Frailty and Chronic Kidney Disease:

A Systematic Review

Rakin Chowdhury*, Nancye M Peel ¹, Mitch Krosch¹, Ruth E Hubbard ¹

Affiliations:

¹ Centre for Research in Geriatric Medicine, The University of Queensland, Brisbane, Queensland, Australia

* Corresponding author.

rakin.chowdhury@uqconnect.edu.au

Telephone: 0061 7 3176 5330

Fax: 0061 7 3176 6945

Abstract: 235

Word Count: 2996

Figures: 1

Tables: 3
Highlights
- Frailty is prevalent in CKD patients with those on dialysis being the most frail
- Frailty is associated with an increased risk of mortality and hospitalization
- Most common method of frailty assessment in the CKD cohort is the Fried phenotype
- Reported frailty prevalence changes depending on the method of frailty assessment

Abstract

Objective: Frailty is associated with increased vulnerability to poor health. There is growing interest in understanding the association between frailty and chronic kidney disease (CKD). This systematic review explored how frailty is measured in patients with CKD and the association between frailty and adverse outcomes across different stages of renal impairment.

Study design: Systematic analysis of peer reviewed articles.

Data Sources: Pubmed, Medline, Web of Science and Cochrane were used to identify the articles.

Data synthesis: Articles published before the 17th of September 2016, that measured frailty in patients with CKD were eligible for the systematic review. Two independent researchers assessed the eligibility of the articles. Quality of the articles was assessed using the Epidemiological Appraisal Instrument.

Results: The literature search yielded 540 articles, of which 32 met the study criteria and were included in the review (n=36 076, age range: 50 – 83 years). Twenty-three (72%) studies used or adapted the Fried phenotype to measure frailty. The prevalence of frailty ranged from 7% in community-dwellers (CKD Stages 1 – 4) to 73% in a cohort of patients on haemodialysis. The incidence of frailty increased with reduced glomerular filtration rate. Frailty was associated with an increased risk of mortality and hospitalization.

Conclusion: Frailty is prevalent in patients with CKD and it is associated with an increased risk of adverse health outcomes. There are differences in the methods used to assess frailty and this hinders comparisons between studies.

Keywords: renal insufficiency, chronic; frail elderly
Introduction

Frailty describes a state of increased vulnerability to health problems. There are two acknowledged conceptualisations of the term, which have resulted in different approaches to its measurement.\(^1\)

Firstly, frailty can be thought of as a syndrome with sarcopenia as the key pathophysiological feature\(^2\): this facilitates the measurement of frailty using a specific set of signs and symptoms. This approach, developed by Linda Fried, defines five criteria that establish a phenotype for frailty: slowness, weakness, low physical activity, exhaustion and shrinkage.\(^2\)

The second approach, known as the frailty index approach, views frailty as a state of deficit accumulation that begins at the cellular level and leads to a loss of redundancy in organ systems\(^3\)\(^5\); here, frailty is quantified by counting deficits across multiple systems.

Patients who are frail, regardless of how it is measured, experience a decline in physical function and are at an increased risk of adverse health outcomes. Although there is a strong positive correlation between frailty and chronological age, patients with chronic disease also appear to be predisposed to frailty.\(^6\)

The relationship between chronic kidney disease (CKD) and frailty is not completely understood. Studies have shown that inflammation is associated with frailty in many chronic diseases and this suggests a ‘shared pathophysiology’ of frailty.\(^3\) In particular, the pro-inflammatory cytokines interleukin-6 and tumour necrosis factor alpha may have a role in age-related muscle atrophy and sarcopenia, which are key features of frailty.\(^7\) Shlipak et al\(^8\) demonstrated that there are raised levels of pro-inflammatory cytokines in CKD patients. However, further research is needed to investigate the causal relationship between inflammation and frailty specifically in patients with CKD.

A previous systematic review (studies published to 2012) explored frailty in pre-dialysis patients and showed an association between frailty and CKD.\(^9\) Here, we update and expand this evidence, by including patients on dialysis as well as in kidney transplant recipients. The aims of the systematic review were to explore how frailty is measured in patients with CKD, evaluate the relationship
between frailty and severity of kidney failure and assess whether it predicts outcomes such as mortality and hospitalization.

Method

Search strategy

The following search terms were used to identify articles that assessed frailty in patients with CKD: ‘Chronic kidney disease’ OR ‘kidney disease’ OR ‘Renal Insufficiency’ OR ‘dialysis’ OR ‘kidney failure’ OR ‘renal failure’ AND ‘frailty’.

