Accepted Manuscript

Incremental value of ePLAR – echocardiographic Pulmonary to Left Atrial Ratio – in the diagnosis of chronic thromboembolic pulmonary hypertension

Anna M. Waldie, David G. Platts, Gregory M. Scalia

PII: S0167-5273(16)31340-7
DOI: doi: 10.1016/j.ijcard.2016.06.329
Reference: IJCA 22957

To appear in: International Journal of Cardiology

Received date: 19 May 2016
Accepted date: 29 June 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Letter to the Editor

Incremental value of ePLAR – echocardiographic Pulmonary to Left Atrial Ratio – in the diagnosis of chronic thromboembolic pulmonary hypertension

Anna M. Waldiea,
David G Platts c,d
Gregory M. Scaliaa,b,c,d

a The Wesley Hospital, Brisbane 4066, Australia
b Heart Care Partners, Brisbane 4066, Australia
c The University of Queensland, Brisbane 4072, Australia
d The Prince Charles Hospital, Brisbane Australia

Keywords:
- Pulmonary hypertension
- Echocardiography
- Pulmonary Embolism

Corresponding Author:
Assoc Prof Gregory M Scalia
30 Chasely St
Auchenflower QLD AUSTRALIA 4066
gmscalia@gmail.com

All authors have no conflict of interest.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a distinct pulmonary vascular disease characterised by the presence of numerous organised occlusive thrombi or emboli in the elastic pulmonary vascular tree after at least 3 months of effective anticoagulation [1-4]. CTEPH is distinguishable from pulmonary arterial hypertension (PAH) by the nonhomogeneous distribution of thrombus within various segments of the pulmonary vasculature (main, lobar, segmental, subsegmental) and its association with venous thromboembolism (VTE) [3, 5]. CTEPH is progressive and carries a poor prognosis when established pulmonary pressures are severely elevated, unless amenable to pulmonary thromboendarterectomy (PTE) [5, 6]. If left untreated, patients with CTEPH develop irreversible disease progression associated with a significant risk of death from right heart failure [3, 7]. It is often diagnosed late. However, early diagnosis allows institution of long-term anticoagulant therapy and referral to an appropriate pulmonary hypertension centre to initiate timely therapeutic interventions [3]. This includes assessment for operability in severe cases of CTEPH by an experienced PTE surgeon [4].

Given that CTEPH presents clinically with non-specific symptoms of exertional dyspnoea, fatigue, chest pain, and exercise induced syncope, which are ubiquitous with other common cardiopulmonary conditions, diagnosis is often delayed [8]. More frequently, common conditions are implicated as causal, such as left heart disease, which often culminates in post-capillary pulmonary hypertension (PHT). Patients with CTEPH have pre-capillary PHT. Hemodynamically, obstructed trans-pulmonary flow will yield elevated mean
pulmonary artery pressures (PAP\textsubscript{mean} >25 mmHg) in the setting of normal/low left atrial filling pressures (LAP $<$15 mmHg).

There is therefore significant scope for the implementation of a more readily available, less invasive, cost effective test to predict the presence of pre-capillary PHT, of which CTEPH is a life-threatening cause. The echocardiographic Pulmonary to Left Atrial Ratio (ePLAR), has been validated as a non-invasive surrogate of trans-pulmonary gradient, and is an effective differentiator of pre-capillary from post-capillary PHT [9, 10]. The ePLAR (m/s) is calculated from the maximum tricuspid regurgitation continuous-wave Doppler velocity (m/s) divided by the trans-mitral E-wave : septal mitral annular Doppler Tissue Imaging e’-wave ratio (ePLAR (m/s) $= \frac{TRV_{\text{max}} \text{ (m/s)}}{E/e'}$) [9, 10]. Higher ePLAR values reflect increasing trans-pulmonary gradient (TPG) consistent with pre-capillary PHT physiology. Lower ePLAR values indicate elevated left heart pressures as the driver for post-capillary PHT (see figure 1A). An ePLAR cut-off value of 0.28 m/s has $>80\%$ sensitivity and specificity for distinguishing pre-capillary from post-capillary PHT [9].

Any patient with pre-capillary PHT should be evaluated for CTEPH [4]. Ventilation perfusion (V/Q) scintigraphy is the preferred screening test for chronic pulmonary thromboembolic disease, despite advances in computed tomography pulmonary angiography (CTPA) and magnetic resonance angiography (MRA) of the lungs [2, 6]. We report 2 cases of CTEPH where the diagnosis of pre-capillary PHT initially was initially considered clinically
unlikely. The cases demonstrate the incremental value of ePLAR in provoking diagnostic workup of pre-capillary causes for PHT, including CTEPH.

