Accepted Manuscript

Timed up and go test: A reliable and valid test in patients with chronic heart failure

Rita Hwang, M HSc (Cardiopulm Phty), B Phty (Hons), Physiotherapist, Norman R. Morris, PhD, B App Sc (Phty), Dip Ed, B Sc, Professor in Physiotherapy, Allison Mandrusiak, PhD, B Phty (Hons), GradCert (Higher Ed), Lecturer in Physiotherapy, Alison Mudge, PhD, MBBS, Physician, Jessica Suna, M Hlth Sci (Research), B Nurs, B Sc, GradCert (Clinical Trial Management), Nurse Researcher, Julie Adsett, B Phty (Hons), Physiotherapist, Trevor Russell, PhD, B Phty (Hons), Associate Professor in Physiotherapy

PII: S1071-9164(15)01124-0
DOI: 10.1016/j.cardfail.2015.09.018
Reference: YJCAF 3643

To appear in: Journal of Cardiac Failure

Received Date: 29 August 2015
Revised Date: 29 August 2015
Accepted Date: 25 September 2015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Rita Hwang
Princess Alexandra Hospital
Ipswich Road, Woolloongabba, Brisbane, QLD 4102, Australia
Phone: +61 0405 680 903
Fax: +61 7 3176 6105
E-mail: r.hwang@uq.net.au

22 September 2015

Professor Michael Rich and Professor Paul Hauptman
Senior Associate Editor and Editor-in-Chief
Journal of Cardiac Failure

Dear Professor Rich and Professor Hauptman,

Re: Ref #156774. Timed up and go test: A reliable and valid test in patients with chronic heart failure.

We appreciated your helpful comments and those of the reviewers. We have further reduced the word limit, removed Table 2 and deleted 2 references as suggested. We have also revised highlight bullets 2 and 3 as recommended.

Once again, many thanks for considering this manuscript for publication in the Journal of Cardiac Failure. Please do not hesitate to contact us if any questions should arise.

Yours sincerely

Rita Hwang, Norm Morris, Allison Mandrusiak, Alison Mudge, Jess Suna, Julie Adsett and Trevor Russell
Comments from the Editors and Reviewers (if available):
Please meet 1500 word limit.
Response: We thank you for the suggestion and have reduced the word limit accordingly.

In addition, please remove 2 references and 1 of the graphics; our suggestion for the latter is Table 2.
Response: We have removed 2 references and Table 2 as suggested.

We also suggest revising highlight bullets 2 and 3 as follows (1st and 4th bullets are fine as written):
*The TUGT demonstrated excellent test-retest reliability in patients with heart failure and was strongly associated with other functional exercise tests.
*Best predictors of the TUGT were age and 6-minute walk distance."
Response: We are grateful for the recommendations and have modified highlight bullets 2 and 3 as suggested.
TITLE PAGE

Short title: Timed up and go test in heart failure

Title: Timed up and go test: A reliable and valid test in patients with chronic heart failure.

Article type: Brief report

Authors:

1. Rita Hwang, M HSc (Cardiopulm Phty), B Phty (Hons), Physiotherapist, Department of Physiotherapy, Princess Alexandra Hospital, Metro South Health, QLD 4102, Australia; and School of Health & Rehabilitation Sciences, The University of Queensland, QLD 4072, Australia, r hwang@uq.net.au

2. Norman R Morris, PhD, B App Sc (Phty), Dip Ed, B Sc, Professor in Physiotherapy, The Menzies Health Institute Queensland and The School of Allied Health Sciences, Griffith University, QLD 4222, Australia, Ph: +61 7 5552 8921, n.morris@griffith.edu.au

3. Allison Mandrusiak, PhD, B Phty (Hons), GradCert (Higher Ed), Lecturer in Physiotherapy, School of Health & Rehabilitation Sciences, The University of Queensland, QLD 4072, Australia, Ph +61 7 3365 4557, Fax + 61 7 3365 1622, a.mandrusiak@uq.edu.au
4. Alison Mudge, PhD, MBBS, Physician, Internal Medicine and Aged Care, Royal Brisbane and Women’s Hospital, QLD 4029, Australia, Ph: +617 3646 0854, Fax: +617 3646 0272, Alison.Mudge@health.qld.gov.au

5. Jessica Suna, M Hlth Sci (Research), B Nurs, B Sc, GradCert (Clinical Trial Management), Nurse Researcher, Internal Medicine Research Unit, Royal Brisbane and Women’s Hospital, QLD 4029, Australia, Ph: +617 3646 6207, Fax: +617 3646 0272, Jessica.Suna@health.qld.gov.au

