteoblastic/osteolytic lesions. Bone metastasis and associated skeletal complications increase mortality risk in PCa patients. Identification of approaches to disrupt the interplay between PCa cells and cells of the bone marrow environment will lead to additional treatment options for men with skeletal metastasis. Immune cells in particular macrophages have been implicated in tumour development and its number correlate with disease progression in primary PCa. We have developed a murine immune-competent PCa bone growth model that mimics lesions observed in human PCa bone metastasis and this model permit us to explore macrophage functional contributions to PCa lesion progression. Our research will provide foundation knowledge toward the development of macrophage-targeted therapies that may improve responses of established bone tumour to chemotherapy.

Figure A. Immune competent mouse model of PCa growth in bone exhibit both osteoblastic and osteolytic lesions, a clinical feature commonly observed in patient samples. (i) Immunohistochemistry staining for collagen type I shows pathologic woven bone (WoB) within the medulla adjacent to original cortical bone (CtB) and interspersed in regions of both dense tumour and haematopoietic tissue. (ii) Enzymatic staining of TRAP, showing region of extensive osteolysis on existing bone surfaces (white arrowhead). Tm, tumour; Tb, trabecular bone.

Dr Andy C. Wu
Affiliation: Mater Research Institute – The University of Queensland, Translational Research Institute, Woolloongabba, Qld 4102, Australia
E-mail: andy.wu@mater.uq.edu.au
Research interests: skeletal fracture, cancer bone metastasis, macrophages, tissue engineering
Using transplantations to study chronic diseases and therapies

Danielle J Borg, Hui Tong, Michael McGuckin, Sumaira Hasnain

Inflammatory Diseases Biology and Therapeutics, Mater Research Institute—The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.

Cellular transplantation is a viable therapy for several diseases. Cellular transplantation can be performed preclinically in murine hosts via various site-specific injection sites to further improve cell therapies and understand disease processes. The subcapsular space, located between the renal capsule and kidney is an ideal site for cellular transplantation due to its accessibility, containment of transplanted material, and ease of angiogenesis. With the aim to improve functional outcomes for islet transplantation, a cell therapy used for individuals with unstable type 1 diabetes, we used the renal subcapsular space as a site for autologous, murine islet transplantation. Specifically using a chemically-induced model of diabetes, hyperglycaemic recipient mice were transplanted with a syngeneic islet mass under the kidney capsule. Islets were treated with a compound known to reduce islet stress or PBS (vehicle control). Post-transplant, this model allows for continual monitoring of graft function. Further processing of the graft can be performed after anephrectomy.

Figure 1. Illustration of renal subcapsular transplantation in anaesthetised mice. A small incision is made in the renal capsule, tubing containing cells is inserted into subcapsular space, cells are released using a microsyringe into the renal space, tubing is retracted and small incision is cauterised.

Dr Danielle Borg
Affiliation, Country: Mater Research Institute—The University of Queensland, Translational Research Institute, Australia
Phone: +734437690 E-mail: danielle.borg@mater.uq.edu.au

Personal History:
2005 BAppSci, QUT, Brisbane, Australia
2006 BSci(Hons), QUT, Brisbane, Australia
2007–2008 Research Assistant, Tissue Repair and Regeneration, IHBI, Brisbane, Australia
2008–2012 PhD, Dresden International Graduate School of Biomedicine and Bioengineering, Dresden, Germany
Since 2012 Post-doctoral Research Officer, Mater Research Institute, Brisbane, Australia
Since 2013 Honorary Fellow, Level A, University of Queensland, Brisbane, Australia

Research interests: Diabetes, Islet Biology, Biomaterials, Cell Biology, Physiology
Dissecting the immunological networks that changes in HPV-associated cancers

Zewen Kelvin Tuong, Paula Kuo, Andrew Zammit and Ian Frazer
The University of Queensland Diamantina Institute, Translational Research Institute

HPVs are epitheliotropic double-stranded DNA viruses that infect the basal keratinocytes on skin and mucous membranes. Most HPV infections are cleared rapidly by the immune system but extended virus persistence, especially by ‘high-risk’ HPV types, is associated with the induction of local immunosuppression and increasing risk of dysplastic transformation of normal epithelium. We are interested in understanding the immunological consequences of HPV infection in cancers, including cervical cancer and oral cavity cancer. We combine molecular, immunological and bioinformatics approaches to investigate the alterations to immune networks in transgenic mouse models of cervical pre-cancer. In addition, we have recently used high-throughput sequencing technology to investigate the impact of HPV on the mutation burden during cancer and to uncover critical components that may influence the immune landscape in HPV-associated skin and mucosal malignancies (Figure 1). We hope that our research will one day assist in better informing immunotherapy design and strategies.

Figure 1. Alterations to complex genetic and immunological networks underscore the consequence of HPV infection during cancer. Identification of the main pathways involved will aid in tailoring immunotherapy options for patients.

Paying attention to sleep in fruit flies

Kirszenblat L, van Swinderen B
Queensland Brain Institute, The University of Queensland

The benefits of a good night’s sleep seem obvious, yet we still know little about the functions of sleep. One consequence of sleep deprivation is the degradation of attention. Interestingly, attention seems to be intimately linked with sleep throughout the animal kingdom, as studies in humans and other animals suggest sleep is crucial for attention while attention processes drive sleep need. We are investigating the relationship between sleep and attention in the model organism Drosophila, using novel behavioral paradigms to study visual attention and sleep, and state-of-the-art microscopy techniques to examine how these processes affect synaptic connectivity in the brain. We have found that sleep deprivation makes flies more distractible, while genetically activating a molecule involved in sleep and plasticity makes flies less distractible. By studying relatively simple circuits of the fly brain, we aim to discover fundamental plasticity mechanisms of sleep that optimise attention.

Figure. Evolution of sleep and cognitive capacities. Sleep has several functions that appear to have evolved as nervous systems became more complex. In simple nervous systems such as the nematode, C. elegans, sleep-like states are triggered by developmental stages and environmental stress, suggesting these are primitive functions of sleep. In animals with more complex nervous systems (such as flies and mammals) a daily need for sleep emerged, most likely to cope with the plasticity demands of cognitive processes such as operant learning and selective attention.

Figure. Evolution of sleep and cognitive capacities. Sleep has several functions that appear to have evolved as nervous systems became more complex. In simple nervous systems such as the nematode, C. elegans, sleep-like states are triggered by developmental stages and environmental stress, suggesting these are primitive functions of sleep. In animals with more complex nervous systems (such as flies and mammals) a daily need for sleep emerged, most likely to cope with the plasticity demands of cognitive processes such as operant learning and selective attention.

Dr Leonie Kirszenblat
Affiliation, Country: Queensland Brain Institute, Australia.
Phone: +61422801739 E-mail: l.kirszenblat@uq.edu.au

Personal History:
2011–2016: PhD in Neuroscience, Queensland Brain Institute.
Research interests: neuroscience, genetics, animal behaviour
Can our diet AGE us? Exploring oral uptake and trafficking of dietary AGEs modified proteins in healthy mouse models

Amelia K Fotheringham1,2, Danielle J Borg1, Sherman S Leung1,2, Linda A Gallo1,2, Aowen Zhuang1, Nicole B Flemming1,2, Micheal S Ward1, Domenica McCarthy1, Michael McGuckin1, Josephine M Forbes1

1Mater Research–University of Queensland, Translational Research Institute, Woolloongabba, Queensland.
2School of Biomedical Sciences–University of Queensland, St Lucia, Queensland.

