Well-aligned ZnO nanorods were uniformly coated with a layer of CuInS₂ nanoparticle photosensitizers using a tailored sequential pulsed electrodeposition. The formation of CuInS₂–ZnO heterojunction with well-matched band energy alignment and the superior electron mobility in ZnO nanorods led to a remarkable 3.75 times improved photoelectrochemical performance of the electrode under visible light irradiation.

Owing to the distinct electron transport behaviour, one dimensional (1D) nanoarrays of photoactive oxide materials have attracted considerable attention in the design of photovoltaics, liquid state photoelectrochemical cells, and photocatalysis. Semiconducting materials, for example TiO₂, Fe₂O₃, WO₃ and ZnO, have been designed in the form of nanotubes, nanorods, nanowires, nanoneedles and many other 1D-nanostructures, which could be either highly ordered or randomly packed. To extend the light-response of these wide band gap 1D-nanostructured oxides, decoration with narrow bandgap materials as photosensitizers is a popular and effective strategy. Although powders of these oxides can be conveniently coated with binary and ternary photosensitizers (e.g. CdS and CuInS₂) using hydro (solvo-)thermal method, it remains a great challenge to directly cover the surface of the 1D-nanostructures in the thin film configuration. For thin films, electrodeposition is a simple and effective technique to decorate compact films with a wide range of metallic components, but due to the differences in the deposition kinetics and mechanisms, coating the arrays of well-aligned nanorod and nanotube thin films with secondary components always results in an inadequate coverage of the 1D-nanostructures, and it is mostly limited to the top layer (or entrance) of the 1D-nanostructures. A generally accepted reason is that a gradient of precursor concentration exists throughout the length of the 1D-nanostructures. Higher concentration of the precursor at the top region of the 1D-nanostructures induces rapid nucleation or deposition when cathodic bias is applied. This leads to the immediate formation of the secondary component at the top region (entrance), and subsequently blocks/slows the diffusion of fresh precursor into the deeper region for successive deposition. CuInS₂ is a visible-light-active semiconductor with a chalcopyrite-type crystal structure. It demonstrates great potential applications in photovoltaic cells and solar hydrogen cells. Unlike depositing binary sulphides, electrodeposition of the ternary sulphide CuInS₂ is more challenging because it involves multi elemental deposition. Therefore, the objective of this study is to uniformly deposit CuInS₂ nanoparticles on vertically aligned ZnO nanorod arrays grown on a transparent charge collecting electrode, i.e. fluorine-doped tin oxide (FTO) glass substrate. The formation of effective junctions between ZnO and CuInS₂ will allow superior charge transfer from the photoexcited CuInS₂ to ZnO upon illumination. The charges can be efficiently collected at the charge collecting electrode to improve the charge utilisation. Together with greater light penetration into deeper regions of the 1-D nanostructured film, the pulsed-electrodeposited CuInS₂ thin film is expected to show improved photoelectrochemical activities. ZnO nanorod is chosen because it possesses extremely high electron mobility (200–300 cm² V⁻¹ s⁻¹), a value greater than that of the benchmark set by the semiconductor TiO₂ (0.1–4 cm² V⁻¹ s⁻¹). Coating ZnO with CuInS₂ offers various opportunities in further improving the photoresponse of light-active semiconductors. However, depositing this multi-component CuInS₂ on ZnO is challenged by the stability of ZnO in the precursor media with varied pH. Indium (typically InCl₃) precursor has a pH value of 3–4, which imposes the gradual dissolution of ZnO during the electrodeposition. A new strategy tailored for ZnO coating with multi-elements (not limited to CuInS₂) is therefore in high demand in the area of photovoltaic applications.