The focus of this review was on assessment of frailty status. Thus, we did not broaden the search criteria for frailty to include geriatric or functional assessments. The literature search was conducted using online databases including Pubmed, Medline, Web of science and Cochrane libraries. The reference lists of key papers were also examined for articles of relevance.

Selection criteria

Inclusion criteria for the systematic review were primary research articles that analysed the prevalence of, or relationship between, frailty and CKD. All studies investigating frailty in dialysis, predialysis and kidney transplant recipients published before 17th September 2016 were eligible for inclusion. Articles were excluded if they were not available in the English language. Where there were articles that involved different analyses on the same study population, the article that best answered the aims of the systematic review was selected for analysis.

Data analysis

Two independent reviewers examined the abstracts for relevance to the study criteria. Where there was a difference of opinion about inclusion of the study, a third reviewer was consulted.

A data extraction table was created which included information about the demographics of the study population, the sample size, method of frailty assessment, CKD measurement and outcome variables such as mortality rates and hospitalization.
Each article in the systematic review was assessed for quality using the Epidemiological Appraisal Instrument (EAI). The EAI, developed by Genaidy and colleagues, provides a systematic appraisal of study quality across the domains of sample selection, exposures and outcomes, statistical analysis and adjustment for co-variates and confounders. Each domain was scored out of 2, and the average across the domains was expressed as the overall EAI score. The closer the score to 2 the better the article.

Due to the significant heterogeneity in the sample populations, method of frailty assessment, and CKD measurement a meta-analysis was not performed.

Results:

The literature search yielded 540 articles. Forty-eight articles met the inclusion criteria and were selected for full text review. After the full text review a further 16 studies were excluded from further analysis for the following reasons: article did not measure frailty in the study population (n=3); not available in English (n=2); did not measure frailty in a CKD population (n=3); repeated analyses on the same study population (n=8); and one article whose results were not available for the systematic review. This resulted in 32 studies that were included as part of the systematic review (Figure 1).

Overall, there were 18 studies (56%) which were designed as primary prospective analyses of frailty in CKD. The remaining 14 studies (44%) were secondary analysis of established cohorts not originally sampled for examining frailty.

Demographics of the Study Population

Fifteen studies examined frailty in pre-dialysis patients with CKD, fourteen in the dialysis population and three in patients who had received kidney transplantation. These studies examined frailty in a total of 36,076 participants with CKD (82% in pre-dialysis patients and 18% in dialysis patients). The study characteristics and population demographics are reported in Tables 1 and 2.

Critical Appraisal of Quality

The average EAI score for the studies was 1.63 (Standard deviation – 0.18). The individual scores for each article are reported in Table 1 and 2. Overall, the articles performed well in describing the aims
and defining the exposure and outcome variables. However, most articles did not publish sample size calculations, participation rates or account for subjects lost to follow up – these criteria were three lowest achieved amongst those of the EAI.

Method of Frailty Assessment

The majority of studies classified frailty using the Fried phenotype (n=23, 72%). However, there were variations in the interpretation of the five characteristics of frailty compared to the original definitions stipulated by Fried et al (Table 3).\(^2\)

Estimation of physical activity and exhaustion showed the most heterogeneity between the studies. The most common methods of physical activity assessment were estimation of kilocalories (n=9, 41%), patient self-report (n=8) and questionnaire based assessment (n=6). Exhaustion was determined most frequently by patient self-report (n=11, 48%), Short-Form 36 vitality score (n=6) and the Centre for Epidemiological Studies Depression Scale (n=5). Grip strength was the most common method of assessing weakness (n=14, 61%), whilst slowness was measured using timed gait speed (n=17, 74%). Shrinkage was estimated by measuring weight loss over 12 months (n=12, 52%).

There were seven studies (30%) that modified the Fried criteria for frailty and substituted the measurement of grip strength and gait speed for questionnaire based assessments of physical function. This method improves the feasibility of investigating frailty in large sample populations.\(^11\) However, Painter et al\(^{12}\) showed that using questionnaire based data over-estimated the reported prevalence of frailty in haemodialysis patients.