Advanced Glycation End Products (AGEs), are post translational modifications to proteins, commonly seen in western diets. AGEs are known to affect glycaemic control, cause inflammation, accumulate with aging and associate with disease. Little is known about gastrointestinal absorption of dietary AGE modified proteins and their subsequent localisation to different tissues. Therefore, we used a near infrared (near–IR) labelled AGE–modified model protein (near–IR AGEs), deliver edit intra–gastrically to healthy adult mice and analysed their tissues, from 15min to 8 hrs after delivery to localize the near–IR AGEs. AGE modified proteins were present in the circulation, duodenum and liver as both intact protein (66kD) and cleavage products (<20kD) within 15 minutes. Only cleavage products were found to be present in the kidney and urine. The presence of intact dietary derived AGE modified protein in the circulation and tissues may have a role in exacerbating inflammation and disease pathology.

Figure 1. Schematic of oral delivery, uptake and trafficking of near infrared tagged model AGEs. Healthy adult mice were delivered AGE modified proteins into the stomach to mimic ingestion. The near IR labelled AGEs appeared within the bloodstream, duodenum and liver as a mix of un–cleaved, intact product, or smaller digested products. The cleaved digested products were also found to be present in the kidney and the urine.

Ms Amelia K Fotheringham
Affiliation, Country: Mater Research–UQ, School of Biomedical Science–UQ, Queensland, Australia
Phone: (07) 344 37681 E-mail: amelia.fotheringham@mater.uq.edu.au
Personal History:
2005–2008 Bachelor of Science/Bachelor of Arts, University of Adelaide
2011 Honors (Genetics), University of Queensland
Since 2014 Doctor of Philosophy, University of Queensland
Two hundred million years in the making of brain circuits

Rodrigo Suárez
Queensland Brain Institute, The University of Queensland

Several psychiatric and neurological conditions are due to malformations of neuronal circuits in the cerebral cortex, a region of the brain only present in mammals. What general rules have guided brain formation across evolutionary time remains unknown. To address this, we compared magnetic resonance imaging, mapping of neuronal circuits, and gene expression analyses across mammalian species. Our findings reveal a 200 million years old template of cortical connections, with shared genetic programs, neuronal architecture, and wiring features between hemispheres. Such an ancestral map predates the origin of the corpus callosum for more than 40 million years, and suggests the corpus callosum evolved in early placentals by exaptation of evolutionary-old mechanisms. These results reveal conserved developmental features that could be exploited to re-route cortical connections in congenital defects of cortical miswiring, and offer new insights to inform biomedical strategies aimed at improving mental health in individuals with neurodevelopmental disorders.

Figure 1. Ancient origin of a mammalian program cortical connections. The cerebral cortex is only present in mammals, and consists of neurons organised in layers at the brain surface. The brain of other vertebrates, such as birds, is instead organised in clusters of neurons. The pattern of connections between hemispheres differs dramatically between birds and placentals (such as mice and humans). However, whether monotremes and marsupials share such patterns is currently unknown. Here we combined magnetic resonance imaging of the brains of platypus and dunnarts, with gene expression and circuit connectivity analyses and revealed an ancient map of bilateral connections that arose more than 200 million years ago.

Rodrigo Suárez, PhD
Title: ARC DECRA Research Fellow
Affiliation, Country: Queensland Brain Institute, The University of Queensland. Australia
Phone: +61 435 786 788; Fax: +61 7 3346 6301; E-mail: r.suarez@uq.edu.au
Personal History:
2016 ARC DECRA Research Fellow, Queensland Brain Institute, The University of Queensland.
2011–2015 Postdoctoral Research Fellow, Queensland Brain Institute, The University of Queensland.
2010 PhD in Biomedical Sciences, University of Chile
Investigating the contribution of neural crest to phenotypes observed in Down syndrome

A Balachandran, D Ovchinnikov and E Wolvetang

Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia

Neural crest cells (NCCs) are transient, multipotent progenitors that emerge 3 weeks into human embryonic development. They migrate within the embryo differentiating into craniofacial bone and cartilage, craniofacial and enteric neurons and glia, pigment and smooth muscle cells. Abnormal NC development results in neurocristopathies including Hirschsprung’s disease, craniofacial and cardiac abnormalities. Infants with Down syndrome (DS) have >300 times higher risk for developing these congenital malformations warranting a closer examination of NC development in DS.

We developed a SOX10 reporter line using CRISPR/Cas9 genome editing technology which along with an optimised protocol to differentiate human pluripotent stem cells (hPSCs) into SOX10+ NCCs allows us to efficiently isolate these cells. A multi-omic study on SOX10+ cells combined with bioinformatics tools was used to primarily identify unique cell surface markers as well as heterogeneity amongst SOX10+ cells. Currently, we are examining the molecular profile and migratory capacities of neural crest from DS-hPSCs.

Figure 1. Differentiation of SOX10 reporter hPSC line to cells that express SOX10:mMaple which can be enriched for under puromycin selection.

Ms Anushree Balachandran

Affiliation, Country: Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia

Phone: +61410856387 **E-mail:** a.balachandran@uqconnect.edu.au

Personal History:
PhD in Stem Cell Engineering Group of Prof. Ernst Wolvetang, AIBN, University of Queensland, QLD, Australia: Oct 2013 – present
Research Assistant in Neurodifferentiation Group, Genea Biocells, NSW, Australia: June 2011–July 2013
Bachelors of Biotechnology (1st class honours), Flinders University, SA, Australia: July 2007–May 2011

Research interests: CRISPR/Cas9 genome editing, patient derived human pluripotent stem cell culture and differentiation, neural crest cells, multi-omic analyses combined with bioinformatics, in-vitro cell migration assays
Multiple concurrent physiological measures to aid clinical psychiatric diagnosis

Saurabh Sonkusare¹², Vinh Thai Nguyen¹, Michael Breakspear¹, Christine Guo¹

¹QIMR Berghofer, Brisbane, Australia
²School of Medicine, The University of Queensland, Brisbane, Australia

Descriptions of affective disorders clearly recognize some distinct changes in physiological features, yet in most clinical practice and research there is little actual use of physiological measurement. The use of such measures to aid clinical diagnosis has been limited by poor reliability, validity and methodological advances. These physiologic changes could provide an objective method to aid a clinician in diagnosis or even monitoring treatment responses in patients with neuro-psychiatric disorders.

I am validating and characterising the pattern of these changes underlying various emotions by employing multi-modal set of tools that measure physiological changes. Furthermore, this study will also generate data for facial expression tracking study which further compliments the eventual aim of objective diagnosis of neuro-psychiatric disorders.

Figure. LabNeuro: Multimodal data acquisition laboratory. This image shows the subject wearing an EEG cap with electrodes attached to the fingers and arms (for measuring skin conductance and heart rate respectively) and thermal camera and video camera are focussed on the participant’s face. LabNeuro is running on the left monitor while the stimulus is displayed on the right monitor.
Developing new mass spectrometry tools for the analytical chemistry toolbox

David L. Marshall, Berwyck L. J. Poad, and Stephen J. Blanksby
Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001

Analytical chemistry is fundamentally concerned with identifying and quantifying molecules in complex matrices. Even with modern instrumentation and software, analysis of structurally diverse molecular targets presents a significant challenge. This daunting task is exaggerated for the non-specialist researcher tasked with determining molecular function and requires an interdisciplinary approach to maximise data quality.

The QUT Mass Spectrometry Development Laboratory advances novel instrumentation for the analytical chemistry community, especially for resolving impasses where conventional techniques are unable to provide a complete picture. Differentiating isomeric lipids (e.g., omega-3 and omega-6 fats) is difficult when identification is primarily based on molecular mass! We study the interaction of ionised lipids with laser radiation or gaseous reagents inside a mass spectrometer to discern subtle structural differences. By studying the dissociation of multiple isomers in the presence of ozone, we have shown that Drosophila produce only a single isomer of a pheromonal triacylglycerol (Figure 1).