In this study, we present a square wave sequential pulsed-electrodeposition approach to wrap the ZnO nanorods with...
CuInS$_2$ nanoparticles. The well-aligned ZnO nanorod arrays were prepared using an established chemical bath deposition (CBD) method. Detailed experimental conditions are included in the ESI (Table S1†). X-ray diffraction (XRD) pattern in Fig. 1a shows the successful formation of a crystallized ZnO with the dominant (002) plane on the fluorine-doped tin oxide (FTO) glass substrate. Based on these ZnO nanorods, CuInS$_2$ nanoparticles were pulse-electrodeposited at the frequency of 5 Hz using three different pulsing conditions: (1) Cu deposition followed by In; (2) In deposition followed by Cu; and (3) simultaneous Cu and In deposition. Na$_2$S$_2$O$_3$ is always present in the initial pulsed electrodeposition to ensure the incorporation of sulphur component for the subsequent formation of CuInS$_2$ nanocrystals. Fig. 1b–d show the XRD patterns of the resultant CuInS$_2$–ZnO thin films with the abovementioned conditions. All XRD patterns prove the presence of CuInS$_2$ with the main (112) peak at 27.4°.

Noticeably, the peak intensity of ZnO (002) plane relative to the FTO peak was significantly decreased when CuInS$_2$–ZnO was prepared using In-deposition followed by Cu-deposition (Fig. 1c) and simultaneous Cu–In deposition (Fig. 1d). The inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses of the post-deposition electrolytes indicate the substantial amount of dissolved Zn in the latter two samples (11.6 ppm for the simultaneous Cu–In deposition; 11 ppm for the In-followed by-Cu deposition), while the Cu deposition followed by In deposition sample shows only mild dissolution of ZnO (0.13 ppm of dissolved Zn). The severity of the ZnO dissolution during the simultaneous Cu–In deposition and the In deposition followed by Cu deposition, respectively. The suppression of the ZnO dissolution in the Cu deposition followed by In deposition system was attributed to the ability of thiosulfate ions from Na$_2$S$_2$O$_3$ to reduce Cu(II) ions and instantaneously complex with the resulting Cu(I) species. The formation of this stable complex can suppress the release of H$^+$ from the Cu ion hydrolysis. Therefore, a higher pH value of 6.8 was observed in this system, which resulted in a less substantial ZnO dissolution. No similar complex has been reported for In ions. Cu deposition followed by In deposited CuInS$_2$–ZnO was therefore chosen as the optimized thin film for further investigation.

Fig. 2 shows the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of ZnO and CuInS$_2$–ZnO derived from the Cu deposition followed by In deposition sequence. Vertically aligned ZnO nanorods with an average diameter of ca. 70 nm were grown on the FTO substrate. TEM images (Fig. 2b and c) with well-defined lattice fringe of 0.26 nm ([001] plane) show highly crystalline ZnO nanorods with a relatively smooth surface, indicating the undecorated morphology of ZnO. Introducing regulated pulsed conditions (5 Hz) in the electrodeposition successfully wrapped the ZnO nanorods evenly with CuInS$_2$ nanoparticles. The slightly thicker and rougher surface of the nanorods (Fig. 2e) indicate the deposition of nanoparticles on ZnO, in which the nanoparticles were identified to be crystalline CuInS$_2$ (Fig. 2f). Note that this uniformly coated ZnO nanorod thin film was rarely seen in the samples prepared with the conventional non-pulsed electrodeposition method. As shown in Fig. S1 (ESI†), non-pulsed electrodeposition led to the formation of a thick CuInS$_2$ layer, only on the top of the ZnO nanorod arrays. Thus, the presence of pulses at an appropriate frequency during the electrodeposition is critical in ensuring the uniform photosensitizer coating on individual nanorods.

It is of interest to discuss the effect of electrodeposition conditions on the formation of CuInS$_2$ coating. The square wave pulse in this study was set at a cathodic bias (−1.25 V, 100 ms) and a relaxation bias (0 V, 100 ms). The nucleation of Cu and In was induced at cathodic bias to form the Cu/In/S intermediate (before the calcination), while the relaxation bias provided sufficient diffusion time for the fresh precursor to reach the un-nucleated sites of ZnO. The repetition of this nucleation-diffusion cycle eventually results in the wrapping of ZnO nanorods with CuInS$_2$ nanoparticles. In contrast, the
non-pulsing condition introduces continuing nucleation energy for the deposition of CuInS$_2$ throughout the deposition. The initial CuInS$_2$ nanoparticles formed on the tip of the ZnO nanorods rapidly grow into a bulky and fused CuInS$_2$ layer, which causes the ultimate blockage of the entrance to the deeper sites of ZnO nanorods. As a result, an ineffective coverage and poor heterojunction of CuInS$_2$–ZnO was formed from the non-pulsed electrodeposition.

