INVESTIGATIONS INTO THE ROLE OF THE ErbB4 RECEPTOR IN CARDIOMYOCYTE HYPERTROPHY AND ADULT CARDIAC FUNCTION

Zhen Wang
B AgrSc, M AgrSc

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2014

School of Biomedical Science
Abstract

ErbB receptors (ErbB1 - ErbB4) are a subfamily of tyrosine kinase receptors that regulate cell proliferation and differentiation. It has been proposed that the ErbB1 subtype is transactivated by Ang II to mediate cardiac hypertrophy. However, whether other ErbB receptors, in particular the abundant subtype ErbB4, are involved in this process is not known. ErbB4 has four isoforms due to alternative splicing, each of which might play a distinct role in regulating cell activity. However, the role of individual ErbB4 isoforms in hypertrophic signalling has not been investigated. In addition, ErbB4 activation is critical for cardiac development, cardiomyocyte survival in various rodent models of cardiovascular pathologies. However, the physiological role of ErbB4 in the adult heart remains poorly understood. The overall aim of my PhD project is to examine the role of the ErbB4 receptor in mediating hypertrophic growth of cardiomyocytes in vitro, and maintenance of the adult heart in vivo.

To investigate the role of ErbB1, ErbB2 and ErbB4 in mediating hypertrophy, I inhibited individual ErbB receptors in primary neonatal rat ventricular cardiomyocytes using RNA interference or a pharmacological inhibitor (AG1478). Hypertrophy induced with Ang II (100 nM) or NRG1 (10 nM) was assessed by measuring the promoter activity of hypertrophic genes, ERK1/2 activation, and hypertrophic growth. The NRG1-induced hypertrophy was reduced by down-regulation of ErbB4 receptor but not other ErbB receptors. The down-regulation of individual ErbB receptor (ErbB1, ErbB2 and ErbB4) did not affect Ang II-induced hypertrophy. Similar results were observed with the receptor tyrosine kinase inhibitor, AG1478. This suggested that whilst ErbB4 is required for NRG1-induced hypertrophy, none of the individual ErbB receptor subtypes are required for Ang II-induced hypertrophy.

Following the studies above, I investigated whether the different ErbB4 isoforms had any functional differences in the cardiomyocytes. Irrespective of any changes in total ErbB4 mRNA levels, expression of the non-cleavable JM-b isoform was always predominant in adult heart in both physiological and pathological conditions. Although the cleavable isoform JM-a was detectable, it is not cleaved in cardiomyocytes. I replaced the endogenous ErbB4 with exogenous individual isoform in cardiomyocytes and found that all four isoforms of ErbB4 could mediate the NRG1-induced hypertrophic signalling. This suggests that the hypertrophy is triggered by a common feature of the four isoforms (ostensibly the kinase activity), and appears independent of isoform-specific features, such as the cleavable domain.

To investigate the physiological function of ErbB4 in adult heart, we adopted the tamoxifen-
inducible αMHC-MerCreMer/loxP system to induce ErbB4 deletion from cardiomyocytes in the adult mouse. The expression of ErbB4 was reduced by ~ 90% at 10 days after tamoxifen treatment. Echocardiography revealed no differences in cardiac function (fractional shortening) between ErbB4-conditional knockout (ErbB4-cKO) and control groups at 3-4 months after deletion of ErbB4. However, the heart weight was increased in ErbB4-cKO animals. Interestingly, there is no change in cardiac structure (cardiomyocyte size and cardiac fibrosis) or the expression of genes associated with pathological hypertrophy. This suggests that the cardiac hypertrophy observed following ErbB4 deletion may be physiological, and raises the question as to how these animals developed cardiac hypertrophy without alteration in cardiomyocyte size or development of fibrosis. One possibility is more cardiac cells generated to cause the cardiac hypertrophy. Indeed, I found that the number of pH3 (phosphorylated histone 3, a marker of proliferation) positive cells was significantly increased in ErbB4-cKO animals. Consistent with this, the expression of NRG1, the ErbB4 selective agonist, was selectively up-regulated following ErbB4 receptor deletion. NRG1 has been suggested to induce cardiomyocyte proliferation and protect the heart under pathological conditions. Thus I proposed that this up-regulation in NRG1 may explain both the cardiac cell proliferation and the lack of cardiac dysfunction in the ErbB4-cKO animals, despite the loss of the ErbB4 receptor. Finally, we examined the long-term effects of cardiac ErbB4 deletion in mice at 7-8 months after tamoxifen treatment. These ErbB4-cKO animals developed milder physiological cardiac hypertrophy than that seen in 3-4 months cohort. Surprisingly, the cardiac ErbB4 expression in the ErbB4-cKO mice was no longer different to the controls, whereas it was reduced by ~67% at 3-4 months and ~90% at 10 days after tamoxifen treatment. The potential reasons for this reversal are not clear, but may explain the unexpected maintenance of cardiac physiology in this model.

In conclusion, the data presented in this thesis demonstrates that activation of the ErbB4 receptor is required for NRG1-induced cardiomyocyte hypertrophy. All of the four isoforms of ErbB4 can mediate this hypertrophic response. Deletion of ErbB4 from cardiomyocytes in adult mice leads to physiological cardiac hypertrophy as well as an up-regulation of NRG1. We speculate that NRG1 might protect the heart from the dysfunction caused by the loss of ErbB4, and promote cell proliferation to cause cardiac hypertrophy.
Declaration by author

This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis.
Publications during candidature

Conference abstracts during candidature

Wang Z, Chan HC, Thomas WG, Paravicini TM. The function of ErbB4 receptor in the postnatal mouse heart. HBPRCA Meeting, Melbourne, 2013.

Wang Z, Chan HC, Thomas WG, Paravicini TM. Investigating the role of epidermal growth factor receptors in Ang II-induced hypertrophic signalling in cardiomyocytes. ASCEPT Meeting, Melbourne, 2013. (Student travel award)

Publications included in this thesis

No publications included.
Contributions by others to the thesis

The vast majority of the work presented in this thesis was performed by Zhen Wang. The conception and design of the experiments as well as critical revision of work was provided by Prof. Walter Thomas and Dr. Tamara Paravicini. Contribution of other researchers is listed as following:

Figure 3.1 was contributed by Dr. Hsiu-wen Chan (University of Queensland, Australia). The shErB4 vector and kdrErB4 isoform vectors used in the study in Chapter 3 and Chapter 4 were also constructed by Dr. Hsiu-wen Chan.

The RNA samples from embryonic mice hearts (Chapter 4) were provided by Dr. David Pennisi (University of Queensland, Australia).

The RNA samples from postnatal mice hearts (Chapter 4) were provided by Dr. Enzo Porrello (University of Queensland, Australia).

The RNA samples from I/R model and calcineurin transgenic mice (Chapter 4) were provided by Prof. Eric Olson (UT Southwestern Medical Center, Dallas, USA).

Echocardiography (Chapter 5) was performed with training and assistance from Dr. Fiona Campbell (School of Veterinary Science, University of Queensland, Australia).

Statement of parts of the thesis submitted to qualify for the award of another degree

None.
Acknowledgements

I have been very fortunate to study my PhD under the principal supervision of Prof. Walter (Wally) Thomas (Receptor Biology Group, School of Biomedical Sciences, The University of Queensland). To Wally, thank you very much for giving me the opportunity to work in your lab and for helping me to develop skills in experimental design, academic writing and critical thinking. As an international student, I particularly thank you for your patience, given the limitation of my language and communication and for your support and backing at each step during my PhD candidature. I appreciate your effort in helping me achieve this thesis. I sincerely appreciate all your efforts to build me into a considered and informed scientist.

To my other supervisors, Dr. Tamara Paravicini (School of Biomedical Sciences, The University of Queensland), I would thank you for your valuable suggestions on these projects throughout my PhD. I am appreciative for your help with experimental design, bench technique and your diligent and critical comments on my writing. To Prof. Chen Chen (School of Biomedical Sciences, The University of Queensland), thank you for assisting my location to Australia and your encouragement during my PhD candidature.

I would like to acknowledge the following researchers for their scientific contributions to this work: Dr. Hsiu-Wen Chan for her previous study on the EGFR transactivation, construction of the shErB4 vector and kdrErbB4 isoform vectors and her contribution to the Figure 3.1 in Chapter 3 of my thesis; Dr. Brooke Purdue (Receptor Biology Group, School of Biomedical Sciences, The University of Queensland) for training me in molecular biology; Dr. Enzo Porrello (Heart Regeneration Group, School of Biomedical Sciences, The University of Queensland) for providing the protocol for pH3 staining, providing RNA samples of postnatal mice and valuable advice on my project; Dr. David Pennisi (The University of Queensland) for embryonic mice heart isolation and RNA extraction; Prof. Eric Olson (UT Southwestern Medical Center, Dallas, USA) for provision of
mice hearts from I/R model and calcineurin transgenic mice; and Dr. Fiona Campbell (School of Veterinary Science, The University of Queensland) for help with the echocardiography.

This project would have been impossible without financial support. I would take this opportunity to thank the University of Queensland and the China Scholarship Council, who provided a joint scholarship to support my tuition and living stipend in Australia, the Australian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT) and High Blood Pressure Research Council of Australia (HBPRCA) who provided travel awards to fund my travel and attendance at their conferences.

To all the members in Wally’s lab, thank you for your scientific input, support and friendship during my PhD study. Without you guys around, the PhD journey would have been less enjoyable. Similarly, to friends and colleagues within the SBMS, and across UQ, whom I have interacted with, thank you.

Last but not least, a big thank you to my family, Mum and Dad for all your understanding and support; and to my husband, Yan Yun, for his constant encouragement and support, which kept me always positive.
Keywords

ErbB4, Ang II, NRG1, transactivation, cardiomyocyte hypertrophy, conditional knockout

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 060110, Receptor and Membrane Biology, 80%

ANZSRC code: 110201, cardiology 20%

Fields of Research (FoR) Classification

FoR code: 0601, Biochemistry and Cell Biology, 80%

FoR code: 1102, Cardiovascular medicine and haematology, 20%
Table of contents

Abstract .. ii
Declaration by author .. iv
Publications during candidature .. v
Publications included in this thesis .. v
Contributions by others to the thesis ... vi
Statement of parts of the thesis submitted to qualify for the award of another degree vi
Acknowledgements ... vii
Keywords ... ix
Australian and New Zealand Standard Research Classifications (ANZSRC) ix
Fields of Research (FoR) Classification ... ix
Table of contents .. x
List of Figures & Tables ... xv
Abbreviations ... xviii
1. General introduction ... 2
 1.1 Cardiac hypertrophy ... 2
 1.1.1 Epidemiology and definition of cardiac hypertrophy 2
 1.1.2 Cardiomyocyte hypertrophy ... 2
 1.1.3 Types of cardiac hypertrophy .. 2
 1.1.4 Therapy for cardiac hypertrophy ... 4
 1.1.5 Factors and mechanisms that can induce cardiac hypertrophy 4
 1.1.6 Ang II induces cardiomyocyte hypertrophy .. 5
 1.2 The ErbB receptors ... 8
 1.2.1 Overview of ErbB receptors ... 8
 1.2.2 The function of ErbB receptors in heart ... 12
 1.2.3 Signalling pathways of ErbB receptors ... 12
 1.2.4 EGF-like factors ... 14
 1.3 Transactivation of ErbB receptors ... 17
 1.3.1 Transactivation of ErbB by GPCRs .. 17
 1.3.2 Potential mechanisms for ErbB1 transactivation by Ang II: the TMPS pathway 17
 1.4 Characteristics of the ErbB4 isoforms ... 21
 1.4.1 Introduction to the ErbB4 isoforms ... 21
 1.4.2 Cleavage in the JM-a domain ... 23
1.4.3 Biological function of the ICD ... 23
1.5 Cardiomyocyte proliferation .. 26
1.6 Importance of the NRG1-ErbB4 signalling axis ... 29
1.6.1 An introduction to NRG1 ... 29
1.6.2 NRG1 signalling and cardiomyocyte hypertrophy 29
1.6.3 NRG1 signalling in cardiac protection ... 30
1.6.4 NRG1 signalling in cardiomyocyte contraction/relaxation 31
1.6.5 NRG1 signalling in cardiomyocyte proliferation ... 32
1.6.6 Interactions between NRG1 signalling and the endocrine system 33
1.6.7 Function of ErbB2 and ErbB4 in the heart .. 33
1.7 The rationale and aims for this project ... 36
2. General Methods .. 38
2.1 Animal Ethics statement ... 38
2.2 Chemicals and reagents .. 38
2.3 Vector constructs .. 38
2.4 Cell culture .. 39
2.4.1 Cardiomyocyte culture ... 39
2.4.2 Maintenance of CHO and HEK293-T cell lines 39
2.4.3 Drug treatment ... 40
2.5 DNA/siRNA Transfection .. 40
2.5.1 DNA Transfection .. 40
2.5.2 siRNA transfection ... 41
2.6 Luciferase assays ... 41
2.7 Protein extraction and Western analysis .. 42
2.7.1 Protein extraction and BCA assay .. 42
2.7.2 SDS-PAGE and Western blot analysis .. 42
2.8 RT-qPCR .. 43
2.8.1 RNA extraction ... 43
2.8.2 DNase treatment ... 43
2.8.3 cDNA synthesis ... 44
2.8.4 Real-time PCR ... 44
2.8.5 Relative quantification of the real-time PCR .. 45
2.9 Data presentation and statistical analysis ... 45
3. The role of ErbB receptors in Ang II-induced cardiomyocyte hypertrophy 48
6. General Discussion .. 154
REFERENCES ... 167
APPENDICES ... 199

Appendix A: Solutions and buffers .. 200
Appendix B: PCR primers .. 202
Appendix C: pEGFP-N1-ErbB4 vector cloning strategy .. 206
Appendix D: pCR®-TOPO-ErbB4-JM/CYT vector cloning strategy ... 207
List of Figures & Tables

Figures

Figure 1.1 Classic Gq signalling pathway mediated by AT₁R with Ang II stimulation

Figure 1.2 Structure of ErbB4 in active and inactive conformation

Figure 1.3 Downstream effectors recruited to individual ErbB receptors

Figure 1.4 Triple membrane-passing signalling (TMPS) pathway.

Figure 1.5 Structural differences of ErbB4 isoforms.

Figure 3.1 Different ErbB ligands produce different effects on hypertrophy and remodeling

Figure 3.2 ErbB silencing by shRNA in a cell line

Figure 3.3 A role for ErbB receptors in hypertrophic gene promoter activity

Figure 3.4 Divergent effects of the ErbB inhibitor AG1478 and Gq inhibitor YM254890 on ERK1/2 phosphorylation and ANP promoter activity in response to NRG1β1 and Ang II stimulation.

Figure 3.5 Selective knockdown of ErbB receptor expression with siRNA.

Figure 3.6 Selective knockdown of ErbB receptors differentially affects activation of ERK1/2 by NRG1β1 and Ang II.

Figure 3.7 Effect of ErbB receptor knockdown on NRG1β1-induced hypertrophy.

Figure 4.1 The developmental expression profile of ErbB4 isoforms.

Figure 4.2 Standard curves for individual ErbB4 isoforms.

Figure 4.3 Absolute expression of ErbB4 isoforms in the heart at different developmental stages.

Figure 4.4 Regulation of ErbB4 isoform expression in an ischaemia-reperfusion model.

Figure 4.5. Regulation of ErbB4 isoform expression in a transgenic model of cardiac hypertrophy.

Figure 4.6 Cleavage of endogenous ErbB4 in primary cardiomyocytes following PMA stimulation.
Figure 4.7 Cleavage of exogenous ErbB4-GFP in PMA-stimulated HEK-293 cells.

Figure 4.8 Trafficking of ErbB4-GFP in cardiomyocytes following stimulation with PMA or NRG1.

Figure 4.9: Hypertrophic gene promoter activity in NRG1-stimulated cardiomyocytes expressing only a single isoform of ErbB4.

Figure 5.1 Breeding scheme for transgenic animal generation.

Figure 5.2 Genotyping of the Cre recombinase and floxed ErbB4 transgenes.

Figure 5.3 Heart-specific deletion of the ErbB4 in knockout animals.

Figure 5.4 Breeding scheme for control animal generation.

Figure 5.5 Cre copy number detected with qPCR.

Figure 5.6 Effect of Cre recombinase induction on cardiac function at 3-4 months post-tamoxifen.

Figure 5.7 Effect of Cre on heart function in 7-8 months measured by Echocardiography.

Figure 5.8 Effect of Cre on heart weight in 3-4 months.

Figure 5.9 Effect of Cre on heart weight in 7-8 months.

Figure 5.10 The regulation of hypertrophic genes and fibrosis genes by Cre activity assessed by real-time PCR.

Figure 5.11 Expression of ErbBs were not affected by the Cre activity.

Figure 5.12 Echocardiographic assessment of cardiac function.

Figure 5.13 Effect of deletion of ErbB4 on heart weight.

Figure 5.14 Effect of deletion of ErbB4 on cardiomyocyte cross sectional area.

Figure 5.15 Effect of the ErbB4 deletion on cardiac fibrosis.

Figure 5.16 Expression of ErbB1, ErbB2 and ErbB4 following ErbB4 deletion.

Figure 5.17 Expression of NRG family following ErbB4 deletion.
Figure 5.18 Expression of other EGF-like factors following the deletion of ErbB4.

Figure 5.19 The proliferation of cardiac cells at 3-4 months following ErbB4 deletion.