Ten studies (31%) employed a different measure to the Fried phenotype for frailty assessment. The most common of these, used in three studies, was the Clinical Frailty Scale. This is a clinical assessment of frailty developed from the Canadian Study of Health and Aging, which ranks fitness from a score of 1 (Very fit) to a score of 8 (severely frail and unlikely to recover from a minor illness) to a score of 9 (terminally ill).\(^{13}\) Other scales used include the frailty index approach, which provides a quantitative assessment of frailty as the proportion of potential deficits in health.\(^4\) This has been shown to be reproducible and be predictive of outcomes.\(^{14}\) Chao et al uses the FRAIL scale (Fatigue,
Resistance, Ambulation, Illness, Loss of weight), which is related to the criteria developed by Fried et al but adds co-morbidity (illness) to self-reported assessment of the other criteria.15 Other measures used in the studies include the Groningen Frailty Indicator, Montensanto approach, Edmonton Frail Scale and a frailty check list.16-19

Prevalence of Frailty

Frailty was prevalent in patients with CKD, particularly in those on dialysis. Amongst the pre-dialysis population the prevalence of frailty ranged from 7%, in a study of community dwellers with CKD (median estimated glomerular filtration rate (eGFR) = 49mLs/min), to 42.6% in a smaller study of patients with more severe CKD (mean eGFR = 27mLs/min).20,21 A study by Rodriguez et al22 had no patients who were frail, despite the sample population having severe CKD (mean eGFR =16). However, patients in this study were referred into the clinic for consideration for dialysis; as a consequence of this screening process, only those who were ‘fit’ were selected.22

Frailty was more prevalent amongst patients on haemodialysis with the range being from 14% to 73%.23,24 There was no statistical comparison performed of the prevalence between dialysis and pre-dialysis patients because of the differences in the methods used to assess frailty.

Glomerular Filtration Rate and Frailty

Six studies demonstrated a negative correlation between eGFR and the risk of frailty in pre-dialysis patients with CKD.20,25-29 Three of the six studies used cystatin C to estimate eGFR, two used creatinine and one use iodine 145-iothalamate clearance. A study by Roshanravan et al25 found that the relationship between frailty and CKD was attenuated when using creatinine instead of Cystatin C to estimate GFR. In five studies, there was significant increase in the risk of frailty with eGFR less than 45mLs per minute.20, 25-28 In the remaining study, only patients with an eGFR less than 30mLs per minute were at a statistically significant increased risk of frailty because those with an eGFR >45 was used as the reference population.29
A study by Dalrymple et al27 in the Cardiovascular Health Study cohort showed that CKD was associated with an increased risk of incident frailty. Patients with CKD who did not have baseline frailty were followed for four years. The risk of developing frailty was inversely related to baseline eGFR27. Patients with a eGFR between 15 and 45 mls/min were twice as likely to develop frailty over four years when compared with patients with normal eGFR27.

Mortality, Hospitalization and Falls

Eight studies assessed adverse health outcomes in frail patients with CKD: four in dialysis populations and four in pre-dialysis cohorts. Johansen et al30 examined frailty in dialysis patients and found an increased risk of death associated with frailty after one year of follow-up (Hazard Ratio [HR] 2.24, 95% CI 1.6 – 3.15). Similarly, Bao et al23 and McAdams De-Marco et al31 reported a significant risk of mortality associated with frailty amongst the dialysis population. The relationship between frailty and risk of death persisted after multivariate adjustment for age, sex and co-morbidities in all three studies. Alfaadhel et al32 demonstrated that each one point increase in the Clinical Frailty Scale was associated with an increased risk of mortality in haemodialysis patients (HR 1.22 [95% CI 1.04-1.13]; median follow-up: 1.7 years). Bao et al23 and McAdams De-Marco et al31 also demonstrated that frailty correlated with an increased risk of hospitalization in dialysis patients. An analysis of a composite end-point of death or hospitalization reached statistical significance in the study by Johansen et al (HR 1.56 95% CI 1.36-1.79).30

Roshanravan et al25 conducted a study in patients with CKD stages 1-4 and demonstrated that frailty was an independent risk factor for death or progression to dialysis (HR: 2.5 [95% CI 1.4-4.4]; median follow-up: 2.6 years). In a study by Wilhelm-Leen et al26, frailty increased the risk of death in patients with CKD and the risk was only partly attenuated in a multivariate model that adjusted for co-morbidities, inflammation and sarcopenia (HR 2.0 [95% CI 1.5 – 2.7]). Studies by Delgado et al29 and Pugh et al33 also demonstrated an increased risk of mortality in patients with pre-dialysis CKD who were frail.
Frailty is a risk factor for falls in patients with end stage kidney disease. In a cohort of haemodialysis patients, McAdams De-Marco et al demonstrated that frailty increased the risk of falls by three times compared to those who were not frail (RR=3.09, 95% CI 1.38 – 6.90).