Figure 1. Sequential collision-induced dissociation (CID) and ozone-induced dissociation (OzID) of triacylglycerols inside a modified mass spectrometer unequivocally identifies the molecular structure of a pheromone, and demonstrates that only a single isomer is produced.

Beyond pretty models: how single particle cryo-electron microscopy is used to understand macromolecular complexes

Lou Brillault1, Garry Morgan2, Kenneth Goldie3, Mohamed Chami3, Henning Stahlberg3, Alan Munn4, Ben Hankamer1, Frank Sainsbury5 & Michael Landsberg6

1 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
2 Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD 4072, Australia
3 Center for Cellular Imaging and Nano-Analytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland
4 School of Medical Science, Griffith University, Southport QLD 4222, Australia
5 Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
6 School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD 4072, Australia

Since its development, cryo-electron microscopy (cryo-EM) has been a promising technique accompanying X-ray crystallography and NMR for the structural investigation of protein complexes. The recent advances in imaging with Direct Electron Detectors (DED) and single particle analysis software have dramatically improved the resolution of 3D reconstruction starting the so-called “resolution revolution”. Here I describe how we optimised single particle cryo-EM analysis for the characterisation of two different macromolecular complexes: The vacuolar protein sorting 4 (Vps4) oligomer, a key enzyme hijacked by enveloped viruses (HIV, Ebola and Herpes simplex) to mediate their infection and the Bluetongue virus core-like particle (BTV-CLPs) a RNA free viral capsid used for encapsidating foreign proteins with therapeutic potential. The cryo-EM study of both of these particles will aid the therapeutic development of new anti-virals targeting host proteins, as well as the design and modification of virus-like nanoparticles for biomedical and nanotechnology applications.

Mr Lou Brillault
Affiliation, Country: The University of Queensland, Australia
E-mail: l.brillault@uq.edu.au
Personal History:
Since 2014 PhD student at the Institute for Molecular Bioscience, The University of Queensland
Research interests: Structural biology, cryo-electron microscopy (cryo-EM)
Mucosal associated invariant T-cells (MAIT cells) are an abundant population of innate-like human T cells in the blood, liver and gut mucosa. Their activation via the T cell receptor (TCR) upon presentation of bacterially derived antigens by an MHC class-I related molecule (MR1) has been implicated in pathological processes such as inflammatory bowel disease and the immune response to pulmonary bacterial infection. Although the identity of the antigen(s) had been elusive, we recently discovered that an unstable riboflavin-type metabolite binds to MR1 and then activates MAIT cells. It is formed in vivo via the condensation of 5-amino-6-D-ribitylaminouracil (5-A-RU) and pyruvaldehyde (2), a metabolite of glycolysis. Through chemical synthesis, MS and NMR characterization, the solution structure of this unstable antigen was determined unambiguously as 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OP-RU), which readily undergoes degradative cyclization to give lumazine. The MAIT TCR-MR1-antigen crystal structure revealed the formation of a Schiff base between MR1 Lys43 and 5-OP-RU stabilizing the antigen. Together, these show an unexpected mechanism of generating T-cell antigens by using disparate chemicals from different metabolic pathways.
One of the grand challenges of modern biophysical science is to understand how intrinsically disordered peptides (IDPs) can fold into a unique, biologically functioning protein structure from the myriad conformations of the unfolded state. We combine the inherent power of high performance computing and advanced molecular dynamics simulations algorithms to capture the conformational changes in IDPs that typically occur on the millisecond time scale. Malfunction of a key IDP called Tau is the likely culprit behind Alzheimer’s disease. It’s misfolding promotes aggregation and are toxic to the brain. Experimental methods alone are generally too limited to provide the atomistic level of detail that is needed to characterize the molecular interactions that are involved. The combination of modelling with NMR techniques paves the way towards understanding how information encoded in amino acid sequences of Tau governs its molecular function, contributes to organization of protein interaction networks and modulates the mechanisms of protein self-assembly.

Figure 1. Molecular dynamics simulations of structural characterisation of IDPs. Step 1 consists of defining a molecular mechanics force-field to calculate the potential energy of the protein as a function of the atomic coordinates. In step 2 a simulation box is defined that contains the coordinates of the Tau peptide, water and salt to mimic the experimental condition. Step 3 consists of numerical integration of Newton’s equations of motion defined by the positions, forces and velocities of every atom in the simulation box. These equations are solved using the high performance computing facility. Steps 4, 5 and 6 involve the analysis and molecular interpretation of the terabytes of data produced by the simulation of the peptides leading to characterisation of their structural features.

Dr Neha S. Gandhi
Affiliation, Country: School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 Gardens Point, Brisbane, Australia
Phone: +61 7 3138 7394 Fax: +61 7 3138 2310 E-mail: Neha.Gandhi@qut.edu.au
Personal History:
2016 – to date QUT Vice-Chancellor’s Research Fellow
2012–2016 Early Career Research Fellow (Curtin University & Virginia Commonwealth University)
2006–2012 Higher Degree by Research Scholar, Curtin University (M.Phil., Ph.D.)
2003–2006 Department in-charge, Bioinformatics, Zydus Research Centre, Ahmedabad
Research interests: Molecular modelling, Protein folding, Protein-ligand/carbohydrate interactions
The Australian National Fabrication facility was established by the Australian Government to provide access to the most advanced micro and nanofabrication tools to the Australian research community. Across our 8 nodes we provide support for projects that span every aspect of Australian research efforts, from food and agriculture through to astronomy and archaeology. This talk is a brief introduction to the capabilities that you can find here in Queensland and some examples of the diverse and exciting research that we facilitate.

Dr Jane Fitzpatrick is the Facility Manager of ANFF-Q. Jane has a background in biotechnology where she worked in industry and academia, including a 3 year spell with an innovative biotech start-up company. She brings experience in business development and operations management from her previous roles and has a wealth of experience of the ANFF organisation through her involvement since 2010. She also has a focus on the development and support of the female members of our industry to ensure that the talent that we nurture is fully realised. As with all our staff, she is dedicated to the principles of open access, centralised facilities that support Australian researchers to achieve on a global scale.
Poster presentations

- Sustaining the earth for 2100
- A head start on ageing and mental health
- The new frontier: technical and interdisciplinary advances
- Fighting disease and managing healthcare

P-1 Antibiotic treatment at delivery shapes the initial oral microbiome in neonates

L.F Gomez-Arango1,2, H. Barret1,2, H.D. McIntyre1, L.K. Callaway1,2, M. Morrison3, M. Dekker Nitert1,2
1School of Medicine,
2UQCCR and
3Diamantina Institute, The University of Queensland. St Lucia QLD Australia

P-02 Copper in bacterial physiology and pathogenesis

Karrera Djoko1,2, Maria Goytia3, Maud Achard1,2, Kate Peters1,2, Brett Paterson4, Paul Donnelly6,
Mark Walker1,2, William Shafer3, Mark Schembri1,2, Alastair McEwan1,2
1School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
2Australian Centre for Infectious Diseases Research, The University of Queensland, St Lucia, QLD, Australia
3Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
4School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia

P-03 Hardening up: metal composition in aculeate ovipositors

Kate Baumann
School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia

P-04 Investigating Plasmodium falciparum histone deacetylase 1 complex proteins

Jessica Engel1, Madeleine Headlam2, Tina Skinner-Adams1, Jeffrey Gorman2 and Kathy Andrews1
1Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
2QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
P-05 Ureaplasma spp. multiple banded antigen (MBA) size variation is associated with altered immune responses in vivo and in vitro

Emma L Sweeney1, Suhas G. Kallapur2, Tate Gisslen2, Simone Meawad1, Donna S. Lambers3, Sally-Anne Stephenson1, Alan H. Jobe2 and Christine L. Knox1
1Queensland University of Technology (QUT), Brisbane, Australia
2Cincinnati Children’s Hospital Medical Centre, Cincinnati OH, USA.
3TriHealth, Good Samaritan Hospital, Cincinnati OH, USA.