Figure 5.20 Expression of ErbB4 at 3-4 months after tamoxifen injection.

Figure 5.21 Echocardiographic assessment of cardiac function.

Figure 5.22 Effect of deletion of ErbB4 on heart weight.

Figure 5.23 Effect of deletion of ErbB4 on expression of hypertrophic and fibrosis genes.

Figure 5.24 Expression of ErbB4 at 7-8 months after tamoxifen injection.

Tables

Table 1.1 The specificity of ligand binding to ErbB receptor subtypes and activation by specific ADAMs.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>angiotensin-converting-enzyme</td>
</tr>
<tr>
<td>ADAM</td>
<td>A disintegrin and metalloprotease</td>
</tr>
<tr>
<td>Ang II</td>
<td>Angiotensin II</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ANP</td>
<td>Atrial natriuretic peptide</td>
</tr>
<tr>
<td>AP-2</td>
<td>Activator protein 2</td>
</tr>
<tr>
<td>AREG</td>
<td>amphiregulin</td>
</tr>
<tr>
<td>AT₁R</td>
<td>Angiotensin II type 1 receptor</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BNP</td>
<td>Brain natriuretic peptide</td>
</tr>
<tr>
<td>BrdU</td>
<td>bromodeoxyuridine</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BTC</td>
<td>betacellulin</td>
</tr>
<tr>
<td>COL1A1</td>
<td>alpha-1 type I collagen</td>
</tr>
<tr>
<td>COL3A1</td>
<td>alpha-1 type III collagen</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>ER</td>
<td>estrogen receptor</td>
</tr>
<tr>
<td>ErbB4-cKO</td>
<td>ErbB4 conditional knockout</td>
</tr>
<tr>
<td>EREG</td>
<td>epiregulin</td>
</tr>
</tbody>
</table>
ERK extracellular signal-regulated kinase
ET-1 endothelin-1
FBS foetal bovine serum
FS fractional shortening
Gab1 Grb2-associated binder 1
GFP green fluorescent protein
GPCR G protein-coupled receptor
Grb2 growth factor receptor-bound protein 2
HB-EGF heparin-binding epidermal growth factor
HW Heart weight
ICD Intracellular domain
IGF insulin-like growth factor
IP_3 inositol trisphosphate
IVS intraventricular septum thickness
Kap1 Krab-associated protein 1
KW Kidney weight
LB Luria broth
LPA lysophosphatic acid
LVID left ventricular internal dimension
LVPW left ventricle posterior wall thickness
MEM modified Eagle’s media
MLC-2V myosin light chain 2v
MMP Matrix metalloproteases
NG neuregulin
PBS phosphate-buffered saline
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDGFR</td>
<td>Platelet-derived growth factor receptor</td>
</tr>
<tr>
<td>pH3</td>
<td>phosphorylated histone H3</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>RAS</td>
<td>renin-angiotensin system</td>
</tr>
<tr>
<td>SERCA</td>
<td>reticulum calcium ATPase</td>
</tr>
<tr>
<td>SH2</td>
<td>Src homology 2 domain</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin ribonucleic acid</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering ribonucleic acid</td>
</tr>
<tr>
<td>STAT5A</td>
<td>signal transducer and activator of transcription 5A</td>
</tr>
<tr>
<td>TGFα</td>
<td>transforming growth factor α</td>
</tr>
<tr>
<td>TL</td>
<td>Tibial length</td>
</tr>
<tr>
<td>VSMC</td>
<td>vascular smooth muscle cell</td>
</tr>
<tr>
<td>WGA</td>
<td>Wheat germ agglutinin</td>
</tr>
<tr>
<td>YAP</td>
<td>Yes-associated protein</td>
</tr>
<tr>
<td>α-MHC</td>
<td>α myosin heavy chain</td>
</tr>
<tr>
<td>β-MHC</td>
<td>β myosin heavy chain</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL INTRODUCTION
1. General introduction

1.1 Cardiac hypertrophy

1.1.1 Epidemiology and definition of cardiac hypertrophy

Cardiovascular diseases (CVD) such as heart failure, stroke, heart attack, cardiomyopathy and peripheral arterial disease killed 17.3 million people in 2008, representing 30% of all global deaths. It is estimated that by 2030 CVD and its complications will still be the leading cause of death in the world, with 24 million people affected (WHO, 2010). Considerable numbers of CVD patients have cardiac hypertrophy, which is an increase in cardiac mass primarily occurring through the enlargement of individual cardiomyocytes. It is initially a compensatory growth response to increased demand for cardiac function caused by various physiological or pathological stimuli. At some point, this compensation fails to meet demand and the heart transitions to failure, accompanied by stiffening of the cardiac tissue (fibrosis). Heart failure is irreversible and continues despite best available therapies, and is a primary risk factor for early death.

1.1.2 Cardiomyocyte hypertrophy

The heart is mainly composed of cardiomyocytes and fibroblasts. Cardiomyocytes occupy approximately 75% of the normal myocardial tissue volume and comprise between 30-40% of the total cell numbers (Adler et al., 1981; Vliegen et al., 1991). During embryogenesis, cardiomyocytes can both proliferate and enlarge to cause cardiac growth. Shortly after birth in mammals, the cardiomyocytes exit the cell cycle and lose the ability to proliferate (Markwald et al., 2010). Thus, postnatal heart growth is mainly dependent on the enlargement (i.e., hypertrophy) of differentiated cardiomyocytes. Cardiomyocyte hypertrophy represents an increase in the mass of the cardiac muscle cells without proliferation (Dorn, 2007). It is a compensatory growth response to increased demand for cardiac function.

1.1.3 Types of cardiac hypertrophy

Cardiac hypertrophy can be categorised as physiological or pathological according to the nature of the stimuli and whether the hypertrophy is reversible or not (Frey et al., 2003; Heineke et al., 2006; McMullen et al., 2007). Physiological cardiac hypertrophy is observed during pregnancy and as a consequence of exercise. Physiological cardiac hypertrophy is usually reversible - thus, the cardiac hypertrophy observed in athletes (Ellison et al., 2011) or pregnancy (Mone et al.,
1996; Eghbali et al., 2005) (due a demand for increased cardiac output) often regresses after the cessation of training or delivery of the newborn. In contrast, pathological hypertrophy is usually caused by chronic hypertension, an overactive neurohormonal system (such as the renin-angiotensin system or increased sympathetic drive), or other diseases associated with cardiovascular disease, such as diabetes. Pathological hypertrophy initially resembles physiological hypertrophy as an adaptive mechanism to preserve cardiac function in the short-term (Iemitsu et al., 2001). However, in the longer term, the persistent cardiac hypertrophy will cause the death of cardiomyocytes, which are replaced by proliferating fibroblasts (Grossman, 1980; Shiojima et al., 2005). The cardiac function declines due to the loss of cardiomyocytes and the ensuing fibrosis. This process is termed cardiac remodelling and eventually leads to heart failure. Pathological cardiac hypertrophy has been recognized as an important predictor for cardiovascular morbidity and mortality as well as an independent risk factor for heart failure, myocardial infarction, arrhythmias and sudden death (Wachtell et al., 2007; Artham et al., 2009; Bombelli et al., 2009; Søraas et al., 2010).

Morphologically, cardiac hypertrophy can be categorised as concentric hypertrophy or eccentric hypertrophy (Grossman et al., 1975). Concentric hypertrophy is characterised by an increase in ventricular wall thickness, and at the cellular level the cardiomyocytes grow in a transverse direction without changes in cell length (Carabello, 2002). Eccentric hypertrophy is exemplified by ventricle cavity dilatation that can lead to dilated cardiomyopathy. At a cellular level, it is characterised by hypertrophic growth of cardiomyocyte hypertrophy in both the longitudinal and transverse directions (Grossman et al., 2013). The stimuli that cause pressure overload (e.g. hypertension) result in concentric hypertrophy, whilst stimuli that cause volume overload (e.g. aortic regurgitation) lead to eccentric hypertrophy (McMullen et al., 2007).

At a molecular level, pathological cardiac hypertrophy is usually characterized by sarcomere reorganisation and induction of the fetal gene program in cardiomyocytes (Drazner, 2005). The sarcomere is the basic unit of muscle cells. Sarcomere reorganisation resulting in the remodelling of the cardiomyocytes, affecting the ability of the cardiomyocytes to contract (Telley et al., 2007). The activation of the “fetal gene program” involves the re-expression (in the adult) of genes normally only expressed during fetal development including of α-skeletal actin, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP) and myosin light chain-2v (MLC-2V) (Parker et al., 1990; Taegtmeyer et al., 2010). Some of the induced fetal genes code for contractile proteins. The re-induction of fetal gene expression is coupled with the down-regulation of genes which are normally
expressed at high levels in the adult ventricle, such as α-MHC and sarco/endoplasmic reticulum calcium ATPase (SERCA2) (Barry et al., 2008). The dysregulation of these contractile and Ca\(^{2+}\) handling proteins potentially contributes to alterations in the contractile ability of cardiomyocytes (Razeghi et al., 2001; Taegtmeyer et al., 2010).

1.1.4 Therapy for cardiac hypertrophy

The presence of cardiac hypertrophy is usually an adverse characteristic of various cardiovascular disorders, and regression or prevention of cardiac hypertrophy has benefits in reducing the risk of CV events and sudden cardiac death in the hypertensive population (Wachtell et al., 2007; Artham et al., 2009; Bombelli et al., 2009; Søraas et al., 2010). As hypertension is commonly associated with the development of pathological left ventricle hypertrophy (LVH), most anti-hypertensive drugs can attenuate LVH, such as angiotensin converting enzyme (ACE) inhibitors and Ang II type 1 receptor (AT\(_1\)R) blockers (ARB) (Solomon et al., 2011; Müller et al., 2012), calcium channel blockers (Devereux et al., 2001), and β-blockers (Cabrera-Bueno et al., 2007). Each treatment may reduce the LVH to a different extent, which correlates with the degree of blood pressure reduced (Kjeldsen et al., 2002; Ruilope et al., 2008). However, meta-analysis of clinical trials has proposed that ACE inhibitors and ARBs have a better efficacy for LVH regression compared to other drugs (Devereux et al., 2001; Dahlöf et al., 2002; Klingbeil et al., 2003; Okin et al., 2003; Pitt et al., 2003; Dahlöf et al., 2005), suggesting the importance of activation of RAS in cardiac hypertrophy.

1.1.5 Factors and mechanisms that can induce cardiac hypertrophy

Factors causing pathological cardiac hypertrophy can be categorized as mechanical or chemical. Pressure overload (due to increased systolic pressure) or volume overload (due to increased diastolic pressure) are forms of mechanical stress that can arise from hypertension (Roman et al., 2010; Katholi et al., 2011), exercise, pregnancy, or cardiac dysfunction (Dorn, 2007). This causes an increase in cardiac wall tension and adaptive growth of the myocardium to normalize this tension, resulting in cardiac hypertrophy (Frey et al., 2003; Frey et al., 2004). The molecular mechanisms linking mechanical stress and cardiac hypertrophy have yet to be fully identified (Heineke et al., 2006). However, many hormonal factors such as endothelin-1 and Ang II are released in an autocrine or paracrine way during this process, which can contribute to the cardiac hypertrophy (Yamazaki et al., 1996). Cardiac homeostasis is maintained by a complex network of hormonal factors that regulate cardiac structure, growth, survival and function. Disorders in the production and regulation of these hormones can thus be a stimulus for pathological cardiac
hypertrophy. For instance, endothelin-1 has been found to be up-regulated in human and rat right ventricular hypertrophy (Nagendran et al., 2013), and cardiac specific deletion or inhibition of the endothelin-1 receptor attenuates aging-associated or pressure overload induced cardiac hypertrophy in rodents (Ceylan-Isik et al., 2013; Visnagri et al., 2013). The molecular mechanism by which hormonal stimuli such as endothelin-1 and Ang II cause cardiac hypertrophy is via binding and activating their receptors, which primarily are GPCRs (Sugden et al., 1998).

G protein-coupled receptors (GPCRs) are seven-transmembrane spanning proteins that couple to GTP-binding proteins (heterotrimeric G proteins) and use the latter to transduce signals to activate effector enzymes and to open cell surface ion channels (Hanson et al., 2009). G proteins have three subunits: Ga, Gβ, and Gγ. Ga can be further divided into four classes according to the downstream effectors: Gas, Gai, Gaq and G12/13 (Wall et al., 1995). Gas and Gai have opposite effects in that Gas activates adenylyl cyclase (AC), whereas Gai inhibits AC. Gaq can activate the phospholipase C (PLC) pathway. The Gβ and Gγ subunits form a tight bond and in the inactive state they are associated with the Ga subunit. When GPCRs are activated, this catalyses the GTP-GDP exchange on the Ga subunit and causes the dissociation of Ga from the Gβ/γ subunits, which can then activate downstream effectors (Casey et al., 1988). The Gaq-coupled GPCRs are the predominant GPCRs that mediate cardiac hypertrophy (Esposito et al., 2002). Expression of a constitutively activate Gaq mutant in cardiomyocytes resulted in hypertrophic growth, which then rapidly progressed to apoptotic cardiomyocyte death (Adams et al., 1998). Consistent with this, genetic overexpression of Gq to autonomously activate Gq signalling in cardiomyocytes induced stable cardiac hypertrophy in heterozygous transgenic mice, whereas the persistent high level of the Gaq activation in double heterozygous transgenic mice resulted in heart failure (Adams et al., 1998). Amongst the agonists for Gaq-coupled GPCRs, Ang II is one of the prime agents that can induce cardiac hypertrophy both in vitro and in vivo.

1.1.6 Ang II induces cardiomyocyte hypertrophy

Ang II is a octapeptide produced by the renin-angiotensin system (Ferrario, 2011). Ang II is known to increase blood pressure by causing blood vessel constriction and increasing salt and water retention (Cassis et al., 2009), however Ang II can also induce cardiomyocyte growth directly. In isolated neonatal rat cardiomyocytes, stimulation with Ang II for 48 h induced a significant increase in cardiomyocyte protein synthesis without changing the DNA synthesis rate (Sadoshima et al., 1993). The expression of “fetal gene program” genes (including myosin light chain 2v (MLC-2v), skeletal α actin, CyclinD, and atrial natriuretic factor (ANP)) was elevated at 6 hours of Ang II
stimulation (Sadoshima et al., 1993). In mice, chronic subpressor doses of Ang II significantly induced left ventricular hypertrophy and increased in cardiomyocyte cross section area without changes in blood pressure (Schultz et al., 2002). ACE inhibitor treatment to reduce the systemic production of Ang II in hypertensive rats (abdominal aorta banding model) inhibited cardiac hypertrophy, whereas normalisation of blood pressure with an arterial vasodilator or calcium antagonist did not (Linz et al., 1989), suggesting that Ang II is an independent factor for cardiac hypertrophy. However, whether Ang II can induce cardiac hypertrophy independently of its effects on blood pressure remains controversial. Coffman et al. showed that the increase in blood pressure, but not the direct effect of Ang II on cardiac cells, was responsible for cardiac hypertrophy in a model of Ang II-induced hypertension. The deletion of the major Ang II receptor subtype in the kidney inhibited Ang II-induced hypertension and cardiac hypertrophy, whereas extrarenal deletion of the receptor did not (Crowley et al., 2006). Although these experiments are well performed with proper controls, it is hard to refute the observations of other studies suggesting that Ang II directly targets cardiomyocytes to induce hypertrophic growth.