6. Julie Adsett, B Phty (Hons), Physiotherapist, Heart Failure Service, Royal Brisbane and Women’s Hospital, QLD 4029, Australia, Ph: +617 3646 0286, Fax: +617 3646 0272, Julie.Adsett@health.qld.gov.au

7. Trevor Russell, PhD, B Phty (Hons), Associate Professor in Physiotherapy, School of Health & Rehabilitation Sciences, The University of Queensland, QLD 4072, Australia, Ph + 61 7 3346 9633, t.russell1@uq.edu.au

Correspondence (for review):
Name Rita Hwang
Department Physiotherapy
Institution Princess Alexandra Hospital, Metro South Health
Country Australia
Phone +61 0405 680 903
 +61 7 3176 2401
Fax +61 7 3176 6105
Email rhwang@uq.net.au

Correspondence (for publication)
Name: Rita Hwang

Department: Physiotherapy

Institution: Princess Alexandra Hospital, Metro South Health

Country: Australia

Email: r.hwang@uq.net.au

Word Count:

1478 words (Introduction, Method, Results, Discussion and Conclusion).

227 words (abstract).

References:

15 references.

Tables:

Table 1. Baseline characteristics.

Figures:

Figure 1. Study flowchart.

Figure 2. Bland and Altman plot of the TUGT; and relationships with other variables.

Funding sources:

The primary author is a recipient of the National Heart Foundation of Australia’s Health Professional Scholarship (ID: 100297). Data collection was funded by the Australian National Health and Medical Research Council (NHMRC Project grant no. 498403), and grants from the Royal Brisbane and Women’s Hospital Research Foundation and The Prince Charles Hospital Foundation. The funding bodies have no input.
into study design, data management or analysis, or the decision to publish.
ABSTRACT

Background: The timed up and go test (TUGT) is a short-duration functional test, frequently used in rehabilitation settings as a measure of balance and mobility. Reliability and validity for patients with chronic heart failure (CHF) has yet to be determined. This prospective cohort study aimed to determine: test-retest reliability of the TUGT in patients with CHF; relationships between the TUGT and other variables including functional tests; and predictors of the TUGT.

Methods: Secondary analysis of data collected in a multicenter randomized controlled trial of exercise training in recently hospitalized patients with heart failure (EJECTION-HF). The TUGT was conducted twice at baseline to determine reliability. Assessments were compared to six minute walk distance (6MWD), 10m walk test time, and other clinical variables. Intra-class correlation coefficient (ICC) was used to determine test-retest reliability and correlations for relationships with other variables. A multiple regression was used to identify predictors of the TUGT.

Results: In 278 participants (mean age 62 years), the TUGT demonstrated excellent within-day test-retest reliability (ICC = 0.93). A shorter (better) TUGT time was associated with longer 6MWD (r = -0.81, P < .001) and shorter 10m walk test time (rs = 0.80, P < .001). Best predictors of the TUGT were 6MWD and age, which accounted for 66% of the variance.

Conclusions: The TUGT appears to be a reliable and valid functional measurement in patients with CHF.
Key words: exercise test, functional capacity, cardiac failure, outcome assessment.

List of abbreviations:

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQoL-4D</td>
<td>Assessment of quality of life – 4 dimensions</td>
</tr>
<tr>
<td>CHF</td>
<td>Chronic heart failure</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>EJECTION-HF</td>
<td>Exercise joins education: combined therapy to improve outcomes in newly-discharged heart failure</td>
</tr>
<tr>
<td>ICC</td>
<td>Intra-class correlation coefficient</td>
</tr>
<tr>
<td>IQR</td>
<td>Inter-quartile range</td>
</tr>
<tr>
<td>MDC<sub>95</sub></td>
<td>Minimal detectable change at 95% confidence interval</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association functional classification</td>
</tr>
<tr>
<td>r, r<sub>s</sub></td>
<td>Pearson’s correlation coefficient, Spearman’s correlation coefficient</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of measurement</td>
</tr>
<tr>
<td>TUGT</td>
<td>Timed up and go test</td>
</tr>
<tr>
<td>6MWD</td>
<td>Distance on the six minute walk test</td>
</tr>
<tr>
<td>6MWT</td>
<td>Six minute walk test</td>
</tr>
</tbody>
</table>
Highlights:

- The timed up and go test (TUGT) is a quick and easy-to-administer functional test.
- The TUGT demonstrated excellent test-retest reliability in patients with heart failure and was strongly associated with other functional exercise tests.
- Best predictors of the TUGT were age and 6-minute walk distance.
- The TUGT appears to be a reliable tool, and may be appropriate for evaluating effects of interventions such as heart failure exercise programs.
INTRODUCTION

Exercise is an effective intervention for people with chronic heart failure (CHF). An outcome measure frequently used in heart failure exercise programs is the six minute walk test (6MWT), a sub-maximal measure of functional exercise capacity. Although the 6MWT may be suitable for younger patients with fair exercise capacity, it may not be the best measure for some patients with CHF, as this patient group often have multiple co-morbidities, frailty and tend to fall. Additionally, as centre-based programs are inaccessible to many, approaches that can be administered in alternative environments including the home should be considered.