P-06 Identifying cellular and molecular events leading to agenesis of the corpus callosum during brain development

Ilan Gobius1, Laura Morcom1, Rodrigo Suárez1, Jens Bunt1, Polina Bukshpun3, Willie Reardon4, William B. Dobyns5,6, John L.R. Rubenstein7, A. James Barkovich8, Elliott H. Sherr3 & Linda J. Richards1,2
1Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.
2The School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia.
3Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
4National Centre for Medical Genetics, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland.
5Center for Integrative Brain Research, Seattle Children’s Research Institute,
6Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.
7Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, USA.
8Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.

P-07 Melt-electrospun polycaprolactone-strontium-substituted bioactive glass for bone regeneration

Jiongyu (Edward) Ren1, Molly M. Stevens1, Roland Steck2, Keith A. Blackwood1, Maria A. Woodruff3
1Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
2The Medical Engineering Research Facility, Queensland University of Technology, Australia
3Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom

P-08 Toward destabilizing multidrug resistant plasmids in E. coli

Minh Duy Phan1, Brian M. Forde1, Kate M. Peters1, Sohinee Sarkar1, Steven Hancock1, Mitchell Stanton-Cook1, Nouri L. Ben Zakour1, Mathew Upton2, Scott A. Beatson1, Mark A. Schembri1
1Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
2Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
P-09 Genetic network of non syndromic intellectual disability

S Lee¹, S Rudd², J Gratten³, P. M. Visscher³, J B. Prins¹ and P A. Dawson¹

¹Mater Research Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
²QFAB Bioinformatics, Queensland Bioscience Precinct, The University of Queensland, Brisbane, 4072, Australia
³Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia

P-10 How sunflower makes a ring from a string

Franke B.¹, James A.², Mobli M.³, Colgrave M. L.⁴, Mylne J. S.², Rosengren K. J.¹

¹The University of Queensland, School of Biomedical Sciences, St Lucia, QLD 4072, Australia
²The University of Western Australia, School of Chemistry and Biochemistry, Crawley, WA 6009, Australia
³The University of Queensland, Centre for Advanced Imaging, St Lucia, QLD 4072, Australia
⁴CSIRO Agriculture, St Lucia, QLD 4067, Australia

P-11 Characterising visually responsive ensembles in the zebrafish tectum

Andrew W. Thompson⁵ & Ethan K. Scott¹

¹School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072

P-12 Molecular regulation of adult neural stem cells

Oressia Zalucki¹,²*, Lachlan Harris¹*, Richard Gronostajski³ and Michael Piper¹,²

¹The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
²Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia.
³Department of Biochemistry, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
*equal contribution

P-13 An integrated molecular analysis of invasive lobular carcinoma

Samir Lal¹, Amy McCart Reed¹, Katia Nones², Leesa Wockner², Jodi Saunus¹, Sarah Song¹, Nic Waddell², Sunil Lakhani¹,²,³, Peter T Simpson¹.

¹The University of Queensland
²QIMR Berghofer Medical Research Institute
³Pathology Queensland, Brisbane, Australia

P-14 The endopeptidase PepO is essential for the pathogenesis of the global M1T1 clone of Streptococcus pyogenes

School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
P-15 Suppression of the pelo protein by Wolbachia and its effect on dengue virus in Aedes aegypti

Sultan Asad¹, Mazhar Hussain¹, Guangmei Zhang¹, Daniel Watterson² and Sassan Asgari¹
¹Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Australia
²School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia

P-16 Fine-tuning erythropoiesis by competition between Krüppel-like factors for promoters and enhancers

Melissa Ilsley¹, Kevin Gillinder¹, Graham Magor¹, Merlin Crossley³ and Andrew Perkins¹,²
¹Mater Research, Translational Research Institute, University of Queensland
²The Princess Alexandra Hospital, Brisbane, Australia
³University of New South Wales, Sydney, Australia

P-17 Optimisation of multicomponent systems for the targeted delivery of oligonucleotide therapeutics

Peter M Moyle¹, Yu Wan¹,², Anjuman A Begum¹,², Khairul A Kamaruzaman¹,², Wei Dai¹,², Istvan Toth¹,²,³
¹School of Pharmacy, the University of Queensland, Woolloongabba 4102, QLD
²School of Chemistry and Molecular Biosciences, the University of Queensland, St Lucia 4072, QLD
³Institute for Molecular Bioscience, the University of Queensland, St Lucia 4072, QLD

P-18 Engineering Escherichia coli for the production of propionic acid

Axayacatl Gonzalez, Timothy McCubbin, Lars Nielsen, Esteban Marcellin
Australian Institute for Bioengineering and Nanotechnology. Building 75, Cnr Cooper and College Rds.
The University of Queensland. St. Lucia, Queensland, 4072. Australia

P-19 Development novel tissue targeted nerve growth factor: fibronectin chimeric fusion proteins for stimulation of peripheral nerve regeneration

Tippana, M¹, Upton, Z¹, Walsh, T¹, Van Lonkhuyzen, D¹
¹Injury Prevention and Trauma Management Theme, Institute of Health & Biomedical Innovation,
Faculty of Health, Queensland University of Technology, Brisbane, QLD

P-20 In vivo activity of clinically approved anti-cancer HDAC inhibitors in a murine model of malaria

MJ Chua¹, Jessica A Engel¹, David P. Fairlie², Tina Skinner–Adams¹, Katherine T. Andrews¹
¹Eskitis Institute for Drug Discovery, Griffith University, Qld 4111, Australia
²Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
P-21 Zoonotic agent lurking in the environment: *C. psittaci* infection impacts on animal and public health in Australia

Martina Jelocnik¹, James Branley², Adam Polkinghorne¹

¹Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, QLD
²Microbiology and Infectious disease department, Nepean Hospital, Penrith, NSW

P-22 Genetic risk for schizophrenia is associated with where you live

Lucia Colodro-Conde¹, Baptiste Couvy-Duchesne¹,², Gu Zhu¹, Andreas Meyer-Lindenberg³, Marcella Rietschel¹, Sarah E. Medland¹, John Whitfield¹, Nicholas G. Martin¹

¹QIMR Berghofer Medical Research Institute, Brisbane, Australia
²The University of Queensland, Brisbane, Australia
³Central Institute of Mental Health, Mannheim, Germany

P-23 Why do the axons cross the brain? To get to the other side!

Laura R. Fenlon
Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia

P-24 Zinc against group A *Streptococcus*

Lisa Bohlmann¹, Cheryl-lynn Y. Ong¹, Amelia T. Soderholm¹, Timothy C. Barnett¹, Ibrahim M. El-Deeb², Mark von Itzstein², Alastair G. McEwan¹, Mark J. Walker¹

¹School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
²Institute for Glycomics, Griffith University, Gold Coast

P-25 Functional hypomorphic ATM variant effects DNA damage response and repair pathways

Caroline Atkinson¹, Martina Proctor¹, Catherine Lanagan¹, Aideen McInerney-Leo², Emma Duncan², Stephen Ainger¹, Rick Sturm³, Brian Gabrielli¹

¹Mater Research Institute 2Queensland University of Technology
²University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.