Frailty and the Kidney Transplant Recipient

Three studies have investigated frailty in kidney transplant recipients. McAdams De-Marco et al demonstrated that incident frailty increased the risk of hospital readmission amongst kidney transplant recipients (Relative Risk= 1.61, 95% CI 1.18-2.19). This risk persisted after adjustment for age, gender, co-morbidity, time spent on dialysis and donor factors. Another study by Garonzik-Wang et al showed that frailty was an independent risk factor for delayed graft function (RR=1.94, 95% CI 1.13-3.36). A second study by McAdams De-Marco investigated the change in frailty status after kidney transplantation. It found that the prevalence of frailty in the cohort decreased at 3 months of follow up and that patients who were frail before transplantation were twice as likely to have improvement in frailty score after transplantation (HR: 2.55 [95% CI: 1.71-3.82]).

Discussion

In this systematic review of frailty in patients with CKD, the prevalence of frailty increased with poorer kidney function and was highest in patients receiving dialysis. Frailty was a significant predictor of adverse health outcomes, particularly in those with severe CKD stages. However, we found differences in frailty assessment and estimation of GFR and this may have influenced the reported prevalence of frailty.

The Fried phenotype provided the basis for frailty assessment in the majority of the studies in this review (n=23, 72%). This is a well validated method of frailty assessment that classifies patients as frail, pre-frail or not frail categories. However, the Fried phenotype is less useful in grading the severity of frailty in populations where the prevalence of frailty is high. This is particularly problematic in patients on dialysis with one study demonstrating the prevalence of frailty be as high as 73%. Other methods, such as the frailty index, provide a continuous variable that may improve the discrimination of those patients at high risk, especially in patients on dialysis.
The feasibility of using performance based tests of grip strength and slowness has proven to be problematic in retrospective studies that have used the Fried phenotype. One approach, proposed by Woods et al11, involves replacing performance based tests with questionnaire based data to grade loss of physical function. However, the correlation between measuring grip strength and slowness versus estimating physical function using the SF-36 questionnaire is poor ($r=-0.34$ for gait speed; $r=-0.14$ for grip strength).11 There were seven studies that modified the Fried phenotype and used the approach of using questionnaire data to replace the measured variables12,21,23,39,30,40,41. Subsequently, Painter et al12 conducted a comparison of measuring gait speed and grip strength versus questionnaire data in quantifying the prevalence of frailty in haemodialysis patients. The study found the prevalence of frailty was 24\% in the performance based group and 78\% in the group using questionnaire data.12 Thus the methods by which the characteristics of Fried’s phenotype of frailty are defined can considerably influence the prevalence of frailty in the population being investigated.

GFR estimation was different amongst the studies and this may influence the relationship between frailty and severity of CKD. The most common method of deriving an eGFR is by creatinine clearance, as reported in 12 studies. However since this relies on muscle mass, the eGFR of frail patients who have lost muscle mass may be over-estimated. Another method of estimating GFR is by using cystatin C which is not influenced by muscle mass and this was utilised in three studies. The strength of the association between frailty and eGFR appears to be increased by using cystatin C.

Regardless of the method of estimation, GFR seems to be an important mediator in the risk of frailty in patients with CKD. Five studies demonstrated that eGFR less than 45mLs/min was associated with increased odds of frailty.20,25-28 There were differences in the calculation of the odds ratios because of different definitions of the eGFR of the reference population. This influenced the value of the odds ratios and prevented comparisons between studies.

The prevalence of frailty ranged from 7\% to 42.6\% in pre-dialysis patients.20,21 Amongst dialysis patients, the highest prevalence of frailty in the studies analysed was 73\%.23 However, there was a wide range of frailty prevalence in the various CKD populations included in this review. Differences in the demographics of the study population, average eGFR, gender, co-morbidities and ethnicity may
explain this difference. Furthermore, as demonstrated previously, the method of frailty assessment can considerably influence the proportion of patients classified as being frail.