The timed up and go test (TUGT) is a functional test which may be suitable in the home-setting. This test assesses mobility and balance; requires minimal equipment; is quick and easy to administer; and has been shown to be valid and reliable in the elderly and other patient groups.

The aims of this study were to: determine the test-retest reliability of the TUGT in patients with CHF; assess concurrent validity of the TUGT through comparison with other variables including the 6MWT and 10m walk test; and report the best predictors of the TUGT. We hypothesized that the TUGT would be reliable and valid in patients with CHF.

MATERIALS AND METHODS

Settings and participants: This investigation is a secondary analysis of baseline data
collected from participants enrolled in the Exercise Joins Education: Combined Therapy to Improve Outcomes in Newly-discharged Heart Failure (EJECTION-HF) trial, with methods reported in detail previously. In brief, the study recruited patients from cardiology and general medical wards with CHF who had a recent hospital admission and were enrolled in a 12-week comprehensive heart failure disease management program including either twice-weekly supervised center-based exercise training (intervention), or recommendations for unsupervised home exercise (control). Participants were enrolled from five hospitals in south-east Queensland, Australia, from 2008-2013. The study was approved by hospital ethics committees and included in the Australian Clinical Trials Registry (ACTR12608000263392).

Outcome measurements: All tests were administered by a single trained independent assessor. The TUGT was measured using a standard stopwatch to record time taken to stand from a 45cm high chair with arm rests, walk 3m at a comfortable pace, turn 180 degrees, return to the starting point, and again sit. The test was conducted using regular footwear and usual mobility aid, and performed twice (TUGT1 and TUGT2), with adequate rest time (until symptom resolution) between the two tests.

Participants performed the 6MWT in accordance with recommended guidelines on a modified 25m walk track. The 6MWT was performed twice at baseline and the longest six minute walk distance (6MWD) was used in the analysis. The 10m walk test (at both comfortable and fast pace) was also undertaken on a straight walk track from a static start in a subset of participants (n = 110). The time taken to walk 10m was recorded in seconds. Each test was measured twice, with the quicker of two tests recorded.
Quality of life was measured with the Assessment of Quality of Life (AQoL-4D). This validated generic utility measure encompasses four dimensions including independent living, relationships, senses and mental health.11

Demographic and clinical information were obtained from a patient interview and the medical record, and included the New York Heart Association (NYHA) functional classification; self-reported falls in the previous 12 months; and left ventricular ejection fraction reported from echocardiography performed in the previous six months.

Data analysis: Statistical analysis was performed using SPSS Statistics 22 (SPSS Inc., Chicago, IL). Baseline data for all participants contributed to the analysis. Data were checked for missing values, distribution and outliers. The TUGT data was logarithmically transformed to achieve normality.

Test-retest reliability was examined using the intra-class correlation coefficient (ICC), two-way mixed effects model with single measures and absolute agreement. The strength of reliability was interpreted where excellent was > 0.9. Standard error of measurement (SEM) and minimal detectable change at 95\% confidence interval (MDC\textsubscript{95}) were calculated on the transformed data, using previously described formulas.12 A Bland and Altman’s plot was presented to visually examine the trends and agreements between the two tests.13
Relationships between the TUGT and other continuous variables were examined using scatter plots, and Pearson’s (r) or Spearman’s (r_s) correlations as appropriate. Mann-Whitney’s test was used to determine differences in dichotomous variables.

A stepwise multiple linear regression was undertaken to investigate best predictors of the TUGT (with transformation) from variables including the 6MWD; 10m walk test at comfortable and fast paces; age; gender; left ventricular ejection fraction; disease severity on the NYHA; falls; and AQoL. P < .05 was considered to be significant.

RESULTS
The study included 278 participants (Figure 1). Participant characteristics are summarized in Table 1.

TUGT reliability
Test-retest reliability of the TUGT in patients with CHF was excellent (ICC = 0.93, P < .001) at baseline. Mean TUGT1 time was slower than TUGT2, with a back-transformed mean difference (95% CI) of 1.04 (1.03-1.06) seconds (P < .001). The SEM and MDC_{95} values on the transformed data were 0.04 and 0.11 seconds respectively. The Bland-Altman plot shows the mean difference in the TUGT between the two tests (Figure 2).