P-26 Wnt signalling regulates the cytokine response to the natural killer T cell antigen, α-galactosylceramide

Jessica Kling
The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane 4102, QLD, Australia
P-27 Molecular cloning designer simulator (MCDS)
Zhenyu Shi
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia

P-28 Elucidating neuropathologies with the help of human induced pluripotent stem cells
Voss (formerly Endes) C, Balachandran A, Ovchinnikov D, Wolvetang E
Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Bldg. 75, Corner of Cooper and College Roads, St. Lucia, 4072 QLD Australia

P-29 The assassin bug Pristhesancus plagipennis produces two distinct venoms
Andrew A. Walker1, Volker Herzig1, Jiayi Jin1, Bryan G. Fry2, Glenn F. King1
1Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
2School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.

P-30 Use of genome–wide association studies and polygenic scores to examine the genetics of ADHD
Katrina L. Grasby1, Lucia Colodro-Conde1, Baptiste Couvy-Duchesne1,2, Sarah E. Medland1
1QIMR Berghofer Medical Research Institute, Brisbane, Australia
2The University of Queensland, Brisbane, Australia

P-31 Using light-activated channel rhodopsin to study neuronal networks involved in sensory input
David A. Carter1,2, Angelina Y. Foong1, Andrew M. Allen1, Stuart J. McDougall3
1The University of Melbourne, Parkville. VIC
2Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
3Florey Institute of Neuroscience and Mental Health, Parkville. VIC

P-32 Examining a novel visual task for identifying individuals at increased risk of developing mental illness
Trung T. Ngo1, Phillip C. F. Law2, Sharon R. Foley1 and Carina Capra3,4
1Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Herston QLD
2Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne VIC
3Early Psychosis Team, Psychology Academic Clinical Unit, Metro South Addiction & Mental Health Services, QLD
4Consultation–Liaison Youth Psychiatry, Rehabilitation Academic Clinical Unit, Metro South Addiction & Mental Health Services, Woolloongabba QLD 4102; and UQ Centre for Clinical Research, Herston QLD
P-33 Virulence determinants in West Nile virus

Yin Xiang Setoh, Roy Hall and Alexander Khromykh
Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland

P-34 Profiling at the single-cell level reveals evidence for antigen-driven oligoclonal expansion within the TCR repertoire of citrullinated vimentin-specific CD4⁺ T cells in peripheral blood of Rheumatoid Arthritis (RA) patients

SC.Law¹, HJ.Nel¹, J.Rossjohn²⁴, HH.Reid², NL.La Gruta³, R.Thomas¹
¹The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
²Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
³Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
⁴Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.

P-35 Lifestyle factors among Vietnamese women after breast and/or gynecological cancer

Thi Hoa Huyen Nguyen¹², Patsy Yates¹, Charlotte Seib¹³, Debra Anderson³
¹Queensland University of Technology
²Hanoi Medical College
³Griffith University

P-36 Hypercholesterolemia is a danger signal of increasing risk for osteoarthritis

Saba Farnaghi¹, Indira Prasadam¹, Ross Crawford¹, ², Yin Xiao¹
¹Bone and Cartilage Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, QLD 4059, Australia
²Orthopedic department, Prince Charles Hospital, Brisbane, Australia

P-37 Efficiency of UV-induced DNA damage repair in normal skin melanocytes, genotypic variants associated with melanoma and dysplastic naevi

Winnie Fernando¹, Catherine Lanagan¹, Stephen Ainger², Rick Sturm², Brian Gabrielli¹
¹Smiling for Smiddy Cancer Cell Cycle Group, Mater Research Institute – The University of Queensland
²Dermatolgy Research Centre, School of Medicine, The University of Queensland
P-38 The role of EphA3 in leukemia stem cell renewal

Jessica Lisle, Adriana Pliego Zamora & Christopher Slape
University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia

P-39 Parasite-origin Kunitz type protease inhibitor with anti-cancer properties

Shiwanthi Ranasinghe
QIMR Berghoff Medical Research Institute

P-40 The development of a genetic tool for detecting the malaria parasite in mosquito populations

Caitlin Curtis
School of Biological Sciences, The University of Queensland, Brisbane, Australia

P-41 Enrichment of SNPs in functional categories reveals genes affecting complex traits

Huiying Zhao
Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia

P-42 A blueprint for building the Nicotiana benthamiana genome biology

Hyungtaek Jung1, Julia Bally1,2, Matthew Hodgett3, Kenlee Nakasugi2, Ross Crowhurst4, Craig Wood5, Roger Hellens1,4, Peter Waterhouse1,2
1The Centre for Tropical Crops and Bioeconomics, Queensland University of Technology, Brisbane, Australia
2School of Biological Sciences, University of Sydney, Sydney, Australia
3Information Technology Services, Queensland University of Technology, Brisbane, Australia
4Mount Albert Research Centre, Plant & Food Research, Auckland, New Zealand
5CSIRO Agriculture, Canberra, ACT, Australia

P-43 The University of Queensland Library

Elena Danilova
The University of Queensland, St Lucia 4072, Queensland, Australia
Participants contact details

Institutes:
GU–ESKITIS: Griffith University – Eskitis Institute
QIMR: QIMR Berghofer Medical Research Institute
QUT–Health: QUT – Faculty of Health
QUT–Faculty of Health
QUT–IHBI: QUT – The Institute of Health and Biomedical Innovation
QUT–IFE: QUT – Institute for Future Environments
QUT–Chem: QUT – School of Chemistry
QUT–PME: QUT – Physics and Mechanical Engineering
TRI: Translational Research Institute
MRI–UQ: UQ – Mater Research Institute
UQ–AIBN: UQ – Australian Institute for Bioengineering and Nanotechnology
UQ–CAI: UQ – Centre for Advanced Imaging
UQCCR: UQ – Centre for Clinical Research
UQDI: UQ – Diamantina Institute
UQ–IMB: UQ – Institute for Molecular Bioscience
UQ–QBI: UQ – Queensland Brain Institute
UQ–SBMS: UQ – School of Biomedical Sciences
UQ–SCMB: UQ – School of Chemistry & Molecular Biosciences

ABRAHAM, Nikita, UQ–IMB, n.abraham@uq.edu.au
ADDALA, Venkateswar, venkateswar.Addala@qimrberghofer.edu.au
AGWA, Akello, UQ–IMB, joanna.agwa@uqconnect.edu.au
AKISON, Lisa, UQ–SBMS, l.akison@uq.edu.au
AKTER, Jasmin, QIMR, jasmin.Akter@qimrberghofer.edu.au
ALABBAS, Saleh, TRI, s.alabbas@uq.edu.au
ALAM, Mobashwer, m.alam@uq.edu.au
ALGHAMDI, Ahmad Joman, UQ–CAI, ahmad.alghamdi@uqconnect.edu.au
AMBROSE, Luke, l.ambrose@uq.edu.au
AMIRSHAHI, Ash, QUT–IHBI, ash.amirshahi@qut.edu.au
AMOR, Rumelo, UQ–QBI, r.amor@uq.edu.au
ANDREA MARTINEZ, Paula, orchidoo@gmail.com
ARMITAGE, Charles, QUT–IHBI, charles.armitage@qut.edu.au
ASAD, Sultan, s.asad@uq.edu.au
ATKINSON, Caroline, TRI, caroline.atkinson@mater.uq.edu.au
AUTUORI, Eleonora, UQ–QBI, e.autuori@uq.edu.au
BALLILY, Benjamin, b.ballil@griffith.edu.au
BAKER, Ben, TRI, bbaker@vaxxas.com
BALACHANDRAN, Anu, UQ–AIBN, a.balachandran@uqconnect.edu.au
BARTON, Matthew, GU–ESKITIS, m.barton@griffith.edu.au
BAUMANN, Kate, kate.baumann@uqconnect.edu.au
BAZ, Betoul, UQCCR, betoulbaz@hotmail.com
BERGOT, Anne–Sophie, TRI, a.bergot@uq.edu.au
BHATIA, Maneet, GU–ESKITIS, Maneet.Bhatia@griffithuni.edu.au
BOHLMANN, Lisa, UQ–SCMB, l.bohlmann@uq.edu.au
BOKS, Martine, UQDI, m.boks@uq.edu.au
BORG, Danielle, MRI–UQ, danielle.borg@mater.uq.edu.au
BOUCHER, Dave, UQ–IMB, d.boucher@imb.uq.edu.au
BOUKHEROUBA TAN, Meriem, QUT–Health, meriem.boukherouba@hdr.qut.edu.au
BRADLEY, Claire, UQ–QBI, claire.bradley@uq.edu.au
BRILLAULT, Lou, UQ–IMB, l.brillault@uq.edu.au