Ang II induces cardiomyocyte hypertrophy by binding to and activating the AT1R receptor. The AT1R is the major receptor for Ang II in cardiomyocytes and is a member of the GPCR family with a molecular mass of approximately 41 kDa (Mukoyama et al., 1993; Yasuda et al., 2008). Upon binding Ang II, AT1R is activated and predominantly trigger Gq signalling pathways (Mehta et al., 2007; Harris et al., 2009). The classical Gαq signalling pathway activated by AT1R is shown in Figure 1.1 (Dr. Hsiu-Wei Chan, PhD thesis): AT1R interacts with the Gq protein leading to the activation of protein kinase C (PKC) and mobilization of Ca2+ from intracellular stores. The activated PKC and mobilized Ca2+ trigger individual downstream signalling pathways (Ohtsu et al., 2008). PKC is a critical kinase that regulates multiple cellular activities such as cell proliferation, survival and apoptosis. In cardiomyocytes, it is involved in the regulation of cardiomyocyte contraction and hypertrophic growth (Mackay et al., 2001; Braz et al., 2002). PKC has multiple subtypes, and by now at least 12 isoforms have been identified (Steinberg, 2012). In cardiomyocytes, the most abundant isoform is PKCα (Pucéat et al., 1994). The activation of PKCα promotes the hypertrophic growth of cardiomyocytes (Sabri et al., 2003) and PKC inhibition attenuates agonist-induced hypertrophy (Zou et al., 1996). Although some of these signalling pathways have been discovered, the detailed molecular mechanisms of how AT1R activation leads to hypertrophic growth have yet to be fully identified. There is evidence showing that activation of epidermal growth factor receptor (EGFR), a member of the ErbB family, is involved in, and critical for, the cardiomyocyte hypertrophy caused by Ang II.
Figure 1.1 Classic Gq signaling pathway mediated by AT1R with Ang II stimulation. In the inactive state, the GDP-bound α subunit is associated with the Gβγ subunits. Upon activation, GPCRs catalyse the GTP-GDP exchange on the Ga subunit and subsequently results in the dissociation of the Ga from the βγ subunits, each unit triggering different intracellular signalling cascades (Lee et al., 1992). The classical Gq signalling pathway activated by AT1R involves hydrolysis of phosphoinositides by active PLC, leading to the generation of diacylglycerol (DAG) and inositol trisphosphate (IP3) (Hepler et al., 1993; Smrcka et al., 1993). IP3 mobilises Ca2+ from its intracellular stores while DAG activates PKC. Figure from Dr. Hsiu-wen Chan (PhD thesis).
1.2 The ErbB receptors

1.2.1 Overview of ErbB receptors

ErbB receptors are a subfamily of receptor tyrosine kinases that regulate cell proliferation, survival and differentiation (Burgess, 2008). There are currently four known ErbB receptor subtypes encoded by distinct genes - ErbB1, ErbB2, ErbB3 and ErbB4 (Scaltriti et al., 2006). The sequence identity of ErbB receptors ranges from 37% - 49% with a molecular mass of approximately 180 kDa (Jorissen et al., 2003). The typical ErbB receptor comprises a large extracellular ligand-binding domain (ECD), a single transmembrane domain, an intracellular tyrosine kinase domain and a carboxyl-tail (Figure 1.2). Most ErbB receptors are in an inactive conformation in the absence of ligands. Ligand binding results in a conformational change in the ECD and tyrosine kinase domain, exposing previously embedded surfaces. The surface exposure in the ECD promotes dimer formation between ErbB receptors (Weiss et al., 1998) and the critical sites exposed in the tyrosine kinase domain results in the activation of the kinase (Zhang et al., 2006). The receptor dimerisation brings the intracellular kinase domains in each receptor into proximity to cross-phosphorylate the tyrosine residues in the cytoplasmic tail of its neighbour receptor in the dimeric complex (Hubbard et al., 1998) (Figure 1.2). The phosphotyrosine residues in the cytoplasmic tail provide binding sites for multiple factors containing Src-homology 2 (SH2) domain or phosphotyrosine binding (PTB) domains (Sweeney et al., 2000), which recruit downstream effectors to trigger signalling (Olayioye et al., 2000; Yarden et al., 2001; Mendelsohn et al., 2003). The recruitment specificity is determined by the amino acids surrounding the phosphotyrosine residues of the receptor. Thus, each ErbB receptor can trigger a unique complex of intracellular signalling pathways based on this specificity (Figure 1.3). ErbB receptors can form both homodimers and heterodimers (Figure 1.2).

The diversity of the heterodimerisation formed by different ErbB receptors adds more variety to the ErbB signalling pathways (Burgess, 2008). ErbB2 differs from other subtypes as its extracellular region is unable to bind any identified ligand, and thus it mainly functions as the preferred ErbB dimerisation partner (Timolati et al., 2006). ErbB2 adopts an active conformation and can enhance the dimerisation and the downstream signalling. ErbB3 can bind ligands and provides multiple docking sites for downstream effectors in its cytoplasmic tail, however, due to an abrogated kinase activity, it has to trigger downstream signalling with the assistance of dimerising partners (Rohrbach et al., 2005). All ErbB receptors are detectable in the embryonic heart across different species. In postnatal cardiomyocytes, the expression level of ErbB receptors declines and the expressed subtypes include ErbB1, ErbB2 and ErbB4 (Zhao et al., 1998; Rohrbach et al., 1999),
Chapter 1: General introduction

with ErbB2 and ErbB4 being the most abundant subtypes. ErbB3 is not expressed at high levels in postnatal cardiomyocytes (Zhao et al., 1998; Rohrbach et al., 1999).
Figure 1.2 Structure of ErbB receptors in active and inactive conformation. The ectodomain of ErbB receptor is heavily N-glycosylated and characterised by two cysteine-rich regions which produce 25 disulfide bonds, forming a ligand binding site. The cytoplasmic region includes a tyrosine kinase domain and C-terminal domain containing binding sites for multiple factors. The majority of ErbB receptors stay in an inactive conformation without the ligand binding. The exception is ErbB2, which adopts the ligand binding conformation in the absence of ligand. Upon activation, the ErbB receptors can form homo- and hetero-dimers with each other. The typical dimers formed are shown in the bottom panel.
Figure 1.3 Downstream effectors potentially recruited to individual ErbB receptors.
Each ErbB receptor can recruit multiple downstream effectors upon activation. The recruitment specificity is determined by the amino acids surrounding the phosphotyrosine residues in the carboxyl-tail of the receptor. The Shc and Grb2 proteins are commonly recruited by ErbB receptors and can lead to activation of MAPK signalling pathways. The numbers shown represents the amount of binding sites provided by each receptor for a particular protein. Together, each ErbB receptor induces a unique combination of downstream signalling patterns in addition to the fundamental Shc and Grb2 pathways.
1.2.2 The function of ErbB receptors in heart

The importance of ErbB signalling in the heart is highlighted by observations from transgenic mice. Mutations in ErbB2 and ErbB4 lead to a lethal phenotype at embryonic day (E) 10.5 due to defects in ventricular trabeculae formation (Gassmann et al., 1995; Lee et al., 1995; Sibilia et al., 1995). ErbB3 null mice have normal heart trabeculation but have disrupted endocardial cushion formation and die at E13.5 (Erickson et al., 1997; Riethmacher et al., 1997). ErbB1 null mice have severe defects, and die before birth or within 2-3 weeks postnatally depending on the genetic background (Miettinen et al., 1995; Threadgill et al., 1995). Besides their essential function in heart development, ErbB receptors also play important roles in regulating cardiac growth, survival and function in the postnatal heart. Cardiomyocyte-specific expression of a dominant-negative ErbB1 in adult mice blocked both ErbB1 and ErbB2 phosphorylation, resulting in cardiac dilation and decreased cardiac contraction (fractional shortening) (Rajagopalan et al., 2008). The phenotype caused by cardiac specific deletion of ErbB2 in adult heart has not yet been reported. However, administration of an ErbB2 blocking antibody in humans increases the risk of heart failure (Seidman et al., 2002). Consistent with this, inhibition of ErbB2 activity causes myofibrillar structural damage and associated inhibition of excitation-contraction coupling (Pentassuglia et al., 2009b), suggesting that ErbB2 receptors are required for adult heart homeostasis. Currently, the phenotype of ErbB4 deletion in adult heart has not been reported, although accumulating evidence indicates that ErbB4 signalling may be important in regulating adult cardiomyocyte function (refer to section 1.6.7).

In addition to its critical function in regulating cardiac homeostasis, activation of ErbB receptors mediates cardiac hypertrophy both in vivo and in vitro. Activation of ErbB1 has been reported to mediate cardiomyocyte hypertrophy to Ang II (Asakura et al., 2002). In cell culture, ErbB4 agonists induced potent cardiomyocyte hypertrophy (Zhao et al., 1998). More detail on the cardiomyocyte hypertrophy induced by direct administration of ErbB agonists is discussed in section 1.2.4.

1.2.3 Signalling pathways of ErbB receptors

As mentioned above, there are highly diversified pathways activated by ErbB receptors due to heterodimerisation of these receptors. Among them are two fundamental and critical pathways mediating cardiac hypertrophy, the MAPK and PI3K-Akt pathways. Upon activation, ErbB receptors activate Ras GTPases (Yarden et al., 2001). Ras GTPases are a family of mostly membrane resident proteins that shuttle between an inactive GDP-bound and active GTP bound
conformation (Scheffzek et al., 1997; Coleman et al., 2004). In its activation conformation, Ras-GTP binds to a number of effector molecules, including the serine/threonine kinase Raf and phosphoinositide 3-kinase and recruits them to the membrane compartment for activation and signalling (Kumar et al., 2005).

The Ras-Raf-MEK-ERK (MAPK) pathway

The MAPK pathway is a primary mechanism by which extracellular mediators, such as growth factors, can regulate cellular activities such as cell growth, survival, apoptosis and metabolism. After recruitment to the cell membrane by Ras-GTP, Raf activates upstream kinases to stimulate the extracellular signal-regulated kinases1/2 (ERK1/2). There are at least 5 members of the ERK family (ERK1 to 5), which are activated and regulated by different upstream kinases (Nishimoto et al., 2006). ERK1/2 proteins are phosphorylated on threonine and adjacent tyrosine residues in the Thr-Glu-Tyr motif. ERK1/2 are the most intensively studied and abundantly expressed ERK family members (Nishimoto et al., 2006). In cardiomyocytes, ERK1/2 activation plays an important role in mediating cardiomyocyte hypertrophy. Cardiac-specific activation of ERK1/2 by overexpression of activated MEK1 (the immediate upstream activator of ERK1/2) in 9 independent MEK1 transgenic mouse lines led to stable concentric hypertrophy in the majority of these mice lines. Most activated MEK1 transgenic lines demonstrated a 25-30% increase in heart to body weight ratio with increased cardiac function and no signs of cardiomyopathy until 12 months of age (Bueno et al., 2000). The mechanism by which ERK1/2 activation causes cardiomyocyte hypertrophy is complicated. It has been proposed that ERK1/2 regulates protein synthesis during cardiomyocyte hypertrophy via an association with p70 S6 kinase (Wang et al., 2001). ERK1/2 is also associated with phosphorylation of transcriptional factors such as GATA4 that regulate ribosomal RNA transcription in cardiomyocytes (Morimoto et al., 2000; Liang et al., 2001). GATA4 is a cardiac-enriched transcriptional factor critical in the regulation of most cardiac-expressed structural genes such as α-myosin heavy chain, myosin light chain 1/3, and cardiac troponin C and I (Molkentin, 2000);(Liang et al., 2002; Akazawa et al., 2003), as well as hypertrophy responsive genes such as BNP (Hasegawa et al., 1997).

PI3K-Akt pathway

Another important downstream pathway activated by ErbBs in cardiac hypertrophy is the phosphoinositide 3-kinase (PI3K) pathway. PI3Ks belong to a family of lipid kinases which convert phosphatidylinositol (4, 5)-bisphosphate (PIP2) into phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3). PIP3, in turn, causes the phosphorylation of the kinase Akt. Akt can activate multiple
transcriptional factors such as GATA4, β-catenin, c-Myc and NFAT to promote cardiac hypertrophy (Heineke et al., 2006). Akt also promotes cardiac hypertrophy by enhancing protein synthesis via activation of mTOR pathways (Proud, 2004). PI3K consists of two subunits. One is the regulatory subunit that contains p85, p55α, p50α, p85β and p55γ, and is responsible for anchorage to the docking site of other proteins, such as ErbB receptors. The other is the p110 subunit, containing p110α, p110β and p110δ, which are associated with recruitment of Akt to the cellular membrane and activation of downstream signalling (Vanhaesebroeck et al., 2010). The p85 and p110α subunits are the most studied. Expression of the constitutively active p110α in the heart leads to physiological cardiac hypertrophy with preserved cardiac function (Shioi et al., 2000). Myocardial expression of a dominant negative form of p110α inhibits the physiological hypertrophy during postnatal cardiac developmental growth or in response to exercise (McMullen et al., 2003). Similarly, genetic mutations in the p85 subunit decrease heart size at baseline as well as physiological hypertrophy after exercise training (Luo et al., 2005). These studies suggested an important role of PI3K in mediating physiological cardiac hypertrophy.

1.2.4 EGF-like factors

EGF-like factors are the agonists for ErbB receptors (Harris et al., 2009). All EGF-like ligands are made as type I transmembrane proteins that are inserted into the plasma membrane and are cleaved by cell surface proteases to release mature growth factors (Schneider et al., 2009). The selectivity of EGF-like factors in binding the ErbB receptors is shown in Table 1.1 (Linggi et al., 2006; Edwards et al., 2008).

Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) are part of the metalloprotease family (Page-McCaw et al., 2007; Reiss et al., 2009). They are anchored in the membrane and are responsible for the ectodomain shedding of EGF-like ligand precursors to produce the mature soluble EGF-like ligands (Nagase et al., 2006; Klein et al., 2011). Among 38 identified subtypes, ADAM 17 and ADAM 10 seem to be the principal sheddases for EGF-like ligands, and the current understanding of ADAM-mediated shedding is largely based on studies of ADAM17 and ADAM10 (Mochizuki et al., 2007). Among the many EGF-like ligands, only HB-EGF is known to be a substrate for MMPs (Yu et al., 2002; Hao et al., 2004).

The EGF-like factors that have been identified in the cardiovascular system include EGF, TGF-α, HB-EGF, amphiregulin (AREG), betacellulin (BTC), epigen, epiregulin (EREG), and neuregulin (NRG)-1. Accumulated evidence from transgenic mice suggests a requirement of these factors in
regulating cardiac development and homeostasis, consistent with the observations for the ErbB receptors. In addition, administration of growth factor peptides or over-expression of growth factors induces cardiomyocyte hypertrophy both in vitro and in vivo (Zhao et al., 1998; Schneider et al., 2005; Yoshioka et al., 2005). In our laboratory (Dr Hsiu-wen Chan, PhD thesis), the ability of various EGF ligands to mediate hypertrophic growth (measured as protein:DNA ratio) in primary isolated cardiomyocytes was compared. These EGF-like factors were categorized into three classes according to their ability to promote cardiomyocyte hypertrophy. The most potent hypertrophic agonists include BTC, NRG1β1 and NRG2β, which are primarily agonists for ErbB4. These agonists increased the mass of cardiomyocytes (total protein content) by 33%-49% in absence of changes in DNA content. Amphiregulin, TGFα, epiregulin and NRG2α caused a 16%-24% increase in cell mass, and these ligands (except NRG2α) selectively activate ErbB1. EGF, HB-EGF, epigen and NRG1α weakly induced hypertrophic growth (~10% increase), and are a mixture of ErbB1 agonists and ErbB4 agonists. Together, these studies suggested that the ErbB4 might have a stronger ability to mediate cardiomyocyte hypertrophy than ErbB1.
Table 1.1 The specificity of ligand binding to ErbB receptor subtypes and activation by specific ADAMs.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>ErbB1</th>
<th>ErbB2</th>
<th>ErbB3</th>
<th>ErbB4</th>
<th>ADAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ADAM-8, -10, -12, -17</td>
</tr>
<tr>
<td>TGF- α</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ADAM-17</td>
</tr>
<tr>
<td>HB-EGF</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ADAM-8, -9, -12, -17, -19</td>
</tr>
<tr>
<td>Amphiregulin</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ADAM-17, -19</td>
</tr>
<tr>
<td>Betacellulin</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ADAM-8, -10, -17</td>
</tr>
<tr>
<td>Epigen</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ADAM-17</td>
</tr>
<tr>
<td>Epiregulin</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ADAM-17</td>
</tr>
<tr>
<td>Neuregulin-1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ADAM-17, -19</td>
</tr>
<tr>
<td>Neuregulin-2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Unknown</td>
</tr>
<tr>
<td>Neuregulin-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Unknown</td>
</tr>
<tr>
<td>Neuregulin-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

This table was modified from table 1 in Edward et.al. (Linggi et al., 2006; Edwards et al., 2008) and the table 2 in Linggi et.al. (Linggi et al., 2006; Edwards et al., 2008).
1.3 Transactivation of ErbB receptors

1.3.1 Transactivation of ErbB by GPCRs

As discussed above, growth factors can cause cell growth via activating their receptors to trigger downstream growth signalling pathways, such as the MAPK pathway. The growth induced by activation of various GPCRs can also be mediated by activation of the MAPK pathway. However, the mechanisms by which GPCRs activate growth signalling pathway is less clear compared to the growth factor receptors. In 1996, for the first time, Daub et al. found that GPCRs could transactivate the EGFR to trigger downstream growth signalling. They demonstrated that endothelin-1, lysosphosphatic acid (LPA) and thrombin treatment rapidly phosphorylated the EGFR followed by activation of MAPK pathway in Rat-1 fibroblasts (an immortalized cell line). All of these agonists activated GPCR receptors: endothelin-1 activated the endothelin receptor isoform ET\textsubscript{A}, lysosphosphatic acid activated the LPA receptor and thrombin activated proteinase-activated receptors. Inhibition of EGFR (ErbB1) with tyrophostin AG1478 or a dominant-negative EGFR inhibited the GPCR-activated MAPK signalling, confirming that the GPCR mitogenic signalling is mediated by the transactivation of EGFRs (Daub et al., 1996).

The transactivation of ErbB1 by Ang II was first reported by Eguchi et al. in primary vascular smooth muscle cells (Eguchi et al., 1998). Since then, increasing evidence demonstrates that the transactivation of EGFR by Ang II occurs in various cells, including renal epithelial cells, hepatic C9, cos-7, MCF-7 and importantly, cardiomyocytes (Asakura et al., 2002; Thomas et al., 2002; Muscella et al., 2003; Shah et al., 2004; Chen et al., 2006). Infusion of antisense oligodeoxynucleotides to ErbB1 in adult rats significantly attenuated the cardiac hypertrophy induced by Ang II (Kagiyama et al., 2002). Transgenic mice expressing dominant negative ErbB1 are resistant to the Ang II induced cardiac hypertrophy (Zhai et al., 2006). Taken together, these studies indicate that ErbB1 is required for Ang II induced cardiac hypertrophy in vivo.