Fig. 3a shows the Tauc plots of ZnO and CuInS$_2$–ZnO nanorod arrays. While bare ZnO nanorods demonstrate the typical UV light absorption, CuInS$_2$–ZnO has extended its photoresponse into visible light region. An optical band gap of 1.3 eV was measured on the bare CuInS$_2$ thin film prepared using this method and it is in good agreement with reported values. The considerable absorbance in the window of 390–920 nm reveals the origin of the visible light photocurrent generation, which will be discussed later. In addition to the extended light absorption, electrochemical impedance spectra (EIS) (Fig. 3b) of bare ZnO nanorods, bare CuInS$_2$ film and CuInS$_2$–ZnO film performed under visible light illumination provide useful insight on the bulk conductance of the films. At high frequency (>500 Hz), the conductance of each film is dominated by the electrolyte used in the measurement, and therefore similar values were obtained. The film conductance was indicated in the frequency range from 10 mHz to 500 Hz. The visible light-excited CuInS$_2$–ZnO thin film exhibited the highest conductance compared with the individual component of ZnO film and CuInS$_2$ film. Under visible light, bare ZnO film was not excited; thus, the intrinsic conductance of ZnO was shown. Although the bare CuInS$_2$ film was excited, its limited charge diffusion resulted in moderate bulk conductance. When combined, CuInS$_2$–ZnO film demonstrated superior film conductance because the excited charges from CuInS$_2$ were transferred to ZnO. Owing to the better electron mobility in ZnO, the film conductance is therefore enhanced in the illuminated CuInS$_2$–ZnO.

The constructive effects of extended light absorption and improved film conductance in CuInS$_2$–ZnO nanorods were reflected in their photoelectrochemical current generation. Fig. 3c shows the amperometric photoresponses of ZnO and CuInS$_2$–ZnO nanorod arrays under visible light illumination. CuInS$_2$ is determined to be an n-type semiconductor as it evidenced by the lower XRD peak for ZnO together with the illumination) compared with oxide-based photoactive films due to its slower electron transfer kinetics. For comparison, CuInS$_2$–ZnO nanorod arrays derived from the simultaneous Cu–In deposition and In deposition followed by Cu deposition sequence only generated 0.6 and 0.4 mA cm$^{-2}$, respectively (see Fig. S3 in ESI†). The lower photocurrent generated in these two samples is attributed to two reasons: (i) severe dissolution of ZnO component during CuInS$_2$ deposition as evidenced by the lower XRD peak for ZnO together with the

![Fig. 3](image-url)
the specific properties of the host materials (ZnO nanorods in importance of tailoring the deposition condition according to seen in the HRTEM image (Fig. 2f). These results highlight the optical cut-o

factor leading to a complete coating of the ZnO nanorods with an even layer of CuInS2 nanoparticles. A high quality hetero-
junction. The square wave pulsed condition was the key influential in fabricating CuInS2
the injected charge to be utilized at the counter electrode.
electron mobility in ZnO allows the e

on the counter electrode. Lastly, the superior electron mobility in ZnO facilitates the efficient transportation of the injected charge to be utilized at the counter electrode.

In summary, a tailored deposition sequence was found to be influential in fabricating CuInS2–ZnO nanorods with effective heterojunction. The square wave pulsed condition was the key factor leading to a complete coating of the ZnO nanorods with an even layer of CuInS2 nanoparticles. A high quality hetero-
junction further empowered by the energetically favoured band alignment facilitated good photoelectrochemical performances.

Acknowledgements

This work has been supported by the Australian Research Council Discovery Project (DP110101638). Yiming Tang also acknowledges the scholarship under the State Scholarship Fund awarded by China Scholarship Council. The authors would also like to acknowledge the UNSW Mark Wainwright Analytical Centre, and particularly thank Dr Katie Levick for her generous help in the TEM analysis.

Notes and references

15 Y. Choi, M. Beak and K. Yong, Nanoscale, 2014, 6, 8914.