Relationship between the TUGT and other variables
As illustrated in Figure 2, the TUGT was associated with functional tests in patients with CHF. A shorter (faster) time on the TUGT was associated with longer 6MWD (r = -0.81, P < .001); and shorter time on the 10m walk tests at both comfortable (r_s =
0.80, P < .001) and fast paces (r_s = 0.88, P < .001).

A faster TUGT was also weakly associated with better quality of life (r_s = -0.31, P < .001); younger age (r_s = 0.44, P < .001); lower NYHA class (r_s = 0.45, P < .001), and no falls history (median 8.62 seconds [inter-quartile range 3.64] vs 10.38 [7.53], P < .001).

The best predictors of the TUGT in multivariate modeling were 6MWD and age, with \(F_{(2, 247)} \) of 243, P < .001 and \(R^2 \) of 0.66. The model equation for the transformed best TUGT was \(1.258 - (0.001 \times 6\text{MWD}) + (0.001 \times \text{age}) \).

DISCUSSION

This study demonstrates that the TUGT was both reliable and valid in patients recently discharged from hospital with CHF, with excellent test-retest reliability when the test was performed on the same day and strong association with other functional exercise tests (6MWD and 10m walk test). Slower TUGT time was associated with poorer quality of life, older age, worsening disease severity and recent falls history. The best predictors of the TUGT were 6MWD and age, accounting for 66% of the variance.

The median TUGT time of 8.9 seconds reported in our study is similar to the mean TUGT time of 9.4 seconds reported in individuals over the age of 60 years.\(^{14}\)

Reliability of the TUGT seen in our study is consistent with other studies.\(^{6,7}\) Despite excellent reliability, we found a learning effect of this test, similar to previous findings in the cardiac rehabilitation setting.\(^{8}\) These results support the practice of
performing two tests and using the best performance in the analysis.7,8

The TUGT may be an appropriate functional test to use across hospital clinics, community settings and during home visits for patients with CHF. It may be particularly relevant to patients with CHF, as this group of patients often have frailty3 and falls.4 The strong concurrent validity with the 6MWD suggests that it may be a useful measure of response to exercise in settings where the 6MWT is not practical. The advantage of the TUGT is that it requires only a small amount of space, making it suitable within home and clinic environments with space constraints. The TUGT reflects important daily physical functions, such as the ability to rise from a chair and walk around the house, and predicts development of disability in older people.15 Given many patients with CHF are elderly and frail,3 practical measures such as the TUGT may provide useful information about an individual’s function and measure changes in performance.

Study strengths and limitations

The current study has strengths, including single assessor; consistent method; multiple sites; and a large spread of age and disease severity which may increase generalizability of the study results. Limitations include that this was a selected study population, and hence may not apply to all patients with CHF. The 10m walk test was only undertaken in 110 participants, which limited the correlation analysis. The current study demonstrated excellent test-retest reliability and concurrent validity of the TUGT in patients with CHF, but further research is required to determine predictive validity and the minimal clinically important difference for the TUGT.
CONCLUSION

This study showed that the TUGT had excellent within-day test-retest reliability and was strongly correlated with other functional tests in this group of patients. TUGT time was slower with poorer quality of life, older age, worsening disease severity and fallers. The TUGT appears to be a reliable tool, and may prove a practical outcome measure for patients with CHF.

CONTRIBUTIONS OF AUTHORS

RH conceived and designed the study and drafted the manuscript. All authors were consulted on the study design, edited and approved the manuscript. AMudge, JS and JA contributed and cleaned the data.

DECLARATION OF CONFLICTING INTERESTS:

The authors declare that there was no conflict of interest.

ACKNOWLEDGEMENTS:

The authors would like to acknowledge the funding bodies including the Australian National Health and Medical Research Council (NHMRC Project grant no. 498403); the Royal Brisbane and Women’s Hospital Foundation; and The Prince Charles Hospital Foundation. The primary author is a recipient of the National Heart Foundation of Australia’s Health Professional Scholarship (ID: 100297).