1.3.2 Potential mechanisms for ErbB1 transactivation by Ang II: the TMPS pathway

How does Ang II transactivate ErbB1? One proposed mechanism is the triple membrane-passing signalling (TMPS) pathway. In this process, activation of the AT\textsubscript{1}R by Ang II leads to the activation of metalloproteases that release ErbB1 ligands from the membrane. These ligands subsequently bind to ErbB1 and trigger downstream signalling (Figure 1.4). The TMPS mechanism describes the inside-outside-inside route of transactivation in three steps.
In the first step of this process, Ang II binding to the AT$_1$R triggers Gq signalling (Ohtsu et al., 2008), which in turn activates PKC and Ca$^{2+}$ signalling. Both PKC and Ca$^{2+}$ can potentially contribute to triggering the next step in the TMPS pathway. In hepatic or breast cancer cell lines, PKC mediates the release of EGF-like factors, contributing to transactivation (Shah et al., 2002; Muscella et al., 2003). In cardiomyocytes and vascular smooth muscle cells, it has been shown that Ca$^{2+}$ but not PKC is essential for ErbB1 transactivation (Eguchi et al., 1998; Thomas et al., 2002; Smith et al., 2011).

The second step involves cleavage of EGF-like factors. There is evidence to indicate that EGF-like factor shedding (particularly of HB-EGF) might be required for the transactivation of ErbB1 by Ang II. Inhibition of HB-EGF with a small molecule inhibitor or a blocking antibody reduces the transactivation of EGFR by Ang II in various cell types, including Cos-7 cells, cardiomyocytes, renal epithelial cells and hepatocytes (Asakura et al., 2002; Saito et al., 2002; Mifune et al., 2005; Ohtsu et al., 2006b). HB-EGF shedding can be mediated by ADAM12, ADAM17 or MMP2/9 (Saito et al., 2002; Shah et al., 2004; Asakura et al., 2002). Dominant negative expression or pharmacological inhibition of ADAM12, ADAM17 or MMP2/9 blocked HB-EGF shedding and subsequent transactivation of EGFR by Ang II (Asakura et al., 2002; Saito et al., 2002; Ohtsu et al., 2006b). Thus, ADAM 12, ADAM17 and MMP2/9 and HB-EGF are essential for the transactivation of ErbB1, and ADAM/MMP activity may mediate transactivation by shedding HB-EGF.

The transactivation of ErbB1 by Ang II leads to dimerisation of ErbB receptors and the phosphorylation of intracellular tyrosine residues (Scaltriti et al., 2006). The phosphorylated ErbB1 eventually recruits proteins and leads to phosphorylation of ERK1/2 (Shah et al., 2002). Phosphorylated ERK1/2 proteins are imported into the nucleus where they phosphorylate specific transcription factors involved in cell growth (Hill et al., 1995; Gaestel, 2006). To date, ErbB1 is the only member of the ErbB family identified to be transactivated by Ang II to induce hypertrophy (Asakura et al., 2002; Thomas et al., 2002; Muscella et al., 2003; Shah et al., 2004; Chen et al., 2006).

The TMPS paradigm provides a potential scheme for transactivation mechanisms, however the details of transactivation signalling pathways are more complicated and involve more kinases than just those mentioned above. There is evidence showing that Src kinase links the activation of EGFR and GPCRs (Dikic et al., 1996; Fischer et al., 2003). Pharmacological inhibition or RNAi-silencing of Src abrogated the Ang II induced phosphorylation of EGFR (Bokemeyer et al., 2000; Yano et al., 2006).
The non-receptor tyrosine kinase Pyk2 has also been proposed to mediate the transactivation of EGFR by GPCRs (Soltoff, 1998; Keely et al., 2000). In vascular smooth muscle cells, Pyk2 binds Src and this was associated with activation of EGFR by Ang II (Eguchi et al., 1999). However, the roles of these factors are controversial. For instance, some studies have proposed pathways for GPCR-mediated EGFR transactivation that are independent of Src activation: expression of a kinase-mutant Pyk2 did not affect the EGFR activation induced by bradykinin (which activates the bradykinin 2 GPCR) in PC-12 cells (Zwick et al., 1999). In addition, inhibition of Pyk2 in cardiomyocytes did not affect the endothelin-1 induced activation of EGFR, suggesting that there is no requirement for Pyk2 in the transactivation of EGFR by endothelin-1 (Kodama et al., 2002). Despite this controversy, these studies suggested that it is highly possible that there are more factors involved in transactivation that are yet to be discovered. Recently, a siRNA screen identified multiple new candidates such as TRIO, BMX and CHKA that may mediate the transactivation of EGFR by Ang II in a human mammary epithelial cell line (George et al., 2013). Individual down regulation of TRIO, BMX or CHKA attenuated the activation of EGFR by Ang II, but not by the EGFR agonist EGF, suggesting that these factors are located upstream of EGFR and required for EGFR transactivation (George et al., 2013). These studies suggested that the pathway for GPCR to transactivate EGFR is much more complicated than that previously proposed.
Figure 1.4 Triple membrane-passing signaling (TMPS) pathway. Activation of the AT$\textsubscript{1}$R by Ang II leads to the activation of metalloproteases that release ErbB1 ligands from the membrane. These ligands subsequently bind to ErbB1 and trigger downstream signaling.
1.4 Characteristics of the ErbB4 isoforms

1.4.1 Introduction to the ErbB4 isoforms

Among the ErbB family, ErbB4 is unique in having distinct isoforms as a result of alternative splicing. The four isoforms of ErbB4 structurally differ in two domains: the extracellular juxtamembrane (JM) domain (JM-a and JM-b) and intracellular CYT domain (CYT-1 and CYT-2) (Figure 1.5). The four combinations of the JM and CYT domains form the four primary isoforms of ErbB4. The JM-a isoform contains 23 amino acids in the JM domain that allow for ectodomain shedding by ADAMs (Junttila et al., 2000). JM-b contains an alternative 13 amino acids that makes it resistant to shedding (Junttila et al., 2000). Cleavage of the JM-a isoform occurs in 2 steps, and produces an 80-kDa soluble fragment. First, the JM-a isoform can be subjected to ectodomain cleavage by the metalloprotease ADAM17 to produce a 120-kDa ectodomain fragment and an 80-kDa fragment (Vecchi et al., 1997; Rio et al., 2000; Zhou et al., 2000). The 120-kDa ectodomain fragment is released into the extracellular medium and the 80-kDa fragment remains in the membrane, containing the cytoplasmic and transmembrane domains and several ectodomain residues. The 80-kDa fragment can be subsequently cleaved by γ-secretase within the lipid bilayer to release the intracellular domain (Chang-Yuan et al., 2001).

The CYT-1 isoform has 16 amino acids inserted in the cytoplasmic tail when compared to the CYT-2 isoform. It has been identified that the 16 amino acids of CYT-1 provide a docking site for PI3K, WWOX containing proteins and other proteins, allowing the activation of specific signalling pathways (Veikkolainen et al., 2011). The structural differences of the four ErbB4 isoforms could lead to the functional differences between these isoforms.

The expression of each isoform is tissue specific. In human and mouse adult heart, the most abundant isoform is the JM-b CYT-1, in kidney it is JM-a CYT-2, and in cerebellum it is JM-a CYT-2 and JM-b CYT-2 (Elenius et al., 1997; Elenius et al., 1999). The tissue-specific expression proposes a potentially distinct biological function of each isoform. In some tissues (e.g. mammary cells, neurons) differences in biological function between isoforms has been shown (Naresh et al., 2006; Feng et al., 2007; Law et al., 2007; Muraoka-Cook et al., 2009). For instance, during the brain development only the cleavable JM-a isoform can regulate the time of astrogenesis in the mouse (Sardi et al., 2006). However, whether there are functional differences between isoforms in cardiomyocytes is unknown.
Figure 1.5 Structural differences of ErbB4 isoforms. The four isoforms of ErbB4 structurally differ in two domains: the extracellular juxtamembrane (Jm) domain (JM-a and JM-b) and intracellular CYT domain (CYT-1 and CYT-2). The four combinations of the Jm and CYT domains form the four isoforms of ErbB4. The JM-a isoform contains 23 amino acids in the Jm domain that allow for ectodomain shedding. JM-b contains an alternative 13 amino acids that resistant to shedding. The whole receptor containing 1292 -1318 amino acids depends on which isoform it is.
1.4.2 Cleavage in the JM-a domain

As mentioned above, the defining feature of JM-a-containing ErbB4 isoforms is the potential to be cleaved. ADAM 17 is involved in the cleavage of ErbB4 (Rio et al., 2000). Thus, stimuli that activate ADAM 17 such as PKC activators (e.g. the phorbol ester PMA), ErbB4 agonists (e.g. NRG) and ligands that activate certain GPCRs (e.g. gonadotropin-releasing hormone) potentially possess the ability to trigger the cleavage process. PMA was the first agonist found to trigger the cleavage of the ErbB4, and can release the ICD of ErbB4 from the membrane in a wide range of cell types, including breast cancer cells, ovarian cancer cells, lung cancer cells, and a glioma cell line (Vecchi et al., 1996; Zhou et al., 2000; Määttä et al., 2006; Zeng et al., 2009). Cleavage of the ErbB4 induced by NRG is also observed in multiple cell types such as T47D (breast cancer cell line), OVCAR3, and OVCA432 (ovarian cell lines) (Vecchi et al., 1996; Zhou et al., 2000). It has been shown recently that gonadotropin-releasing hormone (a GPCR agonist) caused ADAM 17-dependent cleavage of the ErbB4 and production of 80 kDa fragment in immortalized neurons that endogenously express the JM-a isoform (Higa - Nakamine et al., 2012).

After being released from the membrane, the 80 kDa ICD can enter the nucleus. The residues 676-684 of the ICD domain are essential for nuclear accumulation of the ICD. Mutation of these residues destroyed the ICD localization to the nucleus without affecting production of the ICD (Williams, Allison et al. 2004). Furthermore, it has been shown that the tyrosine kinase activity of ErbB4 is essential for the nuclear localization of the ICD (Sundvall et al., 2007). The regulatory mechanism for ICD nuclear localization is not clear. However, the CYT-2 ICD has been shown to accumulate in the nucleus more than CYT-1 ICD due to enhanced tyrosine kinase activity in the intracellular domain of the CYT-2 ICD (Sundvall et al., 2007). Both CYT-2 ICD and CYT-1 ICD possess phosphorylation sites in the intracellular domain, but none of these are specifically located in the extra 16 amino acid sequence possessed by CYT-1. The reason why CYT-2 ICD possesses stronger tyrosine kinase activity than CYT-1 is still unknown.

1.4.3 Biological function of the ICD

By homing to the nucleus and interacting with transcriptional regulatory proteins, the 80 kDa ICD may regulate cell proliferation, apoptosis, differentiation, and DNA damage responses. The transcriptional regulatory proteins identified as interacting with the ErbB4 ICD include AP-2, Yes-associated protein (YAP), signal transducer and activator of transcription 5A (STAT5A), estrogen receptor α (ER α) and Krab-associated protein 1 (Kap1) (Omerovic et al., 2004; Williams et al.,
2004; Zhu et al., 2006a; Gilmore-Hebert et al., 2010; Gough, 2010). In a mouse fibroblast cell line, AP-2 was found to interact with the ICD of JM-a CYT-2 to positively regulate the platelet-derived growth factor receptor-alpha (PDGFA) promoter leading to cell proliferation under normal conditions and survival during serum starvation (Gough, 2010). The interaction between YAP and ICD interferes with p73-stimulated proapoptotic signalling (Komuro, Nagai et al. 2003; Omerovic, Puggioni et al. 2004), whereas interaction of STAT5A with the ICD leads to nuclear localization of STAT5A and activation of the milk genes, such as β-casein and whey acidic protein, thus contributing to the differentiation of the mammary cells (Long et al., 2003; Williams et al., 2004). In addition, interaction of ICD with ERα promotes cell proliferation in the T47D breast cancer cell line (Zhu et al., 2006b); and the ErbB4 ICD interaction with Kap1 mediates the response to DNA damage (Gilmore-Hebert et al., 2010). Clearly, the release and trafficking of the ICD into the nucleus provide a new paradigm for ErbB4 signalling.

In the above section, I described how the ICD interacts with regulatory proteins to regulate cell activity. However, it should be noted that there are two types of ICD. The CYT-1 ICD is different from the CYT-2 ICD in possessing 16 extra amino acids. Compared to the CYT-2 ICD, the 16 amino acid insertion in CYT-1 ICD contains a unique PI3K binding site (“YTPM”) and extra PPXY domain that binds WW-containing proteins, such as WWOX and YAP (Junttila et al., 2000; Aqeilan et al., 2005). It has been proposed that this difference in structure may lead to differences in regulatory ability.

Both in vitro and in vivo experiments have shown that CYT-1 ICD and CYT-2 ICD may have different functions in promoting the growth, death and differentiation of cells. Mammary cell lines expressing exogenous CYT-2 ICD grow more rapidly than the same cell line expressing the CYT-1 ICD (Muraoka-Cook et al., 2009). The CYT-1 ICD probably decreases mammary epithelial cell proliferation by reducing the rate of cell cycle progression, whereas CYT-2 ICD promotes cell proliferation by increasing cyclinD via the wnt-β-catenin signalling pathway (Sartor et al., 2001; Muraoka-Cook et al., 2006b; Strunk et al., 2007). CYT-1 ICD expression promotes cell apoptosis during serum starvation, whereas the CYT-2 ICD prevented this effect (Naresh et al., 2006; Feng et al., 2007; Muraoka-Cook et al., 2009). A mammary cell line exogenously expressing CYT1-ICD formed more acinar structures in 3D culture when compared with the cells expressing CYT2-ICD (Muraoka-Cook et al., 2006a), indicating that CY1-ICD promotes differentiation of these cells. In vivo, transgenic mice expressing CYT-1 ICD have distended mammary ducts filled with secretory material and ductal epithelium that consists of multiple cell layers. Furthermore, fewer terminal end
buds were observed in the mammary glands of mice expressing CYT-1 ICD compared to those of mice expressing CYT-2 ICD (Muraoka-Cook, Sandahl et al. 2009). These studies suggest that CYT-1 ICD and CYT-2 ICD have different roles in the regulation of mammary development. Taken together, this work shows that the CYT-1 ICD and CYT-2 ICD can exert divergent functions in cells.

In addition to studies where the CYT-1 ICD and/or CYT-2 ICD are expressed in cells, others have noted profound differences in the function of full length ErbB4 receptors in vivo. One seminal study directly compared the functions of the intact JM isoforms by overexpressing full-length JM-a and JM-b in mouse embryonic astrocytes in an ErbB4-null background. The findings demonstrated that only the cleavable JM-a isoform is capable of suppressing astrocyte differentiation (Sardi et al., 2006). This supports the idea that the intact isoforms of ErbB4 may also have distinct functions in vivo. In the heart, there have been no studies examining the distinct function of each ErbB4 isoform.
1.5 Cardiomyocyte proliferation

Amphibia and fish can repair their injured hearts by cardiac regeneration. Initially, this regeneration was attributed to stem cells inherent in the heart (Lepilina et al., 2006), but the contemporary view challenges this idea. Recently, with the assistance of genetic fate mapping technology, researchers have been able to follow the fate of newly generated cells and this has been applied to trace the source of newly generated cardiomyocytes (Jopling et al., 2010; Kikuchi et al., 2010). In a genetic fate mapping model, zebrafish with the cardiac-specific cmilc2a (cardiac myosin light chain 2a) promoter driving the expression of tamoxifen-inducible Cre recombinase were crossed with animals possessing a GFP gene with its stop codon flanked by loxP sites. In the offspring, the pre-existing cardiomyocytes can be induced to express GFP by tamoxifen treatment. If the newly generated cardiomyocytes also expressed GFP, this suggests that the new cells are generated from pre-existing cardiomyocytes; if not, it is potentially from other source, such as stem cells. With this method, two groups independently demonstrated that heart regeneration in zebrafish occurs principally from the proliferation of pre-existing cardiomyocytes (Jopling et al., 2010; Kikuchi et al., 2010).

In mammals, it is believed that cardiomyocyte proliferation only occurs during the embryonic stage, and that shortly after birth the majority of cardiomyocytes exit the cell cycle and lose the ability to proliferate. A study showed that in neonatal mice retain the capacity to regenerate the intact heart after the left ventricle apex is resected (Porrello et al., 2011). However, this regenerative capacity is only observed in the mice up to seven days. Older mice completely lose the ability for cardiac regeneration, suggesting the proliferative potential in neonatal cardiomyocytes is reduced 1-2 weeks after birth (Porrello et al., 2011). Genetic fate mapping in this study indicated that the majority of new cardiomyocytes originated from preexisting cardiomyocytes (Porrello et al., 2011). This suggested that the capacity to regenerate the heart is similar between fish and mammals at or around birth. It is generally believed that the adult mammalian heart is not capable of fully regenerating the heart following damage (e.g. a myocardial infarction), however the degree to which adult mammalian cardiomyocytes can proliferate remains highly controversial.