ABRAHAM, Nikita, UQ–IMB, n.abraham@uq.edu.au
ADDALA, Venkateswar, venkateswar.Addala@qimrberghofer.edu.au
AGWA, Akello, UQ–IMB, joanna.agwa@uqconnect.edu.au
AKISON, Lisa, UQ–SBMS, l.akison@uq.edu.au
AKTER, Jasmin, QIMR, jasmin.Akter@qimrberghofer.edu.au
ALABBAS, Saleh, TRI, s.alabbas@uq.edu.au
ALAM, Mobashwer, m.alam@uq.edu.au
ALGHAMDI, Ahmad Joman, UQ–CAI, ahmad.alghamdi@uqconnect.edu.au
AMBROSE, Luke, l.ambrose@uq.edu.au
AMIRSHAHI, Ash, QUT–IHBI, ash.amirshahi@qut.edu.au
AMOR, Rumelo, UQ–QBI, r.amor@uq.edu.au
ANDREA MARTINEZ, Paula, orchidoo@gmail.com
ARMITAGE, Charles, QUT–IHBI, charles.armitage@qut.edu.au
ASAD, Sultan, s.asad@uq.edu.au
ATKINSON, Caroline, TRI, caroline.atkinson@mater.uq.edu.au
AUTUORI, Eleonora, UQ–QBI, e.autuori@uq.edu.au
BALLILY, Benjamin, b.ballil@griffith.edu.au
BAKER, Ben, TRI, bbaker@vaxxas.com
BALACHANDRAN, Anu, UQ–AIBN, a.balachandran@uqconnect.edu.au
BARTON, Matthew, GU–ESKITIS, m.barton@griffith.edu.au
BAUMANN, Kate, kate.baumann@uqconnect.edu.au
BAZ, Betoul, UQCCR, betoulbaz@hotmail.com
BERGOT, Anne–Sophie, TRI, a.bergot@uq.edu.au
BROUG, Danielle, MRI–UQ, danielle.borg@mater.uq.edu.au
BOUCHER, Dave, UQ–IMB, d.boucher@imb.uq.edu.au
BOUKHEROUBA TAN, Meriem, QUT–Health, meriem.boukherouba@hdr.qut.edu.au
BRADLEY, Claire, UQ–QBI, claire.bradley@uq.edu.au
BRILLAULT, Lou, UQ–IMB, l.brillault@uq.edu.au
Participants

BROUWER, Stephan, UQ-SCMB, s.brouwer@uq.edu.au
BURNS, Jed, UQ-SCMB, jed.burns@uqconnect.edu.au
BYRIEL, Karl, UQ-IMB, k.byriel@uq.edu.au
CACERES, Herman, h.caceres@uq.edu.au
CAO, Minh, UQ-IMB, m.cao01@uq.edu.au
CARDOSO, Fernanda, UQ-IMB, f.caldascardoso@uq.edu.au
CARREIRA, Patricia, MRI-UQ, patricia.carreira@mater.uq.edu.au
CARTER, David A., UQ-QBI, d.carter@uq.edu.au
CHABIKWA, Tinashe, UQ-SCMB, tinashe.chabikwa@uqconnect.edu.au
CHACKO, Anu, a.chacko@griffith.edu.au
CHAND, Vincent, QUT-IFE, v.chand@qut.edu.au
CHANG, Crystal, UQDI, c.chang5@uq.edu.au
CHASSAGNON, Irene, UQ-IMB, irene.chassagnon@imb.uq.edu.au
CHENG LAW, Soi, UQDI, s.law1@uq.edu.au
CHHABRA, Yash, UQ-SBMS, y.chhabrat@uq.edu.au
CHIARETTI, Sara, UQDI, s.chiaretti@uq.edu.au
CHIN, Yanni, UQ-IMB, y.chin@uq.edu.au
CHRISTENSEN, Signe, UQ-IMB, S.christensen@imb.uq.edu.au
CHUA, MJ, GU-ESKITIS, mj.chua@griffithuni.edu.au
COLL, Rebecca, UQ-IMB, r.coll@imb.uq.edu.au
COLODRO CONDE, Lucia, QIMR, lucia.colodroconde@qimrberghofer.edu.au
COLVIN, Rebecca, r.colvin2@uq.edu.au
COTRIM, Camila, UQ-IMB, camilacotrimo3@gmail.com
CUI, Qingyan, UQDI, q.cui@uq.edu.au
CURTIS, Caitlin, c.curtis@uq.edu.au
DANTAS DE ARAUJO, Aline, UQ-IMB, a.dantasdearaujo@imb.uq.edu.au
DAVIES, Julie, TRI, MRI-UQ, julie.davies@mater.uq.edu.au
DE BUSSEROLLES, Fanny, UQ-QBI, f.debuesserolles@uq.edu.au
DE SOUZA, Maria–Anna, QIMR, marge.dsouza@gmail.com
DEBONO, Jordan, jordan_debono@hotmail.com
DEKKER NITERT, Marloes, UQ-SCMB, m.dekker@uq.edu.au
DIRR, Larissa, l.durr@griffith.edu.au
DJIKO, Karrera, UQ-SCMB, k.djiko@uq.edu.au
DUTT, Mriga, UQ-IMB, m.dutt@uq.edu.au
DUTTON–REGESTER, Ken, QIMR, ken.dutton–regester@qimrberghofer.edu.au
EDWARDS, Ingrid, UQ-IMB, i.edwards@uq.edu.au
EFTEKHARI, Ehsan, e.eftekhari@griffith.edu.au
ENDES, Carola, UQ-AIBN, c.endes@uq.edu.au
ENGEL, Jessica, GU-ESKITIS, jessica.engel@griffithuni.edu.au
ER, Sing Yan, UQ-IMB, singyan.er@uqconnect.edu.au
FABILLO, Melody, m.fabillo@qut.edu.au
FARNAGHI, Saba, MRI-UQ, saba.farnaghi@mater.uq.edu.au
FENLON, Laura, UQ-QBI, laurarosefenlon@gmail.com
FERNANDO, Winnie, TRI, winnie.fernando@uq.edu.au
FIETH, Rebecca, UQ-IMB, rebecca.fieth@uqconnect.edu.au
FITZSIMMONS, Rebecca, UQ-IMB, r.fitzsimmons@uq.edu.au
FORDE, Brian, UQ-SCMB, b.forde@uq.edu.au
FOTHERINGHAM, Amelia, MRI-UQ, amelia.fotheringham@mater.uq.edu.au
FRANKE, Bastian, UQ-SBMS, bastian.franke@uq.net.au
FROESIG–JOERGENSEN, Majbrit, UQ–IMB, m.froesig@imb.uq.edu.au
FURDA, Andrei, andrei.furda@qut.edu.au
FURLONG, Emily, UQ–IMB, e.furlong@uq.edu.au
GANDHI, Neha S., QUT–IHBI, Neha.Gandhi@qut.edu.au
GAVINI, Venkatesh, v.gavini@uq.edu.au
GAYLARD, Elouise, GU–ESKITIS, e.gaylard@griffith.edu.au
GE, Gordon, UQ–SBMS, dengyun.ge@uqconnect.edu.au
GENG, Xinyan, QUT–IHBI, xinyan.geng@hdr.qut.edu.au
GILES, John R, gilesjohnr@gmail.com
GILLARD, Marianne, UQ–AIBN, m.gillard1@uq.edu.au
GILLINDER, Kevin R., MRI–UQ, kevin.gillinder@mater.uq.edu.au
GOBIUS, Ilan, UQ–QBI, i.gobius@uq.edu.au
GOMEZ–ARANGO, Luisa, UQCCR, luisa.gomezarango@uq.net.au
GONCALVES M., Daniela, UQ–SBMS, d.gm@uq.edu.au
GONZALEZ, Axayacatl, UQ–AIBN, r.gonzalezgarcia@uq.edu.au
GRASBY, Katrina, QIMR, katrina.grasby@qimrberghofer.edu.au
GRICE, Laura, l.grice@uq.edu.au
GUILLON, Patrice, p.guillon@griffith.edu.au
GUO, Shanshan, QIMR, Shanshan.Guo@QIMRBerghofer.edu.au
HARRINGTON, Brittney, TRI, brittney.harrington@mater.uq.edu.au
HASSAN, Marwa, UQ–IMB, marwa.hussainali@uq.net.au
HELLENS, Roger, QUT–IFE, QUT–Chemistry, roger.hellens@qut.edu.au
HENNINGHAM, Anna, a.henningham@uq.edu.au
HILL, James, UQ–IMB, james.hill3@uq.net.au
HU, Sunny, QUT–IFE, sunny.hu@qut.edu.au
HUANG, Johnny, UQ–IMB, j.huang2@uq.edu.au
ILSLEY, Melissa, TRI, melissa.ilsley@mater.uq.edu.au
ISLAM, Md Ashraful, mdashraful.islam@uq.edu.au
IYER, Abishek, UQ–IMB, a.iyer@imb.uq.edu.au
JELOCNIK, Martina, martina.jelocnik@research.usc.edu.au
JIN, Lian, QIMR, lian.jin@qimr.edu.au
JOENSUU, Merja, UQ–QBI, m.joensuu@uq.edu.au
JUNG, Hyungtaek, h7.jung@qut.edu.au
KAEMMERER, Elke, GU–ESKITIS, e.kaemmerer@griffith.edu.au
KALITA–DE CROFT, Priyakshi, QIMR, UQCCR, p.kalita@uq.edu.au
KAPETANOVIC, Ronan, UQ–IMB, r.kapetanovic@uq.edu.au
KELVIN TUONG, Zewen, TRI, z.tuong@uq.edu.au
KESHVARI, Sahar, MRI–UQ, s.keshvari@uq.edu.au
KHAN, Shanchita, QIMR, QUT–Health, Shanchita.Khan@qimrberghofer.edu.au
KHAN, Nemat, UQCCR, n.khan2@uq.edu.au
KHAUTUN, Farjana, UQ–SCMB, f.khatun@uq.edu.au
KIM, Catherine, UQ–SBMS, c.kim@uq.edu.au
KINDLOVA, Michaela, TRI, michaelakindlova84@gmail.com
KING, Gordon, UQ–IMB, g.king@imb.uq.edu.au
KIRSZENBLAT, Leonie, UQ–QBI, l.kirszenblat@uq.edu.au
KLING, Jessica, TRI, j.kling@uq.edu.au
KULASINGHE, Arutha, QUT–IHBI, arutha.kulasinghe@qut.edu.au
KULIS, Christina, UQ–IMB, c.kulis@imb.uq.edu.au
KUMMARI, Lalith, UQ–SCMB, l.kummari@imb.uq.edu.au
KUO, Andy, UQCCR, a.kuo1@uq.edu.au
LAL, Samir, s.lal@uq.edu.au
LANOUE, Vanessa, UQ–QBI, v.lanoue@uq.edu.au
LAWRENCE, Felicity, QUT–IFE, f.lawrence@qut.edu.au
Participants