The authors would also like to thank the EJECTION study investigators, Diane Bookless for data collection, Dr Asad Khanh and Dr Anne Bernard for statistical advice, The University of Queensland, and the staff and patients of the heart failure
services at participating hospitals for support with the study.
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (n = 278)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>62.4 (13.9)</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>207 (75)</td>
</tr>
<tr>
<td>BMI (kg/m2), mean (SD)</td>
<td>31 (8)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>229 (82)</td>
</tr>
<tr>
<td>Aboriginal and Torres Strait Islanders</td>
<td>41 (15)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Etiology, n (%)</td>
<td></td>
</tr>
<tr>
<td>Ischemic cardiomyopathy</td>
<td>109 (39)</td>
</tr>
<tr>
<td>Valvular</td>
<td>13 (5)</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>50 (18)</td>
</tr>
<tr>
<td>Idiopathic dilated cardiomyopathy</td>
<td>70 (25)</td>
</tr>
<tr>
<td>Other</td>
<td>36 (13)</td>
</tr>
<tr>
<td>Heart failure with preserved ejection fraction, n (%)</td>
<td>39 (14)</td>
</tr>
<tr>
<td>LVEF (%), mean (SD)</td>
<td>31 (14)</td>
</tr>
<tr>
<td>Cardiac devices including pacemakers, implantable cardiac defibrillators and cardiac resynchronization therapy devices (%)</td>
<td>52 (19)</td>
</tr>
<tr>
<td>Co-morbidities, n (%)</td>
<td></td>
</tr>
<tr>
<td>Atrial arrhythmia in past 5 years</td>
<td>114 (41)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>101 (36)</td>
</tr>
<tr>
<td>Asthma</td>
<td>44 (16)</td>
</tr>
<tr>
<td>Condition</td>
<td>Count (Percentage)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>COPD</td>
<td>31 (11)</td>
</tr>
<tr>
<td>Cerebrovascular disease or transient ischemic attack</td>
<td>28 (10)</td>
</tr>
</tbody>
</table>

Medications, n (%)

<table>
<thead>
<tr>
<th>Medication</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE-I or ARB</td>
<td>254 (91)</td>
</tr>
<tr>
<td>B-Blockers</td>
<td>261 (94)</td>
</tr>
<tr>
<td>Furosemide</td>
<td>226 (81)</td>
</tr>
</tbody>
</table>

NYHA, n (%)

<table>
<thead>
<tr>
<th>NYHA</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>53 (19)</td>
</tr>
<tr>
<td>II</td>
<td>147 (53)</td>
</tr>
<tr>
<td>III</td>
<td>47 (17)</td>
</tr>
<tr>
<td>IV</td>
<td>31 (11)</td>
</tr>
</tbody>
</table>

Walking aid, n (%)

<table>
<thead>
<tr>
<th>Aid</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>237 (85)</td>
</tr>
<tr>
<td>Stick</td>
<td>25 (9)</td>
</tr>
<tr>
<td>4 wheeled walker</td>
<td>14 (5)</td>
</tr>
<tr>
<td>Other walking aids</td>
<td>2 (1)</td>
</tr>
</tbody>
</table>

Experienced at least one fall in last 12 months, n (%) 39 (14)

Functional capacity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Count (Standard Deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best 6MWD (m), mean</td>
<td>363 (120)</td>
</tr>
<tr>
<td>Best TUGT (seconds), median</td>
<td>8.9 (3.9)</td>
</tr>
<tr>
<td>Best 10m comfortable walk (seconds), median (IQR)</td>
<td>8.53 (3.02)</td>
</tr>
<tr>
<td>Best 10m fast walk (seconds), median (IQR)</td>
<td>6.56 (2.36)</td>
</tr>
<tr>
<td>AQoL-4D utility score</td>
<td>0.57 (0.27)</td>
</tr>
</tbody>
</table>

Abbreviations: ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; AQoL-4D, Assessment of Quality of Life – 4 dimensions; B-
blockers, beta-blockers; BMI, body mass index; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; HR, heart rate; IQR, inter-quartile range; kg, kilogram; LVEF, left ventricular ejection fraction; n, number; NYHA, New York Heart Association scale; SBP, systolic blood pressure; SD, standard deviation; TUGT, timed up and go test; 6MWD, six minute walk test distance.
Figure 1. Study flowchart

Assessed for eligibility in the EJECTION-HF study (n = 2551)

Excluded (n = 2273)
- Not met inclusion criteria (n = 984)
- Not able to attend (n = 952)
- Declined to participate (n = 337)

Randomized and allocated to groups (n = 278)

Attended baseline assessment (n = 278)
- Available TUGT1 data (n = 277)
- Available TUGT2 data (n = 268)
- Available 6MWD data (n = 277)
- Available 10m walk test data (n = 110)
Figure 2. Bland and Altman plot of the TUGT; and relationship with other variables

Bland and Altman plot of the difference against the mean of first and second TUGT (with transformation)

Relationship between the TUGT and 6MWD

Relationship between the TUGT and 10m walk test (comfortable pace)
References