Cardiomyocyte proliferation can be measured by immunofluorescence staining for Ki67 or phosphorylated histone H3 (pH3), or BrdU incorporation. Ki67 and pH3 are proliferation markers that label the cardiomyocytes in the transient mitosis stage. Due to the transient nature of the mitosis stage and low proliferation levels of adult cardiomyocytes, pH3 and Ki67 will usually stain only the small number of cells that are currently in mitosis. BrdU is a synthetic analog of thymidine.
It can be incorporated in the genomic DNA when cells undergo DNA synthesis, and is subsequently detected via immunofluorescence. Thus, BrdU incorporation can reflect the total number of proliferating cardiomyocytes over a longer time period. However, this method can induce a false positive stain in the presence of DNA repair and thus potentially exaggerate the results. Despite the limitations of these methods, there is an accumulation of evidence to propose that cardiomyocytes can proliferate in postnatal mice in response to injury or various stimuli. Beltrami et al. showed that in the infarcted heart, the fraction of myocytes undergoing mitosis (labeled by Ki67) is 4 percent in the region adjacent to the infarct and 1 percent in those in regions distant from the infarct (Beltrami et al., 2001). Treatment with periostin to induce the reentry of differentiated cardiomyocytes into the cell cycle contributed to a reduction in infarct size and improvement of cardiac function in a rodent infarction model (Kühn et al., 2007). Similarly, infusion of the ErbB4 ligand (NRG1) in adult mice significantly increased the proliferation of mononucleated cardiomyocytes (measured by BrdU incorporation) (Bersell et al., 2009). Interestingly, both the NRG1 and periostin-induced cardiomyocyte proliferation is PI3K-dependent. Inhibition of ERK1/2 with compound PD985059 (1µM) did not inhibit the periostin-induced cell-cycle reentry, whereas inhibition of the PI3K pathway by LY294002 (10 µM) or its downstream signalling Akt pathway by SH-6 (10 µM) fully inhibited periostin-induced cardiomyocyte cell-cycle reentry (Kühn et al., 2007). Using functional inhibition with PTEN (a PI3K inhibitor), Bersell et al. demonstrate that the NRG1-induced proliferation of adult cardiomyocytes also required the PI3K pathway (Bersell et al., 2009).

Although these observations strongly suggest that cardiomyocytes in the adult mouse can proliferate in response to various stimuli, there is a study that argues against this. With genetic fate mapping in mice, Hsieh et al. showed that the percentage of GFP positive cardiomyocytes was significantly reduced after infarction, indicating dilution of the pre-existing cardiomyocytes by the proliferation of stem or progenitor cells and their subsequent differentiation into new cardiomyocytes. This suggested that in the adult mouse heart, injury-induced cardiac repair depends more on the proliferation of cardiomyocyte progenitor cells or stem cells rather than fully differentiated cardiomyocytes (Hsieh et al., 2007). Irrespective of the source of the regenerated cardiomyocytes, these studies describe above demonstrated that adult mammalian cardiomyocytes can be regenerated to at least some degree.

The proliferation of cardiac cells discussed above has all been investigated in animal models. Measuring the degree of cardiomyocyte regeneration in humans is more challenging. Two recent studies have directly measured cardiomyocyte proliferation rates in the human heart. Bergmann et
Chapter 1: General introduction

... al. established the age of cardiomyocytes in human heart by taking advantage of the integration into DNA of carbon-14 generated by nuclear bomb testing during the cold war (Bergmann et al., 2009). With mathematical modelling, they revealed that the cardiomyocyte turnover rate gradually decreased from 1% per year at the age of 25 to 0.45% at the age of 75. In contrast, the non-cardiomyocyte turnover rate is up to 18% per year depending on the cell type. All together, less than half the cardiomyocytes are refreshed during a normal life span, and 55% of cardiomyocytes persist from birth. In another study, cardiomyocyte proliferation in human heart was examined by analysing the incorporation of iododeoxyuridine (Idu, a thymidine analog) in postmortem samples obtained from cancer patients who were treated with this drug (Kajstura et al., 2010). The portion of cardiomyocytes labeled with Idu was 2.5-46%. The large variation in the Idu incorporation rate is attributed to the great differences in frequency, period and interval of Idu treatment given to patients. Mathematical modelling of this data suggested that the rate of cardiomyocyte renewal is around 22%. There is a large variation in the cardiomyocyte renewal rate reported in these two studies, from 1% to nearly 22% per year in humans. It is hard to determine which is more accurate by direct comparison of the studies given the totally different methods employed. Compared with other observations, the annual 22% turnover rate of adult cardiomyocytes seems to be the highest report, and thus needs to be carefully considered. Although these studies confirm that there is the potential for cardiomyocytes to renew during human lifespan, the functional regeneration of a damaged heart appears not to occur. While the innate rate of cardiomyocyte replacement seems insufficient to permit complete repair of a damaged heart, the mere existence of a demonstrable regenerative response (and its potential to be augmented by various stimuli) is encouraging in moving towards directed therapies aimed at improving cardiac repair and function.
1.6 Importance of the NRG1-ErbB4 signalling axis

1.6.1 An introduction to NRG1

NRG1 (Neuregulin1) is encoded by a large gene (around 1400kb), less than 0.3% of which encodes protein (Stefansson et al., 2002). Due to splicing, at least 15 different NRG1 isoforms are generated (Buonanno et al., 2001; Falls, 2003). The motif common to all NRG isoforms is an epidermal growth factor-like (EGF) domain that is responsible for binding and activation of receptors. NRG1 can be synthesized as either a secreted protein or membrane precursor. Based on differences in the N-terminal sequence, the membrane-inserted NRG1 can be further divided into 3 types, I - III. Both type I and type II isoforms are single-transmembrane spanning proteins. Cleavage of these isoforms by ADAMs releases bioactive fragments into the circulation, where they then participate in paracrine regulation. Type III isoforms are two-transmembrane spanning and will generate a membrane anchor fragment containing the EGF-like receptor binding domain after cleavage by ADAMs, and thus participate in juxtacrine regulation (Buonanno et al., 2001). Alternative splicing at the C-terminus of the EGF-like domain leads to the generation of NRG1α and NRG1β variants. NRG1α and NRG1β isoforms have different affinities for the ErbB receptors. The NRG1β isoform possess 10-100 times greater bioactivity and a higher affinity for ErbB3 and ErbB4, whereas the predominant isoform expressed in cardiovascular system is NRG1α (Cote et al., 2005). Thus, although NRG1α is the predominant isoform in heart, the NRG1β isoforms may be equally important. Combined with the structural differences in other domains, at least 3 different NRG1α isoforms and 8 NRG1β isoforms are expressed in the adult heart (Pentassuglia et al., 2009a).

NRG1 is mainly distributed in the endocardial endothelium and the cardiac microvascular endothelium (Kuramochi et al., 2004; Lemmens et al., 2006), which share a common embryonic lineage (Misfeldt, 2008). Whether it is expressed in larger veins is controversial - some studies have reported NRG1 expression in human coronary artery endothelial cells (Hedhli et al., 2011), whereas others have failed to detect it in coronary arteries or aortic endothelium (Lemmens et al., 2006). The released NRG1 can target cardiomyocytes and regulate their growth (Zhao et al., 1998; Giraud et al., 2005), survival (Liu et al., 2006), contraction (Brero et al., 2010) and proliferation (Bersell et al., 2009).

1.6.2 NRG1 signalling and cardiomyocyte hypertrophy

NRG1 potently induces cardiomyocyte hypertrophy in vitro. Treatment of neonatal cardiomyocytes with 20-30 ng/ml NRG1 increased L-leucine uptake (a marker of protein synthesis), expression of
the hypertrophic genes ANP and α-skeletal actin, and promoted sarcomeric reorganization (Zhao et al., 1998; Giraud et al., 2005). Similar results were observed in primary isolated adult cardiomyocytes (Zhao et al., 1998; Giraud et al., 2005). NRG1-induced cardiomyocyte hypertrophy is thought to be mediated by ErbB2/ErbB4-ERK1/2 signalling. Treatment with 20 ng/ml NRG1 for 5 min induced phosphorylation of ErbB4 and its preferential dimerisation partner ErbB2 in both neonatal and adult cardiomyocytes (Zhao et al., 1998). Intravenous administration of 10μg/kg recombinant human NRG1 (rhNRG1) in mice for 10 min induced phosphorylation of ERK in the heart, which reached a 7-fold increase after 90 min treatment (Liu et al., 2006). The rhNRG1-enhanced sarcomeric organization was blocked by the ERK pathway inhibitor PD98059, but not the PI3K kinase inhibitor Wortmannin, suggesting that the rhNRG1-enhanced sarcomere organization is via ERK, but not PI3K, signalling pathways (Liu et al., 2006). Activation of ERK1/2 promotes protein synthesis and sarcomere reorganization during NRG1 induced cardiomyocyte hypertrophy. Activation of ErbB2 by treating cardiomyocytes with an ErbB2 activating antibody induced phosphorylation of ERK1/2, demonstrating that ErbB2 phosphorylation is sufficient for activation of ERK1/2. In contrast, ErbB2 inhibition reduces basal phosphorylation of ERK1/2 (Fukazawa et al., 2003).

1.6.3 NRG1 signalling in cardiac protection

NRG1 can be released from cardiac microvascular endothelial cells (CMEC) under conditions of oxidative stress. H₂O₂ increased the NRG1 level in culture medium of CMECs (Kuramochi et al., 2004) in vitro, whilst in vivo ischaemia-reperfusion injury increased the NRG1 level in the perfused coronary effluent (Kuramochi et al., 2004). The released NRG1 appears to have a cardioprotective effect. Liu et al. showed that NRG1 improved both cardiac performance and survival in various models of LV failure, including the LAD ligation infarct model, doxorubicin-induced cardiomyopathy model, Coxsackie virus B3-induced myocarditis model, and a chronic rapid pacing model (Liu et al., 2006). The cardioprotective effect of NRG1 is attributed, at least in part, to its ability to promote cardiomyocyte survival and enhance myofibril organization.

Primary neonatal cardiomyocytes deprived of serum in culture exhibit a gradual loss in cell viability (Zhao et al., 1998). Addition of NRG1 into the culture medium increases cell viability by 30% compared to the control (as measured by the activity of NAD(P)H-dependent cellular oxidoreductase enzymes using the colorimetric assay MTT) (Zhao et al., 1998). In addition, NRG1 treatment also significantly decreases apoptosis (measured by TUNEL) of primary cardiomyocytes in serum-free medium (Zhao et al., 1998). A microarray study showed that NRG1 increased the
expression of oxidative stress defense related factors (e.g. thioredoxin) and reduced expression of the apoptosis factors, harakiri (HRK) and programmed cell death 2 (PDCD2) in cardiomyocytes, which may also contribute to cardiomyocyte survival (Giraud et al., 2005).

During cardiomyocyte damage, myofibrillar disarray and myofibril loss are often observed. NRG1 treatment significantly attenuates the myofibrillar disarray and myofibril loss induced by doxorubicin. This attenuation contributes to the preservation of cardiac function in these animals (Bian et al., 2009). Troponin is a complex of three regulatory proteins (troponin C, troponin I, and troponin T) that is integral to cardiac muscle contraction. The degradation of myofibrils releases the troponin subunits into the blood, where they are important markers for detection of myocardial injury (Katus et al., 1991; Adams et al., 1993). Doxorubicin treatment significantly decreases levels of cardiac troponin in mice, an effect that is attenuated by administration of NRG1 (Bian et al., 2009). In agreement with this, another study showed that NRG1 reduces both troponin I release into serum (which occurs during cardiomyocyte damage) and histological alterations associated with myocarditis (Muraoka-Cook et al., 2006a).

The ErbB-PI3K-Akt pathway was proposed to be the central downstream signalling pathway that mediates the ability of NRG to modulate the survival and function of cardiomyocytes (Brero et al., 2010; Fang et al., 2010; Jie et al., 2012; An et al., 2013). For instance, treatment of cardiomyocytes with the PI3-kinase inhibitor wortmannin or overexpression of a dominant-negative Akt abolished the protective effect of NRG1 on daunorubicin-induced caspase-3 activation and apoptosis (Fukazawa et al., 2003). Pretreating cardiomyocytes with anti-ErbB2 antibodies abolished the protective actions of cardiac microvascular endothelium (a source for NRG1) against cardiomyocyte apoptosis (Lemmens et al., 2006). AG879 (an ErbB2 inhibitor) treatment abolished the ability of NRG1 to attenuate the doxorubicin-induced decrease in cardiac troponin I and troponin T (Bian et al., 2009), suggesting that the NRG1 induced cardioprotective effect is ErbB2-dependent.

1.6.4 NRG1 signalling in cardiomyocyte contraction/relaxation

Calcium is a critical factor for regulating cardiomyocyte contraction and relaxation. Disorders of Ca^{2+} homeostasis contribute to the development of heart failure. Myocyte contraction is regulated by Ca^{2+} release from the sarcoplasmic reticulum (SR) into the cytoplasm, and relaxation by uptake of Ca^{2+} into the SR. This Ca^{2+} uptake is mediated by SR Ca^{2+} ATPase (SERCA2a). NRG1 can enhance cardiomyocyte relaxation by regulating the Ca^{2+} uptake. NRG1 induced activation of
PI3K/Akt promotes the activation of PKG (Mery et al., 1991; Brero et al., 2010), which enhances the relaxation of cardiomyocytes by regulating major components of excitation-contraction coupling, such as L-type Ca$^{2+}$ channel (LTCC), phospholamban (PLB) and troponin I (Blumenthal et al., 1978). PLB activation promoted the SERCA2a activation (Macdougall et al., 1991; Verboomen et al., 1992) and caused Ca$^{2+}$ uptake into the SR (Brero et al., 2010) to enhance cardiomyocyte relaxation.

1.6.5 NRG1 signalling in cardiomyocyte proliferation

In addition to the functions mentioned above, a role for NRG1 in promoting cardiomyocyte proliferation has also been proposed. Zhao et al. demonstrated that treatment with NRG1 for 30h caused an approximately 2 fold increase in DNA synthesis in embryonic cardiomyocytes as measured by [3H]-thymidine uptake. NRG1 also significantly increased the [3H]-thymidine uptake in neonatal cardiomyocytes cultured in serum-free medium (Zhao et al., 1998). In addition to promoting DNA synthesis, NRG1 can also stimulate cell division, including both karyokinesis and cytokinesis. Bersell et al. detected cytokinesis in cardiomyocytes by using immunofluorescence to stain the marker protein aurora B kinase, which is required for contractile ring formation in cytokinesis. They found the number of positively stained cells was significantly increased by NRG1 treatment. A similar result was observed for karyokinesis measured with video microscopy (Bersell et al., 2009). Interestingly, the effect of NRG1 on cardiomyocyte proliferation may be dictated by the degree of stimulation. Zhou et al. showed that the maximum proliferative effect of NRG1 occurs at 0.1 nM (Zhou et al., patent application published as WO00/37095). Similar to this, Bersell et al. also showed an increased DNA synthesis in response to NRG1, which was maximal between 0.1-1nM (Bersell et al., 2009). At higher concentrations, NRG1 may inhibit DNA synthesis due to the persistent activation of the MAPK signalling pathway, which inhibits CyclinD to arrest the cell at G1 phase (Zhou et al., patent application published as WO00/37095). Direct evidence that NRG-induced cardiomyocyte proliferation is mediated by ErbB4 is also provided by Bersell et al. (2009). Administration of NRG1 induced 14.3% of mononucleated cardiomyocytes to proliferate (as indicated by BrdU incorporation) in the adult mice heart, and this proliferation was attenuated in transgenic mice with cardiac-specific deletion of ErbB4. In cultured adult cardiomyocytes, blocking ErbB4’s preferential dimerisation partner ErbB2 with an inhibitory antibody also decreased DNA synthesis (Bersell et al., 2009), suggesting an critical role of the ErbB2/ErbB4 dimer in mediating NRG1-induced proliferation.
1.6.6 Interactions between NRG1 signalling and the endocrine system

As a critical paracrine factor that is potentially beneficial to the heart, it is important that the synthesis and release of NRG1 is adaptive to cardiac activity. Indeed, the expression and release of NRG1 is controlled, at least partially, by endocrine factors or stimuli such as pressure overload. As mentioned earlier, NRG1 (detected in perfused coronary effluent) can be released from the microvascular endothelium in response to ischaemia-reperfusion (Kuramochi et al., 2004). In addition to that, stretch induces the expression of NRG1 in cardiac microvascular endothelium. Correspondingly, transverse aortic constriction (TAC) induces the up-regulation of NRG1 in the heart (Lemmens et al., 2006). A study showed that NRG1, in primary isolated microvascular endothelial cells, is increased by endothelin-1 treatment (Zhao et al., 1998). In contrast, Ang II and phenylephrine decreased the expression of NRG1 in cardiac microvascular endothelium (Lemmens et al., 2006). Due to the beneficial effects of NRG1 on cardiac tissues (as discussed above), the up-regulated NRG1 might serve as a mechanism to counterbalance the effect of pathological stimuli and thus protect the cardiomyocytes to some degree in these pathological conditions. In contrast, in other conditions, such as activation of RAS system, the NRG1 down-regulation might facilitate the progression of the cardiac disease. NRG1 also provides a negative feedback on these stimuli. Treatment with NRG1 in LAD ligation mice significantly reduced the increased concentrations of renin, AngI, Ang II and aldosterone in the circulation, suggesting that the rhNRG1 attenuated activation of the renin-angiotensin-aldosterone axis (Muraoka-Cook et al., 2006a). Besides, NRG1 can interact with adrenergic signalling to regulate cardiomyocyte contractility, where it has been demonstrated that NRG1 reduces the contractile response of cardiomyocytes to α-adrenergic stimulation (Lemmens et al., 2004). Cardiomyocytes lacking effective neuregulin signalling (NRG-gene mutant animals) are unable to counterbalance the adrenergic effect (Okoshi et al., 2004).