Patients with CKD who were frail were at increased risk of mortality and hospitalization. The risk of mortality was significant in both dialysis and pre-dialysis patients with CKD.23,25,26,29-33 Frailty also predicted an increased risk of falls in patients with CKD.34,42 In the kidney transplant recipient, frailty was associated with an increased risk of early hospital readmission and delayed graft function.35,36 Patients who were frail prior to transplantation were also more likely to have improvement in frailty after transplantation.37 A previous systematic review by Walker et al9 found similar associations between frailty and adverse health outcome in patients with non-dialysis CKD. The association of frailty with mortality risk is consistent with other studies in community dwellers with normal renal function.5,11

The findings of this systematic review have multiple implications for clinical practice. Firstly, it highlights the prevalence of frailty particularly in those with Stage 5 CKD and those on dialysis. Identifying these patients is important because frailty is associated with poor health outcomes. Frailty is a useful marker of health status and can be used to monitor response to interventions; an example of this can be seen in the study by McAdams de Marco and colleagues who explored how frailty status changed before and after kidney transplantation.37

Whilst a number of the articles in this systematic review were primary prospective studies, there is little data commenting on the length of time to complete these frailty assessments or the resources needed. One study, investigating the frailty index, demonstrated that a frailty assessment is feasible in an outpatient CKD clinic and could be conducted in approximately 10 minutes using a questionnaire.39 However, there is a need to compare different frailty assessment methods to establish which is better suited in a clinical setting. With the exception of kidney transplantation, there is no evidence for interventions that can change a patient’s frailty status if they have CKD. Frailty manifests when there is a critical number of deficits across multiple systems including those that regulate inflammation.7 Thus, it is likely that multiple strategies will be needed in tackling this issue of frailty in patients with CKD.
There are strengths and limitations inherent in this systematic review. It encompasses a diverse range of populations with CKD including patients on dialysis, community dwellers who are not on dialysis and kidney transplant recipients. The total sample size is large with 36,000 patients. However, differences in the method of frailty assessment and estimation of GFR between the studies meant there was considerable heterogeneity between studies. For this reason, a meta-analysis and summation statistics could not be performed to take full advantage of the large sample size. A large proportion of studies (n=14, 44%) used a secondary analysis in an existing cohort of patients to examine the relationship between frailty and CKD. This raises issues of external validity and whether the studies sufficiently addressed selection bias when presenting the findings. Unpublished results and a single article not available in the English language were excluded from this systematic review. Publication bias is a possibility because of exclusion of these studies.

Conclusion

Based on the number of studies, consistency and quality of the findings, there is strong evidence that frailty is associated with CKD and that patients with more severe CKD are more likely to be frail. Frailty predicts poor outcomes in patients with CKD including an increased risk of mortality and hospitalization. There is a need to better understand causality and why frailty is associated with adverse health outcomes in patients with CKD. Further research should also explore different methods of frailty assessment that better delineate those who are most frail and who may benefit from targeted intervention.

Conflicts of Interest: None
References

Figures:

540 titles screened after literature search

492 articles excluded for not meeting the inclusion criteria

48 full text articles assessed for eligibility

32 articles included into systematic review

16 articles excluded following full text review for replicated analysis or the same study cohort or methodological aspects that disagreed with the inclusion criteria (see Appendix 1 for details of the excluded studies)