Case 1
A 71-year-old female experiencing progressive exertional dyspnoea demonstrated no significant abnormality on standard cardiorespiratory testing including spirometry, gas transfer, chest X-ray and high resolution CT. Echocardiography showed normal left ventricular size and systolic function (EF 60%) with no significant valvular disease and normal left heart filling (mitral E/e' 10). Mild PHT was evident (TRV\textsubscript{max} 3.1m/s, RVSP 43mmHg – see figure 1A). The ePLAR was elevated at 0.31m/s, consistent with pre-capillary PHT physiology. Despite a normal D-dimer, a V/Q scintigram revealed multiple bilateral mismatched defects. Anticoagulation was instigated and at six months, the patient was clinically improved, though all echocardiographic parameters were unchanged. CTEPH was diagnosed and long-term anticoagulation mandated.

Case 2
A 43-year-old male presented with decompensated restrictive cardiomyopathy. The initial clinical presentation with anasarca, breathlessness and anorexia was rapid in onset, possibly coincident with the onset of atrial fibrillation. Urgent echocardiography showed severe global systolic left ventricular dysfunction (EF 20%) with severe concentric wall thickening. Doppler displayed markedly elevated filling pressures, and mild PHT (TRV\textsubscript{max} 3.1m/s, RVSP = 55mmHg). The ePLAR was elevated at
0.44 m/s consistent with pre-capillary PHT (see figure 1A). Initial therapy with diuretics and ACE inhibitors, improved his clinical status, with 15 kg of fluid weight loss. The rapid resolution of congestive symptoms and signs with diuretics rendered obstructive pulmonary vascular symptoms unlikely at that time. Formal anticoagulation with rivaroxiban 20 mg/d for atrial fibrillation was instituted. At 6 month follow up, with stable clinical status, echocardiography showed similar left ventricular thickening, systolic dysfunction and left heart filling parameters (E/e’ 8.3). Mild PHT persisted (TRV_max = 3.0 m/s, RVSP = 40-44 mmHg) and ePLAR remained elevated at 0.36 m/s, consistent with pre-capillary PHT physiology.

Clinical deterioration at 7 months, with progressive breathlessness in the absence of recurrent fluid retention, prompted repeat echocardiography. The patient remained fully anticoagulated. Left heart systolic and diastolic function was unchanged with the ejection fraction moderately reduced at 36% and filling pressures not elevated with mitral E/e’ 9. There was worsening of pulmonary hemodynamics (TRV_max 3.5 m/s, RVSP 61 mmHg). The ePLAR remained elevated at 0.39 m/s consistent with pre-capillary PHT physiology. Dilated main pulmonary arteries with no filling defects or obstruction were evident on CT pulmonary angiography. However, V/Q scintigraphy showed bilateral mismatched defects – despite compliance with novel anticoagulant therapy (see figure 1B). Heparin and warfarin therapy was commenced.

A small minority of patients with exertional dyspnoea will have pre-capillary PHT as their fundamental hemodynamic disturbance. Aetiologies within this
group include PAH, connective tissue disease, parenchymal lung disease and a very small subset will have CTEPH [9]. Patients with pre-capillary PHT will undergo a standardised testing sequence including V/Q scintigraphy, which if suggestive of CTEPH, will lead to lifelong anticoagulation with significant prognostic advantage and possibly PTE surgery [3, 7]. However, because of the subtlety of presenting symptoms and frequently, the absence of any discernible acute pulmonary embolic event, the diagnosis of CTEPH is easily overlooked. Echocardiography is commonly used in the clinical workup of exertional breathlessness. These cases demonstrate the incremental value of ePLAR in prompting clinical consideration of causes of pre-capillary pulmonary hypertension, such as CTEPH.

References:

Figure 1. A. Box and whisker display of distribution of ePLAR values for patients with pre-capillary PHT (0.44±0.22 m/s) and post-capillary PHT (0.20±0.11 m/s)
- boxes represent middle quartiles and whiskers represent range, LAP = left atrial pressure, TPG = trans-pulmonary gradient. In that data, an optimal ePLAR cut-off value of 0.28 m/s yielded >80% sensitivity and specificity for differentiating pre-capillary from post-capillary PHT (modified and reproduced with permission [9]). Case 1 and case 2 demonstrate ePLAR values of 0.31 m/s and 0.44 m/s respectively, both of which fall within the pre-capillary PHT range. ePLAR (m/s) = peak tricuspid regurgitation continuous-wave Doppler velocity (m/s) divided by the trans-mitral peak pulsed-wave Doppler E-wave (cm/s) : peak Doppler Tissue Imaging mitral septal annular e’-wave (cm/s). B. Ventilation/perfusion scintigraphy of case 2 demonstrating bilateral mismatch perfusion defects (arrows) after >3 months of anticoagulation consistent with multiple chronic pulmonary emboli – CTEPH.