1.6.7 Function of ErbB2 and ErbB4 in the heart

The importance of NRG1 signalling highlights the potential role of its receptor, ErbB4 and its preferred dimerisation partner (ErbB2) in adult heart function. ErbB3 can also bind with NRG1, however, ErbB3 expression is not detectable in the adult heart (Campreciós et al., 2011). ErbB2 is overexpressed in breast cancer (Houston et al., 1999; Sørlie et al., 2001), and monoclonal antibodies targeting ErbB2 have been used in treatment of this disease. The monoclonal antibody for ErbB2, trastuzumab, has been trialled for breast cancer therapy, but its administration increases the risk for cardiac dysfunction: the incident rate was 27% in patients receiving trastuzumab and anthracycline-containing chemotherapy, compared with 8% incidence among patients who received chemotherapy alone (Seidman et al., 2002). Despite the fact that anthracycline is also cardiac toxic
and trastuzumab-induced cardiac dysfunction is reversible (79% patients improved after receiving standard treatment for congestive heart failure), this clinical observation led to the idea that ErbB2 signalling is critical in the adaptive response of adult heart to stress (Seidman et al., 2002). A further study using ErbB2 conditional knockout animal models confirmed the importance of ErbB2 in cardiac function and structural maintenance (Özcelik et al., 2002). In this study, the MLC-2V promoter was used to drive expression of Cre recombinase to specifically induce deletion of ErbB2 from 50-60% cardiomyocytes in heterozygous ErbB2\(^{\text{flox/+}}\) animals. There were no functional or morphological differences between the wild type and mutant animals at birth, but the mice with ErbB2 deletion developed severe cardiomyopathy in adulthood. This cardiomyopathy was characterised by cardiac dysfunction (i.e., a decreased fractional shortening measured by echocardiography), dilatation of both ventricles (i.e., increased chamber size with thinned walls) and cardiac hypertrophy (Özcelik et al., 2002). In support of this, cultured adult myocytes treated with a non-activating ErbB2 specific antibody display myofilament disarray (Pentassuglia et al., 2009b), which was significantly increased following co-treatment with chemotherapeutic agents like doxorubicin.

Given ErbB2 does not bind EGF ligands and is instead activated by forming dimers with other ligand-stimulated ErbB receptors (particularly ErbB4 in heart), the above observations lead to the hypothesis that the NRG1-ErbB4 interaction likely plays an important role in adult heart. Accordingly, global deletion of ErbB4 leads to death during mid-embryogenesis due to the defective development of myocardial trabeculae in the ventricles (Gassmann et al., 1995). The heart defects in ErbB4 mutant mice could be rescued by cardiac-specific expression of ErbB4 (driven by a myosin promoter). These rescued mice reached adulthood and were fertile, suggesting that ErbB4 is critical for heart development (Tidcombe et al., 2003). In contrast to global deletion, cardiac-specific deletion of ErbB4 using Cre (under the MLC-2V promoter) did not cause embryonic lethality, nor did it alter cardiac morphology or function in neonatal mice. It is important to note that the MLC-2v promoter becomes active during the differentiation of ventricular cardiomyocytes, which might be later than the initiation of the heart generation (Klug et al., 1996; Franco et al., 1999). However, when mice with cardiomyocyte-specific deletion of ErbB4 reached adulthood, they developed dilated cardiomyopathy that was characterised by thinning of the ventricular walls, eccentric hypertrophy, reduced contractility and conduction delays (Garcia-Rivello et al., 2005). Interestingly, conditional knockout of ErbB4 also caused alterations in the morphology of intercalated disks and an abnormal distribution of ErbB2 on the plasma membrane, indicating that
ErbB4 may play an important role in maintaining cell-cell contact and ErbB2 localisation (Garcia-Rivello et al., 2005).
1.7 The rationale and aims for this project

In the past 10 years, the transactivation of ErbB1 by Ang II has been shown in various cell types, including cardiomyocytes, renal epithelial cells, and cell lines such as hepatic C9, cos-7 and MCF-7 cells (Eguchi et al., 1998; Thomas et al., 2002; Muscella et al., 2003; Shah et al., 2004; Chen et al., 2006). However, previous experiments in our laboratory (Hsiu-wen Chan, PhD thesis) showed that ErbB4 agonists selectively induce cardiomyocyte hypertrophy (as measured by the increase in protein/DNA ratio and reorganisation of the actin cytoskeleton), whereas the ErbB1 selective agonist, EGF, did not. Thus, it seems that in cardiomyocytes, ErbB4 receptor activation might be a stronger stimulus for hypertrophy than ErbB1 activation, and opens up the untested possibility that Ang II/AT₁R may transactivate ErbB4 in this setting. As a consequence, based on the studies above, the first aim of my PhD project is to investigate the role of ErbB4 receptors in Ang II-mediated cardiomyocyte hypertrophy.

As discussed above, ErbB4 is spliced into four isoforms (JM-a CYT-1, JM-a CYT-2, JM-b CYT-1 and JM-b CYT-2) that have unique characteristics. Whilst preliminary observations indicate that these four ErbB4 isoforms are present in rat cardiomyocytes (Hsiu-wen Chan, PhD thesis), this finding needs to be confirmed and quantified. There is also no information as to whether the processing of the ErbB4 receptor (to cleave and release the extracellular and intracellular domains) occurs in cardiomyocytes and if this can be stimulated by GPCRs like the AT₁R. Furthermore, whether ErbB4 isoforms and/or their processing contribute equally to cardiomyocyte hypertrophy has not been examined. Thus, the second major aim of my study will be to investigate the role of ErbB4 isoforms in mediating cardiomyocyte hypertrophy.

Finally, NRG1-ErbB4 signalling is critical for heart development, anti-apoptosis and hypertrophy (refer to section 1.6). Despite the power of the elegant transgenic approaches (detailed above) to reveal potential functions for ErbB4 in heart, it is critical to appreciate that these models all modulate deletion of ErbB2 or ErbB4 in the embryo. Thus, the likelihood that the phenotypes observed in adulthood are caused by defects in cardiac development cannot be completely excluded. In order to unambiguously link the ErbB4 receptor to cardiac function in the adult, my final aim is to develop a cardiomyocyte-specific conditional deletion of ErbB4 in mice and investigate the cardiac phenotype of these mice.
CHAPTER 2
GENERAL METHODS
2. General Methods

2.1 Animal Ethics statement

1-2 day old neonatal rats (Sprague Dawley) were used for cardiomyocyte isolation and handled in accordance with the Australian code of practice for care and use of animals for scientific purposes under ethics approval number SBMS/237/09/NHMRC/NHF “Regulation of cardiac hypertrophy” from the University of Queensland Ethics Committee.

All experiments in Chapter 5 were done under the ethics approval number SNMS/253/12/NHMRC “Growth factor receptors in cardiac hypertrophy”. The animals were bred under the ethics approval numbers SBMS/295/11/NHMRC/BREED “Cardiac-specific gene deletion-floxed ErbB4 mice” and SBMS/294/11/NHMRC/BREED “Cardiac-specific gene deletion-creER mice”.

2.2 Chemicals and reagents

All chemicals and reagents were analytical or cell culture grade and purchased from Sigma-Aldrich (New South Wales, Australia), Invitrogen (Victoria, Australia), Applied Biosystem (Victoria, Australia), Thermo Fisher Scientific (Victoria, Australia), Qiagen (Victoria, Australia), Gibco (Victoria, Australia) and New England Biolabs (Massachusetts, USA). Plasticware such as Falcon tube, Eppendorf tube, pipette tips, cell culture flasks/plates were purchased from Corning Life Science (New South Wales, Australia), Biopointe Scientific (California, USA) and Eppendorf South Pacific (New South Wales, Australia). Suppliers for each chemical or reagent will be listed in each research chapter where they were used.

2.3 Vector constructs

The ErbB1 shRNA and ErbB2 shRNA expressing vectors (shErbB1 and shErbB2) were constructed by James Goonan and the ErbB4 shRNA expressing vector (shErbB4) by Dr Hsiu-wen Chan. The shRNA knockdown-resistant isoform of ErbB4 (kdr-JM-a CYT1; kdr-JM-a CYT2; kdr-JM-b CYT1; kdr-JM-b CYT2) were constructed and tested by Dr Hsiu-wen Chan. The luciferase reporter plasmids driven by hypertrophic gene promoters (MLC-2V, ANP-328, and CyclinD) were gifts from Dr Mona Nemer (Canada). The GFP tagged isoforms of ErbB4 (pEGFP-N1-JM-a CYT-
1, pEGFP-N1-JM-a CYT-2, pEGFP-N1-JM-b CYT-1 or pEGFP-N1-JM-b CYT-2) were constructed by myself as described in Chapter 4 method 4.2.5.

2.4 Cell culture

2.4.1 Cardiomyocyte culture

Neonatal ventricular cardiomyocytes preparations were performed by myself, Dr. Brooke Purdue, Dr. Simon Foster, Dr. Tamara Paravicini and Mr. Gregory Quaife-Ryan. 1-2 day old Sprague Dawley rat pups were sacrificed by decapitation. Hearts were harvested and atria were carefully removed. The ventricles were cut into multiple pieces and subject to 7 enzyme digestions (0.03% collagenase and 0.08% pancreatin). Each digestion was processed at 37°C for 20 min using a water jacketed spinner flask. The first collection rich in blood cells was discarded. The other collections were kept on ice and combined with newborn calf serum to neutralize the enzymes. The cells were centrifuged at 1000×g for 6 min at 4°C and then resuspended with ADS buffer (refer to the Appendix A). The cardiomyocytes were isolated from non-myocardial cells using discontinuous percoll gradient centrifugation. The percoll gradient was prepared by adding 4 ml 40% percoll (diluted in ADS) on top of 3 ml 59 % percoll in 15 ml sterile falcon tube. Around 2 ml of cell suspension was overlaid on top of the percoll gradient before centrifugation (3000 rpm for 30 min). After centrifugation, there were two cell layers: the upper layer is rich in fibroblasts, whilst the lower layer is rich is cardiomyocytes. The purified cardiomyocytes were collected and washed in ADS buffer twice before being seeded in 0.1% gelatin-coated cell culture plates with MEM culture medium (supplemented with 10% newborn calf serum, 5- bromo-2’-deoxyuridine (BrdU) and antibiotics). The next day, cardiomyocytes were washed twice with PBS and maintained in DMEM CCT SS2 (refer to Appendix A). DMEM CCT SS2 is the serum free media (using vitamins, amino acids, insulin etc. to replace FBS) used for ongoing cardiomyocyte culture, with BrdU to prevent fibroblast proliferation and 50 mM KCl to stop spontaneous contraction.

2.4.2 Maintenance of CHO and HEK293-T cell lines

HEK293-T cell and CHO cells were maintained in DMEM supplemented with 10% FBS and antibiotics. All cells were incubated at 37°C in a humidified 5% CO₂ incubator. When confluent, cells were passaged by washing once with PBS and then incubating with 0.25% Trypsin-EDTA (Invitrogen Australia) at 37°C for 1-3 min. Culture media was added to stop the digestion followed by centrifugation (3000 rpm for 3min). The supernatant was removed and the cells were resuspended in culture medium before plating.
2.4.3 Drug treatment

Cells were incubated in serum free media for a day prior to drug treatment. Cells were treated with various agonists (Ang II and NRG1β1) and inhibitors (AG1478) at certain concentrations for the indicated time at 37°C. Treatment was terminated by washing cells with ice-cold PBS and incubating cells on ice.

2.5 DNA/siRNA Transfection

2.5.1 DNA Transfection

DNA were transfected into cells using lipofectamine 2000™ (Invitrogen) according to the manufacturer’s instruction. The protocols used for transfection of cardiomyocytes and cell lines are slightly different and will be briefly described here.

For luciferase assay, cardiomyocytes in 12 well plates were transfected in 360μl Opti-MEM (Invitrogen) containing 0.8 μl lipofectamine 2000™ and total of 500ng DNA for luciferase assays. The lipofectamine 2000™ and DNA were individually diluted in 45μl Opti-MEM and incubated separately for 5 min at room temperature before mixed together for another 30 min incubation. Then the DNA and lipofectamine 2000™ mixture was added to individual cell culture wells containing 270 μl Opti-MEM. After 6 hours or overnight, the transfection medium was changed into the normal culture medium for cardiomyocytes (DMEM CCT SS2).

HEK293-T cells or CHO cells were seeded onto 6 well plates and transfected in 2ml Opti-MEM containing 500-600 ng DNA and three times the amount lipofectamine 2000™ relative to the DNA amount (1.5-1.8 μl). The lipofectamine 2000™ and DNA were individually diluted in 100 μl Opti-MEM and incubated separately for 5 min at room temperature before mixed together for another 30 min incubation. The DNA and lipofectamine 2000™ mixture was then added to individual cell culture wells containing 1.8 ml Opti-MEM. The cells were incubated with the transfection reagents for 6 hour before the Opti-MEM was replaced with normal culture media (DMEM supplemented with 10% FBS). At 24-48 hours after transfection, cells were harvested and subjected to Western blot analysis.
2.5.2 siRNA transfection

The cardiomyocytes can be transfected with siRNA via forward or reverse methods. Both methods can induce efficient knockdown and were developed separately by myself (reverse method) and Ms. Choon Boon Sim (forward). For forward transfection, 5 µl Lipofectamine® RNAiMAX (Invitrogen) and 2 µl siRNA (20 µM) was individually suspended in 250 µl DMEM CCTSS2 (antibiotic free) and incubated at room temperature for 5-10 min. siRNA and lipid were mixed together and subject to 30 min incubation before being applied to one well of a 6 well-plate, which already contained 1.5 ml DMEM CCTSS2. For reverse transfection, the same amount of Lipofectamine® RNAiMAX and siRNA was suspended in 250 µl DMEM (antibiotic and serum free). After incubation, the DNA and lipid mixture was mixed with 1.5 ml cell suspension (1.8×10^6 cells in antibiotic free DMEM supplied with 13% serum) and then added to one well of a 6 well-plate. For both reverse and forward methods, the transfection medium was changed into normal cardiomyocyte culture medium (DMEM CCTSS2) 24 h later. For detection of phosphorylated ERK1/2 in cardiomyocytes (Figure 3.6), the reverse transfection method was used. For the hypertrophy assay, the forward transfection (Figure 3.7) was used. The forward transfection efficiency is shown in Figure 3.5, and the reverse transfection had a similar efficiency with the same siRNA (data not shown). The reason I switched from reverse transfection to forward transfection is because the latter is easier to handle. The forward transfection method was developed by Ms. Choon Boon Sim in our lab after I finished the experiments shown in Figure 3.6.

2.6 Luciferase assays

To detect the activation of the hypertrophic genes (ANP, CyclinD and MLC-2V), hypertrophic gene promoter driven luciferase reporters were constructed by fusing the core sequence of each promoter to the firefly luciferase reporter. The reporter constructs for ANP, CyclinD and MLC-2V have been described previously (Henderson et al., 1989; Knowlton et al., 1991; Suzuki-Yagawa et al., 1997). Cardiomyocytes seeded in 12 well plates were transfected with 300 ng of luciferase reporters along with other DNA constructs (100 ng AT1R and 100 ng shRNA). 24-48 h after transfection, cardiomyocytes were stimulated with agonists for 48 h. Then cells were washed with ice-cold PBS twice and lysed with 150 µl of Luciferase Cell Culture Lysis Reagent (Promega). To ensure sufficient lysis, cells were subjected to a cycle of freezing and thawing at -80°C and room temperature and scraped off from the plates. Cell lysates were collected into 1.5 ml Eppendorf tube before centrifuged at 12,000 x g for 2 min at 4°C. 20 µl aliquots of supernatant were transferred to a 96-well white flat-bottomed assay plates. Luminometry was performed with an Optima microplate
Chapter 2: General methods

Reader (BMG LABTECH Company) and 100 μl Luciferase Assay Mix (Promega) was injected into each well containing cell lysate.

2.7 Protein extraction and Western analysis

2.7.1 Protein extraction and BCA assay

To detect ErbB receptors, total and phosphorylated ERK1/2 proteins were extracted from cardiomyocytes or cell lines (HEK-293 or CHO). Cells were washed with PBS and harvested with RIPA lysis buffer (a strong denaturing buffer). For cell lines cultured on 6 well plates, 200 μl RIPA lysis buffer was applied per well. For cardiomyocytes, 70-80 μl RIPA lysis buffer was applied to each well. Cells were scraped off on ice and the lysate collected into 1.5 ml Eppendorf tube and vortexed before centrifugation at 12000 x g for 15 min at 4°C. The supernatant was transferred into new Eppendorf tubes (pre-chilled). The concentration of total protein was estimated with the BCA assay according to the manufacturing instruction (Thermo Scientific Pierce BCA Assay Kit). Briefly, 25 μl cell lysates were added into 96 well plates (in triplicate) and mixed with 200 μl BCA working reagent (Thermo Scientific Pierce BCA Assay Kit). Standard samples were prepared using Bovine Serum Albumin (Sigma) dissolved in the same lysis buffer. After 30 min of incubation at 37°C (with plates covered by membrane), samples were analysed for absorbance at 560nm with an Optima microplate reader (BMG Labtech).