LE TEXIER, Laetitia, QIMR, Laetitia.LeTexier@qimrberghofer.edu.au
LEE, Soohyun, MRI–UQ, soohyun.lee@mater.uq.edu.au
LEE, Thomas, UQ–SCMB, thomas.lee@uq.edu.au
LEE, Karen, karen.lee@qut.edu.au
LEESON, Hannah, GU–ESKITIS, hannah.leeson@griffithuni.edu.au
LÉVY–BENCHETON, Delphine, UQ–QBI, d.levybencheton@uq.edu.au
LI, Jun, QIMR, junjun.li@qimrberghofer.edu.au
LI, Zhixiu, QUT–Health, zhixiu.li@qut.edu.au
LI, Zhixiu, QUT–IHBI, TRI, zhixiu.li@qut.edu.au
LI, Li, UQ–AIBN, l.li2@uq.edu.au
LISLE, Jessica, TRI, j.lisle@uq.edu.au
LIVINGSTONE, Emma, UQ–IMB, e.livingstone@uq.edu.au
LOH, Ken, UQ–IMB, z.loh1@uq.edu.au
LOMBARD, Fanny J, GU–ESKITIS, f.lombard@griffith.edu.au
LOO, Dorothy, TRI, d.loo@uq.edu.au
LOVITT, Carrie, GU–ESKITIS, carrie lovitt@griffith.edu.au
LU, Yan, QIMR, yan.lu@qimr.edu.au
LU, Jennifer, UQ–AIBN, jennifer.lu@uqconnect.edu.au
LUAN, Wei, UQ–QBI, w.luan@uq.edu.au
LUCANTONI, Leonardo, GU–ESKITIS, l.lucantoni@griffith.edu.au
LUO, Lin, UQ–IMB, uqluo1@uq.edu.au
MA, Linlin, UQ–IMB, linlin.ma@imb.uq.edu.au
MAK, Jeffrey, UQ–IMB, j.mak@uq.edu.au
MANICKAVASAGAM, Bhanu, UQ–IMB, b.manickavasagam@uq.edu.au
MARSHALL, David, QUT–IFE, d20.marshall@qut.edu.au
MARTINEZ, Veronica, UQ–AIBN, v.salazar@uq.edu.au
MARTINS, Paulo, QIMR, paulo.martins@qimrberghofer.edu.au
MCCUBBIN, Tim, UQ–AIBN, timothy.mccubbin@uqconnect.edu.au
MELINO, Michelle, QIMR, Michelle.Melino@qimrberghofer.edu.au
MINA VARGAS, Angela, QIMR, Angela.MinaVargas@qimrberghofer.edu.au
MIRANDA, Mariska, QIMR, mariska.miranda@qimrberghofer.edu.au
MONTEROSSO, Melissa, QUT–Health, QUT–IHBI, monterosso@uq.edu.au
MONTES DE OCA, Marcela, QIMR, marcela.montesdeoca@qimrberghofer.edu.au
MORADI, Shayli, UQ–IMB, s.varastehmoradi@uq.edu.au
MORADI MARJANEH, Mahdi, QIMR, Mahdi.Moradi@qimrberghofer.edu.au
MOYLE, Peter, p.moyle@uq.edu.au
NAG, Purba, QIMR, purba.nag@qimrberghofer.edu.au
NAIM, Fatima, QUT–IFE, fatima.naim@qut.edu.au
NALKURTHI, Christina, QIMR, UQ–SMBS, christina.nalkurthi@qimrberghofer.edu.au
NAVONE, Laura, QUT–IFE, laura.navone@qut.edu.au
NEALE, Ruth, UQ–IMB, r.neale1@uq.edu.au
NG, Hwee–Ing, TRI, h.ng2@uq.edu.au
NGO, Trung, QIMR, Trung.Ngo@uq.edu.au
NGUYEN, Thi Hoa Huyen, QUT–Health, thihoahuyen.nguyen@hdr.qut.edu.au
NGUYEN, Nga, UQ–IMB, nguyennaly@rocketmail.com
NIRMAL, Nilesh, n.nirim@uq.edu.au
NOSKE, Katharina, UQDI, k.noske@uq.edu.au
NOUWENS, Amanda, UQ–SCMB, a.nouwens@uq.edu.au
ONG, Cheryl–lynn, UQ–SCMB, y.ong@uq.edu.au
OO, Zay, MRI–UQ, z.oo@uq.edu.au
ORELLANA, Camila, UQ–AIBN, c.orellana@uq.edu.au
Participants