Figure 1: Study Selection
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Characteristics</th>
<th>Study Population</th>
<th>Primary Outcome</th>
<th>Study Design</th>
<th>EAI</th>
<th>Frailty assessment</th>
<th>GFR estimation and Average GFR</th>
<th>Frailty Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shlipak et al 2004</td>
<td>N = 648</td>
<td>Cardiovascular Health Study (enrolment) USA</td>
<td>Investigate the prevalence and association of CKD with frailty and disability</td>
<td>Secondary analysis of an established cohort.</td>
<td>1.57</td>
<td>Fried</td>
<td>CrCl 41mLs/min</td>
<td>15%</td>
</tr>
<tr>
<td>Dalrymple et al 2013</td>
<td>N = 4150</td>
<td>Cardiovascular Health Study (3 year review) USA</td>
<td>Examined the prevalence and development of frailty in patients with incident CKD</td>
<td>Secondary analysis of an established cohort</td>
<td>1.67</td>
<td>Fried</td>
<td>Cystatin/CrCl 73mLs/min (median GFR)</td>
<td>9.7%</td>
</tr>
<tr>
<td>Roshanravan et al 2012</td>
<td>N = 336</td>
<td>Pre-dialysis CKD stages 1-4 – Outpatients USA</td>
<td>Prevalence and association of CKD with frailty. Measured outcomes including mortality and progression to dialysis</td>
<td>Primary prospective study</td>
<td>1.76</td>
<td>Fried</td>
<td>Cystatin C 51mLs/min</td>
<td>14%</td>
</tr>
<tr>
<td>Wilhelm-Leen et al 2009</td>
<td>N = 10 256</td>
<td>National Health and Nutrition Evaluation Survey USA</td>
<td>Correlation of frailty with CKD and mediators of this interaction</td>
<td>Secondary analysis of an established cohort</td>
<td>1.81</td>
<td>Fried</td>
<td>CrCl 106.21mLs/min (includes controls)</td>
<td>7.9%</td>
</tr>
<tr>
<td>Hart et al 2013</td>
<td>N = 1602</td>
<td>Osteoporotic fractures in men Study USA</td>
<td>Association of frailty with CKD</td>
<td>Secondary analysis of an established cohort</td>
<td>1.67</td>
<td>Fried</td>
<td>Cystatin C/CrCl Mean GFR not published</td>
<td>Not published</td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>%female</td>
<td>Mean age (±/− SD)</td>
<td>Population</td>
<td>Study Type</td>
<td>Frailty Score</td>
<td>Method</td>
<td>CKD outcomes</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Mansur et al 2014</td>
<td>61</td>
<td>41</td>
<td>61 (±/− 11.5)</td>
<td>Pre-dialysis CKD patients, Brazil</td>
<td>Primary prospective study</td>
<td>1.19</td>
<td>Modified Fried</td>
<td>CrCl 27mLs/min</td>
</tr>
<tr>
<td>Reese RP et al 2013</td>
<td>1111</td>
<td>47</td>
<td>65 (±/− 8)</td>
<td>Chronic renal insufficiency cohort, USA</td>
<td>Secondary analysis of an established cohort</td>
<td>1.86</td>
<td>Fried</td>
<td>CrCl 49mLs/min (median GFR)</td>
</tr>
<tr>
<td>Yamada et al 2013</td>
<td>8063</td>
<td>62</td>
<td>81 (±/− 7.4)</td>
<td>J-MACC study, Community dwelling individuals, Japan</td>
<td>Secondary analysis of an established cohort</td>
<td>1.52</td>
<td>Frailty Check List</td>
<td>CrCl Not published</td>
</tr>
<tr>
<td>McAdams De-Maro et al 2013</td>
<td>383</td>
<td>40</td>
<td>54 (±/− 13.9)</td>
<td>Renal transplant recipients, USA</td>
<td>Primary prospective study</td>
<td>1.76</td>
<td>Fried</td>
<td>No GFR estimation</td>
</tr>
<tr>
<td>Garonzik-Wang et al 2012</td>
<td>183</td>
<td>36</td>
<td>53 (±/− 14)</td>
<td>Renal transplant recipients, USA</td>
<td>Primary prospective study</td>
<td>1.52</td>
<td>Fried</td>
<td>No GFR estimation</td>
</tr>
<tr>
<td>McAdams De-Maro et al 2015</td>
<td>349</td>
<td>38.1</td>
<td>53.3 (±/− 14.2)</td>
<td>Renal transplant recipients, USA</td>
<td>Primary prospective study</td>
<td>1.67</td>
<td>Fried</td>
<td>No GFR estimation</td>
</tr>
<tr>
<td>Rodriguez et al 2014</td>
<td>56</td>
<td></td>
<td></td>
<td>Pre-dialysis patients</td>
<td>Primary prospective study</td>
<td>1.57</td>
<td>Fried</td>
<td>CrCl 16mLs/min</td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>% Female</td>
<td>Mean Age</td>
<td>Country</td>
<td>Pre-dialysis</td>
<td>Description</td>
<td>Study Type</td>
<td>Primary Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Lee et al 2015</td>
<td>168</td>
<td>37%</td>
<td>65.9 years</td>
<td>Spain</td>
<td>Pre-dialysis patients</td>
<td>Examine the prevalence of frailty and its influence on quality of life</td>
<td>Primary prospective study</td>
<td>1.67</td>
</tr>
<tr>
<td>Montesanto et al 2014</td>
<td>1038</td>
<td>53.2%</td>
<td>83.4 years</td>
<td>Korea</td>
<td>Pre-dialysis patients</td>
<td>The relationship between frailty, GFR estimating using BIS1 equation and mortality.</td>
<td>Secondary analysis of an established cohort</td>
<td>1.86</td>
</tr>
<tr>
<td>Meulendijks et al 2015</td>
<td>63</td>
<td>35%</td>
<td>Median age = 75 years</td>
<td>Italy</td>
<td>Pre-dialysis patients</td>
<td>Evaluation of whether the Groningen Frailty Index can distinguish between fitter patients who may benefit from dialysis from frailer patients in need of geriatric assessment.</td>
<td>Primary prospective study</td>
<td>1.48</td>
</tr>
<tr>
<td>Hubbard et al 2015</td>
<td>110</td>
<td>46.4%</td>
<td>Mean age = 65.2 years (14.6 years IQR)</td>
<td>Netherlands</td>
<td>Pre-dialysis patients</td>
<td>Pilot study investigating the feasibility of using the frailty index in patients with pre-dialysis chronic kidney disease. Cross sectional analysis of frailty</td>
<td>Primary prospective study.</td>
<td>1.76</td>
</tr>
<tr>
<td>Delgado et al 2015</td>
<td>812</td>
<td>39.5%</td>
<td>Median age = 52 years (42-61 years IQR)</td>
<td>USA</td>
<td>Pre-dialysis patients</td>
<td>Investigation of self-reported frailty and its association with GFR and mortality</td>
<td>Secondary analysis of an established cohort</td>
<td>1.67</td>
</tr>
<tr>
<td>Pugh et al 2016</td>
<td>283</td>
<td>37%</td>
<td></td>
<td>USA</td>
<td>Pre-dialysis patients</td>
<td>Relationship between frailty and co-morbidity with the risk of mortality in</td>
<td>Primary prospective study</td>
<td>1.48</td>
</tr>
</tbody>
</table>
Median age = 74 (63-81 years IQR)