2.7.2 SDS-PAGE and Western blot analysis

To separate proteins according to their size, total proteins were resolved by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using the Mini-PROTEAN gel system (Bio-Rad) (for samples ≤ 50 μl) or SE600 gel system (Hoefer) (for samples ≥ 50 μl). Protein samples were mixed with SDS loading buffer and boiled for 5 minutes at 95°C. Protein samples and a molecular weight standard (Precision Plus Protein™ Dual Color standards, BIO-RAD) were electrophoresed at 100V for approximately 2 h (Mini-PROTEAN gel) or at 25 mA for 5 h (SE600 gel) using PowerPac™ Basic Power Supply (Bio-Rad). Then proteins were transferred onto polyvinylidene fluoride (PVDF) membrane using Mini Trans-Blot Cell system (for small gels) at 60 volts for 1.5 h (for small size proteins such as ERK1/2) or Trans-Blot Cell system (for large gels) (Bio-Rad) at 400 mA for 5-6 h (for larger proteins such as ErbB receptors). The membrane was incubated with blocking buffer (Odyssey) at RT for 1h and then with primary antibody (1:1000 dilution in blocking buffer) at 4°C overnight. The membrane was washed with washing buffer (PBS with 0.1% Tween20) for 4 times for 5 min each and incubated with the secondary antibody for 1 h
at RT (1:10000 dilution in blocking buffer). After further washing, membranes were scanned using an Odyssey Licor Scanner (LI-COR Biosciences).

2.8 RT-qPCR

2.8.1 RNA extraction

To analyse mRNA for gene expression, RNA was extracted from animal tissues or cultured cells using TRizol reagent (Invitrogen) according to the company’s instruction. Briefly, for cells cultured in 6 well plates, media was removed and cells washed with PBS before adding 1 mL of TRizol per well. For animal tissues (heart and skeletal muscle), ~20 mg of tissue was homogenised in a 2 ml Eppendorf tube containing 500 µl TRizol reagent using a Polytron tissue homogeniser (Kinematica). To remove the fat and extracellular connective tissues, tissue samples were centrifuged at 12000×g for 10 min at 4°C following homogenization. The supernatant containing RNA was collected into a new tube and the pellet containing fat and extracellular connective tissues were discarded. Then chloroform (1/5 volume relative to the amount of TRizol) was added to the cell lysate or homogenised tissue sample. After vigorously mixing by hand, the samples were incubated at room temperature for 2-3 min and then centrifuged at 12000×g for 15 min at 4°C. Three separate layers were observed after centrifugation. The top aqueous phase was carefully transferred into a new tube without drawing any of the interphase or organic layer in the bottom. Then ½ volume isopropanol (relative to the TRizol reagent amount) was added to the aqueous phase followed by 10 min incubation at RT. Samples were centrifuged at 12000×g for 10 min at 4°C and the supernatant removed. The pellet was washed with 1 volume of 75% ethanol (relative to the TRizol reagent amount). The wash was discarded after centrifuge at 7500 g for 5 min at 4°C. The pellet was air dried for 5-10 min and resuspended in nuclease-free water at 55°C for 10 min.

2.8.2 DNase treatment

DNase I is a nuclease which causes the degradation of almost all forms of DNA (single-strand or double strand DNA, DNA-RNA hybrids and chromatin). DNase I treatment is a routine method to remove the potentially contaminating genomic DNA from RNA preparation. For this, the isolated RNA was treated with using TURBO DNA free kit (Applied Biosystem) according to company’s instructions. Briefly, the RNA was treated with DNase I in a 25 µl reaction volume (containing 2 µg RNA, 1 µl TURBO DNase, and 1xTURBO DNase buffer) at 37°C for 30 min. The reaction was stopped by adding 5 µl DNase inactivation reagent (supplied in TURBO DNA free kit). After 5 min
incubation at room temperature, the mixture was centrifuged at 10000 g for 90s. The supernatant was carefully collected using a 20 µl pipette without touching the bottom pellet.

2.8.3 cDNA synthesis
The mRNA was reverse transcribed into cDNA using the SuperScript™ III Reverse Transcriptase Kit (Invitrogen). Briefly, 250 ng of random primers, 500 ng RNA and 10 nM dNTPs were mixed and topped up to 13 µl reaction volume with nuclease-free water. After incubation at 65°C for 5 min, the samples were left on ice for 1 min and supplemented with 200 units SuperScript™ III RT, 40 units RNaseOUT™ Recombinant RNase Inhibitor, 100 nM DTT, and 1× First-Strand Buffer (final concentration). The mixture was collected to the bottom of the PCR tube by brief centrifugation and then mixed thoroughly by pipetting. The reverse transcription was performed using a PCR machine with the following conditions: 25°C for 5 min (incubation), 50°C for 60 min (reverse transcription) and then 70°C for 15 min (inactivation).

2.8.4 Real-time PCR
Real-time PCR is a technology that detects the amount of PCR product formed following each cycle of the reaction. It uses fluorescent chemicals to detect the generated DNA and combines the amplification and detection into one step. Currently, two common types of fluorescent systems are used: the SYBR Green reagent and TaqMan probe. SYBR Green dye binds with double-stranded DNA formed during PCR and emits much stronger fluorescence signal when bound than when free in solution. Thus, the fluorescence signal is in proportion to the amount of total DNA product formed. Because the SYBR Green dye binds to all double-stranded DNA, the strength of the fluorescence signal does not always reflect the amount of PCR product from the target gene, especially if there is non-specific amplification. It is important that the primers are designed to specifically amplify the targeted sequence. For some genes, this is very hard due to the shortness and/or homology of gene sequences. Thus, a more specific method is often used, such as TaqMan. The TaqMan method employs a TaqMan probe and a pair of normal PCR primers. A TaqMan probe consists of 18-30 oligonucleotide annealed to the target gene. The primer pair is designed to amplify the region the probe anneals to. TaqMan probe is labelled with a reporter dye on the 5’ end and a quencher dye on the 3’ end. The quencher reduces the reporter fluorescence by FRET when the probe is intact. During the extension step of the PCR, the probe annealed to the DNA template will be degraded by the 5’ exonuclease activity of Taq polymerase. The reporter dye then emits the fluorescence signal. As the fluorescence signal is only generated if the probe is annealed to complementary template, the TaqMan method has higher specificity than SYBR green PCR. The
primers or probes and detection method for the targeted genes are listed in Appendix B. The SYBR Green PCR assay contained 3 µM of primers, 1× Advanced FAST SYBR Green PCR reagent (Applied Biosystems) and 5-10 ng cDNA or DNA template in a 10 µl reaction volume. Thermal cycling was performed with StepOnePlus Real-Time PCR system (Applied Biosystem) as: 95°C for 20 s, followed by 40 cycles of 3s at 95°C and 30s at 60°C. The TaqMan PCR was performed in a 10 µl reaction volume containing 300 nM of primers (Sigma), 200 nM of probe, 1×Taqman advanced fast master mix (Applied Biosystems) and 5-10 ng cDNA templates. Cycling was initiated 20s at 95°C, followed by 40 cycles of 1s at 95°C and 20s at 60°C.

2.8.5 Relative quantification of the real-time PCR

Data from real-time PCR can be analysed using absolute quantification or relative quantification. Absolute quantification requires a standard curve, which is used to determine the initial copy number of the transcript interest (refer to section 4.2.3). Relative quantification describes the expression of target gene in treated group(s) relative to a control. To perform relative quantification, the expression of the gene of interest needs to be normalized to an internal control. The internal control is usually a house-keeping gene and expressed abundant in majority cell types. In my studies, 18S was consistently used as an internal control. Except for the ErbB4 isoforms in Chapter 4 (described in section 4.2.3), the gene expression data presented in this thesis were all analysed by relative quantification using $2^{(\Delta\Delta CT)}$ method as described (Livak et al., 2001).

2.9 Data presentation and statistical analysis

Results are presented as mean ± standard error of the mean (SEM) throughout. Statistical analysis was performed using Graphpad Prism 6 for Windows. For comparison between two groups, Student’s t-tests were utilised for data analysis. For multiple comparisons, One-way or Two-way ANOVA with Bonferroni or Dunnett’s post-hoc comparisons were used. The adopted statistical analysis method is indicated in the figures or the method section in each chapter.
CHAPTER 3
THE ROLE OF ErbB RECEPTORS IN Ang II-INDUCED CARDIOMYOCYTE HYPERTROPHY
Chapter 3: The role of ErbB receptors in Ang II-induced cardiomyocyte hypertrophy

3. The role of ErbB receptors in Ang II-induced cardiomyocyte hypertrophy

3.1 Background

Cardiac hypertrophy is characterised by cardiomyocyte growth and extracellular matrix accumulation. It is an independent risk factor for heart failure, myocardial infarction, arrhythmias and other cardiac morbidity and mortality (Frey et al., 2003; Adabag et al., 2010). Cardiac hypertrophy can be induced by physiological stimuli (e.g. pregnancy or exercise training) or pathological stimuli (e.g. the pressure/volume overload associated with hypertension, or increased production of circulating or paracrine pro-hypertrophic factors) (Solomon et al., 2009; Iwata et al., 2011). Angiotensin II (Ang II) is a key component of the renin-angiotensin system that is a major regulator of blood pressure and cellular growth. Whilst Ang II can cause cardiac hypertrophy subsequent to hypertension, it can also directly induce cardiomyocyte hypertrophy (Paradis et al., 2000; Schultz et al., 2002). We have previously shown that Ang II can directly promote cardiomyocyte hypertrophy via activation of the AT$_{1A}$R and Gq protein coupling (Thomas et al., 2002; Smith et al., 2011). At the molecular level, Ang II-induced cardiomyocyte hypertrophy is characterized by the re-induction of the ‘fetal gene program’ (increased expression of ANP, CyclinD and MLC-2V), along with reorganization of the cardiomyocyte sarcomere (Sadoshima et al., 1993; Aoki et al., 1998). However, the exact molecular mechanisms responsible for the hypertrophic growth of cardiomyocytes are yet to be fully elucidated.

One paradigm for Ang II-induced cardiomyocyte hypertrophy is the transactivation of receptor tyrosine kinases, such as the epidermal growth factor receptors (ErbBs) (Asakura et al., 2002; Thomas et al., 2002). ErbB receptors are a subfamily of receptor tyrosine kinases that regulate cell proliferation, survival and differentiation (Burgess, 2008). There are four known ErbB receptor subtypes (ErbB1-4), three of which (ErbB1, ErbB2 and ErbB4) (Scaltriti et al., 2006) are expressed in postnatal rat cardiomyocytes (Zhao et al., 1998). The ErbB receptors can be selectively activated by EGF family ligands, such as EGF (an agonist for ErbB1) and NRG1β1 (the agonist for ErbB4). ErbB2 is not directly activated by ligand binding, but is the preferred dimerisation partner for the other isoforms. Upon activation by agonists, the receptors form hetero- or homodimers (Burgess et al., 2003), phosphorylate intracellular tyrosine residues and thus activate downstream signalling pathways (Olayioye et al., 2000; Yarden et al., 2001; Mendelsohn et al., 2003). There is evidence
for a role of ErbB1, 2 and 4 in cardiac development and function (Gassmann et al., 1995; Wadugu et al., 2012). Mutations in any of ErbB1, ErbB2 and ErbB4 lead to embryonic death or postnatal death due to defects in cardiac development (Gassmann et al., 1995; Lee et al., 1995; Miettinen et al., 1995; Sibilia et al., 1995; Threadgill et al., 1995). Cardiomyocyte-specific expression of the dominant-negative ErbB1 in adult mice results in dilated cardiomyopathy (Rajagopalan et al., 2008), and administration of an ErbB2 blocking antibody in humans increased the risk of heart failure (Seidman et al., 2002).

We and others have shown that one mechanism for Ang II-induced hypertrophy is via the ‘hijacking’ or transactivation of EGFR (ErbB1) (Thomas et al., 2002; Ohtsu et al., 2006b; Smith et al., 2011). Given previous studies showing important roles for ErbB2 and ErbB4 in cardiac physiology (Zhao et al., 1998; Özcelik et al., 2002) we speculated that these receptors may also be involved in AT1R-ErbB transactivation and cardiomyocyte hypertrophy. Thus, in this study we have compared and contrasted the contribution of different ErbB receptor isoforms in AT1R transactivation using both pharmacological and RNAi-based approaches.
3.2 Methods

3.2.1 Animal ethics

All experiments were conducted in accordance with the Australian Code of Practice for Care and Use of Animals for Scientific Purposes and approved by the institutional ethics committees of The University of Queensland.

3.2.2 Vector constructs

The ErbB1 shRNA and ErbB2 shRNA expressing vectors were constructed by James Goonan and the ErbB4 shRNA expressing vector by Dr Hsiu-wen Chan. The shRNA knockdown-resistant ErbB4 constructs were constructed and tested by Dr Hsiu-wen Chan. The luciferase reporter plasmids driven by hypertrophic gene promoter (MLC-2V, ANP-328, and CyclinD) were gifts from Dr Mona Nemer (Canada).

3.2.3 Cardiomyocyte culture

Cardiomyocytes were isolated from ventricles of 1-2 day old Sprague Dawley rats and purified via gradient centrifugation as previously described (Thomas et al., 2002). To mimic the up regulation of AT$_1$R during hypertrophy, a modest level of AT$_1$R was delivered into cardiomyocytes using DNA transfection or adenoviral vectors as required and indicated in the figures (Thomas et al., 2002).

3.2.4 Drug treatment

Cardiomyocytes were stimulated with the following hypertrophic agents: Ang II (100 nM), NRG1β1 (10 nM), EGF (10 nM). Drugs to inhibit ErbB receptors (AG1478, 500 nM or 5 μM) or Gq (YM254890, 100nM) were added to cells 30 min before stimulation. AG1478 was purchased from Sigma-Aldrich Corporation (New South Wales, Australia). Human recombinant EGF and NRG1β1 were purchased from R&D Systems (Minnesota, USA). Human Angiotensin II was sourced from Auspep Pty Ltd (Victoria, Australia). YM254890 was a gift from Astellas Incorporation, Japan.
3.2.5 DNA transfection and luciferase reporter assay

Reporter assays were used to measure the re-activation of the prototypic ‘hypertrophic genes’ ANP, cyclin D and MLC2v. Cardiomyocytes were transiently transfected with equal amounts (total 500 ng) of DNA constructs (promoter driven luciferase reporters, AT1R and shRNAs targeting specific ErbBs) using Lipofectamine™ 2000 (Life Technologies). Twenty four hours after transfection, hypertrophic signalling was induced by treatment with Ang II, NRG1β1 or EGF, and another forty-eight hours later, the cells were harvested and assayed with a luciferase assay kit (Promega).

3.2.6 siRNA transfection

The siRNAs specific for ErbB1, ErbB2 and ErbB4 (ON-TARGETplus, Dharmacon) were transfected (Lipofectamine® RNAiMAX, Life Technologies) into cells 24 hours after isolation. Non-targeting siRNA was used as a control.

3.2.7 Real-time PCR

RNA was isolated from cardiomyocytes using TRIzol® reagent (Life Technologies) and DNase-treated before reverse transcription. The cDNA was amplified with Taq polymerase (FAST SYBR Green PCR Master Mix, Life Technologies). The primer sequence used were: for ErbB1 forward 5’-TCCCTTTGGAGAACCTGCAG-3’ Reverse 5’-TCGCACAGCACCGATCAGAA-3’ (Mizobuchi et al., 2013); for 18S forward 5’-TCGAGGCCCTGTAATTGGAA-3’ Reverse 5’-CCCTCCAATGGATCTCTGTT-3’ (Advani et al., 2009).

3.2.8 Western blot

Western Blotting was performed as described in detail previously (Carabatsos et al., 2000). Western blots of cellular protein lysates were probed with primary antibodies to ErbB4 (sc-283, Santa Cruz), ErbB2 (Ab-3, Calbiochem), ErbB1 (1005, Santa Cruz), p-Erk1/2 (#9106, Cell Signalling), Erk1/2 (#4695, Cell Signalling) and β-actin (AC-15, Sigma). IRDye-conjugated secondary antibodies and the LI-COR odyssey infrared imaging system (Millennium Science) were used to quantify protein expression.

3.2.9 Hypertrophy assay

Cells were lysed in TE buffer containing 0.06% SDS for 4 hours at room temperature. Lysates were then assayed for both protein (BCA assay, Thermo Scientific) and DNA content (Picogreen dsDNA
assay kit, Life Technologies). Before the DNA assay, cell lysates were treated with 0.2g/L proteinase K (Life Technologies) overnight. Hypertrophy was defined by the increase in the total protein in the absence of change of DNA levels.

3.2.10 Phalloidin stain

Cardiomyocytes were fixed with 4% PFA followed by staining with Alexa594-labelled phalloidin as per the manufacturer’s protocol (Invitrogen). The cardiomyocytes were then subjected to confocal microscopy to examine the F-actin reorganization into the sarcomere. For each treatment, images of cardiomyocytes were taken randomly under 400× magnification.