PALRAJ, Kalimuthu, UQ-SCMB, p.kalimuthu@uq.edu.au
PELOSI, Emanuele, UQ-IMB, emanuele.pelosi@gmail.com
PENG, Nias, UQ-SCMB, y.g.peng@uq.net.au
PERRY, Samuel, UQ-IMB, s.perry@imb.uq.edu.au
PHAN, Minh, UQ-SCMB, m.phan1@uq.edu.au
PHAN, Tri, QUT-IHBI, phanminhtri1001@gmail.com
PIPER, Sarah, UQ-IMB, UQ-SCMB, sarah.piper@uq.edu.au
PRASADAM, Indira, QUT-IHBI, i.prasadam@qut.edu.au
PREMARATHNE, Susitha, GU-ESKITIS, susitha.premarathne@griffithuni.edu.au
PROW, Natalie, QIMR, Natalie.Prow@qimrberghofer.edu.au
QIAN, Lei, UQ-QBI, l.qian@uq.edu.au
RAMNATH, Divya, UQ-IMB, d.ramnath@imb.uq.edu.au
RANASINGHE, Shiwanthi, QIMR, shiwanthi.ranasinghe@qimr.edu.au
RAYMOND, Emma, eraymond@wesleyresearch.com.au
REHAUME, Linda, TRI, l.rehaume@uq.edu.au
REN, Jiongyu, QUT-IHBI, edward.ren@qut.edu.au
RIVERA HERNANDEZ, Tania, UQ-SCMB, t.riverahernandez@uq.edu.au
ROBB, Renee, QIMR, reene.robb@qimrberghofer.edu.au
SAIF, Zarqa, MRI-UQ, zarqa.saif@mater.uq.edu.au
SALLA, Manohar, UQ-IMB, m.salla@imb.uq.edu.au
SANTANA, Renan, renancassant@gmail.com
SAY, Tahsha, tahsha.say@uqconnect.edu.au
SCHAUER, Stephanie, MRI-UQ, s.n.schauer@gmail.com
SCHWABER, Jessica, UQ-AIBN, j.schwaber@uq.edu.au
SETOH, Yin, UQ-SCMB, y.setoh@uq.edu.au
SHENG, Yong Hua, MRI-UQ, yong.sheng@mater.uq.edu.au
SHI, Zhenyu, UQ-AIBN, errisy@gmail.com
SHORT, Kirsty, UQ-SBMS, k.short@uq.edu.au
SIDDHIHALU, Himaya, UQ-IMB, h.siddhihalu@imb.uq.edu.au
SIMPSON, Moana, GU-ESKITIS, M.Simpson@griffith.edu.au
SINHA, Debottam, QIMR, debottam.sinha@qimrberghofer.edu.au
SKALAMERA, Dubravka, MRI-UQ, d.skalamera@uq.edu.au
SMITH, Jennifer, UQ-IMB, jennifer.smith@imb.uq.edu.au
SONKUSARE, Saurabh, QIMR, Saurabh.Sonkusare@qimrberghofer.edu.au
SOUSA, Silmara, UQ-IMB, s.desousa@imb.uq.edu.au
SPENCER, Peter, QUT-Chemistry, QUT-PME, p.spencer@hdr.qut.edu.au
STEELE, Megan, QUT-Health, meagan.steele@qut.edu.au
STEVENSON, Alex, TRI, MRI-UQ, a.stevenson1@uq.edu.au
SÚAREZ, Rodrigo, UQ-QBI, rsuarezsaa@gmail.com
SUDHEESH KUMAR, Anitha, UQ-SCMB, a.sudheeshkumar@uq.edu.au
SWEENEY, Emma, QUT-Health, el.sweeney@qut.edu.au
TA, Hang, UQ-AIBN, h.ta@uq.edu.au
TAHMASBI, Reza, reza.tahmasbi@gmail.com
TAN, Ashley, QUT-IFE, hweiting.tan@qut.edu.au
TAO, Yongfu, y.tao1@uq.edu.au
TARIQUE, Abdullah, a.tarique@uq.edu.au
TAVARES, Rafael, rafael@lgf.ib.unicamp.br
TELLO VELASQUEZ, Johana, GU-ESKITIS, j.tellovelasquez@griffith.edu.au
THAKRE, Prajwal P., UQ-SBMS, prajwal.thakre@uqconnect.edu.au
THOMPSON, Andrew, UQ-SBMS, a.thompson4@uq.edu.au
TIPPANA, Raju, QUT-Health, m.tippana@qut.edu.au
Participants

TODOROVIC, Mike, GU–ESKITIS, m.todorovic@griffith.edu.au
TSE, Brian, brian.tse@tri.edu.au
TSENG, Hsu–Wen, MRI–UQ, hsu–wen.tseng@mater.uq.edu.au
UDDIN, Jasim, m.uddin2@uq.edu.au
UPTON, Kyle, UQ–SCMB, k.upton@uq.edu.au
VENEGAS, Ruben, r.venegas@uq.edu.au
VIAL, Marie–Laure, GU–ESKITIS, marie–laure.vial@griffithuni.edu.au
VINKHUYZEN, Anna, UQ–IMB, anna.vinkhuyzen@uq.edu.au
VITAK, Nazarii, UQ–SCMB, n.vitak@uq.edu.au
VOSS (FORMERLY ENDES), Carola, UQ–AIBN, c.endes@uq.edu.au
WALKER, Andrew, UQ–IMB, a.walker@uq.edu.au
WANG, Hui, QUT–Health, QUT–IHBI, h86.wang@qut.edu.au
WILLE, Marie–Luise, QUT–IHBI, m.wille@qut.edu.au
WOLF, Juliane, UQ–IMB, j.wolf@imb.uq.edu.au
WU, Andy, MRI–UQ, andy.wu@mater.uq.edu.au
YANG, Zhe, UQ–IMB, uqzyang3@uq.edu.au
YANG, Jieru, UQ–SCMB, j.r.yang@foxmail.com
YARNOLD, Jennifer, UQ–IMB, j.yarnold@uq.edu.au
YONG, Ken, w.yong1@uq.edu.au
ZACCHI, Lucia F, UQ–SCMB, l.zacchi@uq.edu.au
ZALUCKI, Oressia, UQ–QBI, o.zalucki1@uq.edu.au
ZAMOSHNIKOVA, Alina, UQ–IMB, a.zamoshnikova@uq.edu.au
ZARDO, Pauline, QUT–IHBI, pauline.zardo@qut.edu.au
ZHAO, Huiying, QUT–IHBI, huiying.zhy@gmail.com
ZIAEI, Maryam, UQ–CAI, maryam.ziaei@cai.uq.edu.au
ZULFIQAR, Bilal, GU–ESKITIS, bilal.zulfiqar@griffithuni.edu.au