UK
elderly patients referred to an outpatient chronic kidney disease clinic.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Characteristics</th>
<th>Study Population</th>
<th>Primary Outcome</th>
<th>Study Design</th>
<th>EAI</th>
<th>Frailty Assessment</th>
<th>Prevalence of frailty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bao 2012 et al23</td>
<td>N = 1576 %female = 45 Mean age = 59.6 years</td>
<td>Comprehensive Dialysis Study HD% = 89.3 USA</td>
<td>Frailty prevalence dialysis cohort. GFR at dialysis initiation and its relationship with frailty</td>
<td>Secondary analysis of an established cohort</td>
<td>1.62</td>
<td>Modified Fried</td>
<td>73%</td>
</tr>
<tr>
<td>McAdams-DeMarco et al 201331</td>
<td>N = 146 %female = 47 Mean age = 61 years (+/- 13.6)</td>
<td>Single haemodialysis centre HD% = 100 USA</td>
<td>Prevalence of frailty and outcome assessment</td>
<td>Primary prospective study</td>
<td>1.67</td>
<td>Fried</td>
<td>41.8%</td>
</tr>
<tr>
<td>Delgado et al 201340</td>
<td>N = 80 %female = 37 Mean age = 55 years (+/- 13)</td>
<td>Nandrolone and Exercise Study HD% = 100 USA</td>
<td>A comparison of function based frailty assessment and performance based tests. Body composition and frailty status.</td>
<td>Secondary analysis of an established cohort</td>
<td>1.19</td>
<td>Modified Fried: Performance based and Function Based Criteria</td>
<td>59% (performance based)</td>
</tr>
<tr>
<td>Painter et al 201312</td>
<td>N = 188 %female = 56 Mean age = 54.4 (+/- 16) years</td>
<td>Renal Exercise Demonstration Study HD% = 100 USA</td>
<td>Analysis of two methods of applying the Fried phenotype for frailty: questionnaire based physical function vs measurement</td>
<td>Secondary analysis of an established cohort</td>
<td>1.81</td>
<td>Fried</td>
<td>24% (measured physical function)</td>
</tr>
<tr>
<td>Johansen et al 200730</td>
<td>N = 2275 %female = 47 Mean age = 58 years (+/- 16)</td>
<td>Dialysis Morbidity/Mortality Study HD% = 51.9</td>
<td>Investigation of the prevalence and predictors of frailty amongst dialysis patients and correlation with adverse health outcomes.</td>
<td>Secondary analysis of an established cohort</td>
<td>1.71</td>
<td>Modified Fried</td>
<td>68%</td>
</tr>
<tr>
<td>Authors and year</td>
<td>N =</td>
<td>%female</td>
<td>Mean age</td>
<td>Study description</td>
<td>Study type</td>
<td>Risk ratio</td>
<td>Fried</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Kutner et al 2014<sup>24</sup></td>
<td>742</td>
<td>40.6</td>
<td>57 years (+/- 14.1)</td>
<td>ACTIVE/ADIPOSE Study HD% = 100 USA</td>
<td>Prospective cohort study</td>
<td>Frailty and its association with ADL difficulties</td>
<td>Secondary analysis of an established cohort</td>
</tr>
<tr>
<td>McAdams-DeMarco et al 2013<sup>34</sup></td>
<td>95</td>
<td>46</td>
<td>61 years (+/- 12.6)</td>
<td>Single dialysis centre HD% = 100 USA</td>
<td>Prospective study</td>
<td>Association of frailty with risk of falls in patients with ESKD</td>
<td>Primary prospective study</td>
</tr>
<tr>
<td>Orlandi et al 2014<sup>37</sup></td>
<td>60</td>
<td>30</td>
<td>71 years (+/- 6.9)</td>
<td>Single dialysis centre HD% = 100 Brazil</td>
<td>Prospective study</td>
<td>Assessment of frailty in elderly patients undergoing dialysis</td>
<td>Primary prospective study</td>
</tr>
<tr>
<td>Salter et al 2015<sup>44</sup></td>
<td>146</td>
<td>46.6</td>
<td>61 years</td>
<td>Single dialysis centre HD% = 100 USA</td>
<td>Prospective study</td>
<td>Comparison between measured frailty and clinician perceived frailty</td>
<td>Primary prospective study</td>
</tr>
<tr>
<td>Chao et al 2015<sup>45</sup></td>
<td>46</td>
<td>53</td>
<td>67.3 years (+/- 11.9)</td>
<td>Single dialysis centre HD% = 100 Taiwan</td>
<td>Prospective study</td>
<td>Exploring frailty in a rural dialysis centre in Taipei and comparison between different self-reported measures of Frailty.</td>
<td>Primary prospective study</td>
</tr>
<tr>
<td>Alfaadhel et al 2015<sup>32</sup></td>
<td>390</td>
<td>33</td>
<td>63 years (+/- 15)</td>
<td>Single dialysis centre HD% = 100 USA</td>
<td>Prospective study</td>
<td>Assessed whether the clinicians perception of frailty correlated with outcomes in a population of patients on dialysis.</td>
<td>Primary prospective study</td>
</tr>
<tr>
<td>Iyasere et al 2016<sup>46</sup></td>
<td>251</td>
<td>40.7</td>
<td>Median age = 76 (70-81 years IQR)</td>
<td>Single Dialysis Centre HD% = 48.6 UK</td>
<td>Prospective study</td>
<td>Comparison of frailty and quality of life between patients on haemodialysis with those on peritoneal dialysis. Cross sectional analysis</td>
<td>Primary prospective study</td>
</tr>
<tr>
<td>McAdams-DeMarco et al 2015<sup>47</sup></td>
<td>324</td>
<td>43.5</td>
<td>54.8</td>
<td>Predictors of arrhythmic and cardiovascular risk in ESKD Study.</td>
<td>Secondary analysis of an established cohort</td>
<td>Investigated the relationship between frailty and cognition both at base line and at one year of follow up.</td>
<td>Secondary analysis of an established cohort</td>
</tr>
<tr>
<td>Years +/- 13.3</td>
<td>HD% = 100 USA</td>
<td>Prospective cohort study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drost et al 2016<sup>48</sup></td>
<td>N = 95 %female = 43 Mean age = 65.2 years +/- 12</td>
<td>Single dialysis centre HD% = 44 Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison between prevalence of frailty assessed using the frailty index versus the Fried Frailty Phenotype. Cross sectional analysis</td>
<td>Primary prospective Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.76</td>
<td>Fried and Frailty Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.8% measured using FI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Fried Frailty Assessment

<table>
<thead>
<tr>
<th>Original Definition of the Fried Phenotype by Fried et al (5)</th>
<th>Interpretation of Fried Phenotype (n=23)</th>
</tr>
</thead>
</table>
| Slowness
Gait speed | Gait speed (n=17, 74%)
Questionnaire based assessment of physical function (n=5)
Subjective perception of gait speed (n=1) |
| Weakness
Grip Strength | Dyno metre measurement of grip strength (n=14, 61%)
Questionnaire based assessment of physical function (n=5)
Timed sit-to-stand (n=2)
Self-report (n=2) |
| Exhaustion
Centre for epidemiological studies depression scale | Patient self-report (n=11, 48%)
Centre for Epidemiological Studies depression scale (n=5)
Short form 36 Questionnaire (n=6)
Short form 12 Questionnaire (n=1) |
| Shrinkage
>10 pounds of unintentional weight loss in 12 months | Weight loss of 10 pounds over 12 months (n=12, 52%)
Other measures of weight loss (BMI, 5% loss in total weight, lean appendicular mass, cachexia) (n=9, 39%)
Not measured (n=2) |
| Low Physical Activity
Estimated kilocalories per week | Estimation of kilocalories (n=9, 39%)
Patient self-report (n=8)
Questionnaire based physical activities scale (n=6) |