3.2.11 Statistical analysis

Data are shown as mean ± SEM. Data were analysed by Student’s t-test, or One-way or Two-way ANOVA with Bonferroni post-hoc comparisons, as indicated in the figures. $P < 0.05$ was considered statistically significant.
3.3 Results

3.3.1 Different ErbB ligands produce different effects on hypertrophy and remodelling

Ang II produces cardiomyocyte hypertrophy (Thomas et al., 2002) and cytoskeletal remodelling (Figure 3.1) as has been previously described. EGF (an ErbB1 selective agonist) does not increase protein:DNA ratio or induce sacromeric reorganization in cardiomyocytes across a range of concentrations, suggesting that ErbB1 receptor activation is not tightly coupled to the hypertrophic response (Figure 3.1). In contrast, NRG1β1 (an ErbB4 selective agonist) produces robust cardiomyocyte hypertrophy, increasing protein:DNA ratio by up to 35% with a corresponding alteration in cell morphology and F-actin reorganization (Figure 3.1).
Figure 3.1 Different ErbB ligands produce different effects on hypertrophy and remodeling A. CM were subjected to hypertrophic assay following treatment with increasing concentrations of NRG1β1 or EGF for 60-72h. B. CM were fixed and stained with phalloidin after treated with 100 nM Ang, 10 nM NRG1β1 or 10nM EGF for 72h. The white bar in the first panel is a 100 μm indicator. These images are representative images of three independent experiments. Data shown as mean ± SEM (n=3).
3.3.2 Ang II-induced activation of hypertrophic gene promoter activity does not require ErbB receptors

We designed shRNA plasmid constructs specifically targeting ErbB1, ErbB2 and ErbB4 receptors, and confirmed that these constructs could down-regulate receptor expression (Figure 3.2). These shRNA constructs were then used to selectively silence individual ErbB receptors in cardiomyocytes, and subsequently examine the role of these receptors in hypertrophic signalling responses to Ang II and NRG1β1. Ang II and NRG1β1 both increased promoter activity for MLC-2v (Figure 3.3 A), ANP (Figure 3.3 B) and cyclin D (Figure 3.3 C), indicating re-activation of the hypertrophic gene program. Knockdown of ErbB4, but not ErbB1 or ErbB2, significantly reduced NRG1β1-induced activation of MLC-2v promoter activity by 62% (Figure 3.3 A). NRG1β1-induced activation of ANP and cyclin D were also inhibited by ErbB4 shRNA (Figure 3.3 B and C).

In contrast, knockdown of ErbB1, 2 or 4 did not reduce Ang II-induced activation of MLC-2v (Figure 3.3 A), nor did knockdown of ErbB4 affect Ang II-induced activation of ANP or cyclin D (Figure 3.3 B and C).

To complement our observation that ErbB receptors are not essential for Ang II-induced activation of the hypertrophic gene program, we also used AG1478 to pharmacologically inhibit ErbB activity, and used phosphorylation of ERK1/2 as a measure of ErbB1 or ErbB4 activation in cardiomyocytes (Figure 3.4 A and B). At higher concentrations of AG1478 (5 μM), the ERK1/2 phosphorylation induced by both EGF (an ErbB1 agonist) and NRG1β1 (an ErbB4 agonist) was blocked. However, at lower concentrations of AG1478 (0.5 μM) only the EGF-induced ERK1/2 phosphorylation was abolished (Figure 3.4 A). This suggests that at 0.5 μM AG1478 selectively inhibits ErbB1 receptors, whereas at 5 μM AG1478 inhibits both ErbB1 and ErbB4 receptors.

Similarly, NRG1β1-induced ANP promoter activity was inhibited by 5 μM of AG1478 but not by 0.5 μM AG1478 (Figure 3.4 C), confirming that at higher concentrations, AG1478 has inhibitory effects on hypertrophic signalling via ErbB4 receptors. In contrast, neither concentration of AG1478 inhibited Ang II-stimulated ANP promoter activity (Figure 3.4 C), suggesting that neither ErbB4 nor ErbB1 is involved in Ang II-induced activation of hypertrophic signalling. These results are consistent with those obtained from the shRNA experiments described above. The Gq inhibitor YM254890 (0.1 μM) significantly inhibited Ang II-stimulated activation of ANP, confirming that the Gq signalling pathway is essential for this process. NRG1β1-induced activation of ANP promoter activity was unaffected by YM254890 (Figure 3.4 C). Taken together, these data suggest that in isolated cardiomyocytes the activation of hypertrophic signalling pathways by Ang II is
independent of ErbB receptor activation, whereas ErbB4 receptors are important for NRG1β1-induced hypertrophic signalling.
Figure 3.2 ErbB silencing by shRNA in a cell line. CHO cells were transfected with 500 ng of plasmids expressing either ErbB1, ErbB2 or ErbB4, and with 500 ng of shControl (shCont) or shErbB1, shErbB2 or shErbB4 (shB1, shB2 and shB4). Controls were left untransfected. Expression of ErbB receptors was measured by Western blot with β-actin as control.
Figure 3.3 A role for ErbB receptors in hypertrophic gene promoter activity. CMs were transfected with 100 ng AT,R, 100 ng ErbB shRNA or non-silencing shRNA (shControl), and 300 ng of either MLC-2V (A), ANP (B) or CyclinD (C) promoter-driven luciferase reporter constructs. 24 h after transfection cells were stimulated with NRG1β1 (10 nM) or Ang II (100 nM) for 48 h. Data are presented as mean ± SEM (A, n=5; B, n=4; C, n=3) of relative light units (RLU) expressed as a percentage of the shControl. Data were analysed by Two-way ANOVA with Bonferroni post-test (**P<0.01 vs shControl with NRG1β1 stimulated; ####P<0.0001, ####P<0.001, ##P<0.01, #P<0.05 vs unstimulated in each shRNA treated group).
Figure 3.4 Divergent effects of the ErbB inhibitor AG1478 and Gq inhibitor YM254890 on ERK1/2 phosphorylation and ANP promoter activity in response to NRG1β1 and Ang II stimulation. CMs were infected with AT1R adenovirus for 48h. Cells were then treated with AG1478 (0.5 or 5 μM) or YM254890 (0.1 μM) for 30 min before stimulating with (A) EGF (10 nM) or (B) NRG1β1 (10 nM) for 5 min. Levels of total and phosphorylated ERK1/2 were measured by Western blot; images are representative of two independent experiments. In (C) CMs were transfected with 100 ng AT1R, 100 ng shControl and 300 ng ANP promoter-driven luciferase reporter constructs. 24 h after transfection cells were treated with either AG1478 or YM254890 and stimulated with NRG1β1 or Ang II, as described above. Data are presented as mean ± SEM (n=3) of RLU expressed as a percentage of the unstimulated control and were analysed by Two-way ANOVA with Bonferroni post-test (**P<0.01 vs control treated with Ang II, *P<0.05 vs control treated with NRG1β1; ####P<0.0001, ###P<0.001, ##P<0.01 vs unstimulated in each shRNA treated group).
3.3.3 Ang II-induced MAPK signalling does not require ErbB receptors

Given the potential controversy of the above findings, we were concerned that the reporter constructs used above are limited by only being transfected into a very small proportion (1-2%) of cardiomyocytes. Thus, we wanted to expand our studies to measure indices of hypertrophic signalling in the wider, more representative population of cardiomyocytes. To do so, we used siRNA oligonucleotides that can be transfected into cells at much higher efficiencies than plasmid constructs to silence individual ErbB receptors. Western blots confirmed successful siRNA-mediated knockdown of ErbB1, ErbB2 and ErbB4 for up to 96 hours after transfection (Figure 3.5 A-C). This knockdown was selective for the targeted isoform, as knockdown of one ErbB subtype did not affect expression of other ErbB receptors (Figure 3.5).

Both NRG1β1 and Ang II increase ERK1/2 phosphorylation (Figure 3.6 A). Stimulation with NRG1β1 increased the activation of ERK1/2 by 21-fold relative to the unstimulated group. siRNA-mediated knockdown of ErbB4 reduced this activation by approximately 40% relative to the siControl (Figure 3.6 B), confirming that ErbB4 is required for the NRG1β1-induced ERK1/2 signalling. However, similar to the results for hypertrophic gene promoter activity, Ang II-stimulated ERK1/2 activation was unaffected by knockdown of ErbB receptors (Figure 3.6 C). Together, these data further indicate that whilst ErbB4 is required for NRG1β1-induced activation of hypertrophic signalling pathways, ErbB receptors are not involved in Ang II-induced hypertrophic signalling in cardiomyocytes.
Figure 3.5 Selective knockdown of ErbB receptor expression with siRNA. CMs were transfected with 20 nM siRNA targeting individual ErbB receptors. Expression of ErbB receptors was determined via Western blotting or qPCR 48 - 96 h after transfection. A. Left panel shows a representative image of two independent Western blot experiments probing ErbB1. The right is quantification of the ErbB2 and ErbB4 expression by qPCR 48 h later after transfection (using 18S as internal control and expressed as a percentage of the siControl). Data shown as mean ± SEM (n=3) and analysed by Student’s t-test. B and C. The left images are representative images of three independent Western blots probing for ErbB2 or ErbB4. The right shows quantification of ErbB2 and ErbB4 expression using Image Studio Lite software (version 3.1). Data shown as mean ± SEM (n=3-4) and analysed by two way ANOVA (**P <0.001 vs. siControl).
Figure 3.6 Selective knockdown of ErbB receptors differentially affects activation of ERK1/2 by NRG1β1 and Ang II. CMs were transfected with 20 nM of siErbB1, siErbB2, siErbB4 or siControl 24h prior to infection with AT1R adenovirus. 48 h later, the cells were stimulated with either NRG1β1 (10 nM) or Ang II (100 nM) for 5 min. Activation of ERK1/2 was determined by Western blotting (A). The data were quantified and presented as mean ± SEM (n=4) for NRG1β1 (B) and Ang II (C). Data were analysed by Two-way ANOVA with Bonferroni post-test, ***P <0.001 vs siControl; ####P<0.0001, #####P<0.001, ##P<0.01 vs unstimulated in each siRNA treated group).
3.3.4 NRG1β1-induced hypertrophic growth requires ErbB4

Finally, we sought to confirm that NRG1β1 acts via the ErB4 receptor to cause hypertrophic growth as well as activation of hypertrophic signalling pathways. Stimulation with NRG1β1 increased the protein:DNA ratio by 18% in cardiomyocytes compared to unstimulated controls (Figure 3.7 A). This NRG1β1-induced hypertrophic growth was significantly reduced (~ 40 % reduction compared to siControl) by down-regulation of ErbB4. Knockdown of ErbB1 and ErbB2 caused a small reduction in NRG1β1-induced hypertrophy (16% and 14% increases in protein:DNA ratios respectively compared to unstimulated controls) however this was not statistically significant (Figure 3.7 A). Consistent with this, NRG1β1 induced sarcomere reorganization was affected by knockdown of ErbB4, but not ErbB1. The down regulation of ErbB2 seems to attenuate the NRG1β1-induced sarcomere reorganization but this effect is less pronounced compared to the siErbB4 treated cells (Figure 3.7 B).
Figure 3.7 Effect of ErbB receptor knockdown on NRG1β1-induced hypertrophy. CMs were transfected with 20 nM of siErbB1, siErbB2, siErbB4 or siControl for 48 h prior to stimulation with NRG1β1 (10 nM) for an additional 48 h. A. Protein:DNA ratio was determined and data normalized to the unstimulated control. Data are presented as mean ± SEM (n=4) and analysed by two-way ANOVA with Bonferroni post-test, **P<0.01 vs siControl; ####P<0.0001, ###P<0.001, ##P<0.01 vs unstimulated in each siRNA treated group. B. Representative images of sarcomere reorganization measured by Phalloidin staining.
3.4 Discussion

The mechanism of AT\textsubscript{1}R-EGFR transactivation has generated substantial interest due to the role of this pathway in cardiac hypertrophy (Kagiyama \textit{et al.}, 2002; Thomas \textit{et al.}, 2002), renal growth and dysfunction (Lautrette \textit{et al.}, 2005) and vascular remodelling (Ohtsu \textit{et al.}, 2006b). The central paradigm for transactivation has involved the AT\textsubscript{1}R-mediated activation of metalloproteases that cleave cell surface EGF ligand precursors that then activate EGFR (ErbB1). The number and diversity of both metalloproteases (MMPs and ADAMs) (Edwards \textit{et al.}, 2008; Hadler-Olsen \textit{et al.}, 2011), EGF ligands and ErbB receptors means that it has been difficult to identify the specific players involved in any individual transactivation process. Based on the prevailing literature, we were surprised to discover in this study that ErbB1 appears to play little or no role in cardiomyocyte hypertrophy. In contrast, we have confirmed a significant role for ErbB4 in this process. Based on this, we then hypothesized that the pro-hypertrophic effects of Ang II may in fact be mediated by ErbB4; however, this was not the case. Using a variety of approaches (RNA interference, pharmacological blockade) we were unable to demonstrate any link between AT\textsubscript{1}R activation and ErbB4. In total, our data raise questions concerning the role of individual ErbB receptors in Ang II-mediated cardiomyocyte hypertrophy.

However, a lack of involvement of ErbB receptors in Ang II-mediated cardiomyocyte growth does not discount these receptors from playing a major role in the heart. Indeed, a major finding of our study is that the ErbB4 receptor is critical for NRG1\textbeta 1-induced cardiomyocyte hypertrophy. This supports previous studies which found that NRG1\textbeta 1 induced hypertrophy in both neonatal and adult ventricular myocytes accompanied by up-regulation of hypertrophic genes (Zhao \textit{et al.}, 1998). Indeed, NRG1\textbeta 1-ErbB4 signalling is important in cardiac development: deletion of either gene causes embryonic lethality due to heart malformations (Gassmann \textit{et al.}, 1995; Meyer \textit{et al.}, 1995). NRG1\textbeta 1-ErbB4 signalling also induces cardiomyocyte proliferation both \textit{in vitro} and \textit{in vivo} (Bersell \textit{et al.}, 2009). We now show that ErbB4 activation by NRG1\textbeta 1 can also stimulate ERK1/2 activity and hypertrophy in cardiomyocytes, further illustrating the important role of this mechanism in cardiac physiology.

We were surprised to observe that ErbB1 activation does not cause cardiomyocyte hypertrophy. In a variety of cells, we and others have previously demonstrated that AT\textsubscript{1}R activation leads to phosphorylation of the ErbB1 receptor, downstream signalling and subsequent changes in cell physiology (Thomas \textit{et al.}, 2002; Ohtsu \textit{et al.}, 2006b). Moreover, deletion of ErbB1 in vascular
smooth muscle cells reduces GPCR-mediated signalling and has marked effects on vascular and cardiac remodelling (Schreier et al., 2011; Schreier et al., 2013).

One possible explanation for the discrepancy between this work and earlier studies relates to the method of inhibiting ErbB receptors. AG1478 is regarded as a selective inhibitor for ErbB1, however as an ATP-competitive antagonist it may also inhibit other receptor tyrosine kinases when used at higher concentrations (Levitzki et al., 1995; Anastassiadis et al., 2011). In this study, we used two different concentrations of AG1478 (0.5 and 5 μM), and found that the lower concentration selectively inhibited ErbB1, whereas the higher concentration inhibited both ErbB1 and ErbB4, consistent with previous reports (Anastassiadis et al., 2011). Thus, it is possible that previous studies using AG1478 at 5 μM may have attributed actions to ErbB1 activation that are in fact being mediated by ErbB4 or other tyrosine kinases. Indeed, we have previously shown that 5 μM AG1478 is required to abolish Ang II-induced ERK1/2 activation and cardiomyocyte hypertrophy (Thomas et al., 2002; Smith et al., 2011), which suggests that multiple ErbB receptor subtypes may involved in this process.

We then sought to further validate these data using a third method of inhibiting ErbB receptors, siRNA. siRNAs to ErbB1, 2 and 4 all showed significant knockdown of their targeted receptor, and we found no evidence of compensatory up-regulation of the other receptor isoforms (Figure 3.5). Knockdown of individual ErbB receptors did not inhibit Ang II-induced ERK1/2 activation. Whilst it could be argued that perhaps the magnitude of ErbB receptor knockdown was insufficient to inhibit Ang II signalling, our results with NRG1β1 do not support this explanation. siRNA targeting of the ErbB4 receptor reduces both NRG1β1-induced ERK1/2 activation and cardiomyocyte hypertrophy, thus we would argue that siRNA-mediated down-regulation of ErbB4 was sufficient to cause a functional reduction in expression, but that Ang II does not appear to act via this receptor. Taken together, we have used three different methods to inhibit ErbB receptors (shRNA, siRNA and pharmacological inhibition) and found no evidence for the role of any individual ErbB receptor isoforms in Ang II-mediated hypertrophic signalling.

By raising questions about the mechanism of AT₁R-ErbB receptor transactivation in cardiomyocytes, this study highlights the potential for investigating signalling pathway networks using an unbiased, rather than candidate-driven, approach. Indeed, our group has recently used functional genomics to perform a siRNA screen of AT₁R-ErbB1 transactivation in a mammary epithelial cell line, and have identified a number of novel molecules involved in this process.
(George et al., 2013). It is also important to recognize the difficulties in characterizing systems that involve multiple molecular participants, and thus may have a high degree of redundancy. In the case of AT$_1$R-ErbB transactivation, this is typified by the number of potential MMP/EGF ligand/ErbB receptor combinations.

Transactivation of GPCRs and receptor tyrosine kinases is a broad phenomenon that is important in both normal physiology and numerous disease processes. We confirm an important role for NRG1β1-ErbB4 signalling in cardiomyocyte growth, yet our data calls into question the existence of a straightforward mechanism for the transactivation of ErbB receptors by the AT$_1$R. Accordingly, I will focus on further examining the role of ErbB4 in cardiomyocytes in the following studies described in this thesis.
CHAPTER 4
INVESTIGATION INTO THE ROLES OF ErbB4 ISOFORMS IN CARDIOMYOCYTE HYPERTROPHY
4. Investigation into the roles of ErbB4 isoforms in cardiomyocyte hypertrophy

4.1 Background

ErbB4 has four isoforms resulting from alternative splicing: JM-a CYT-1, JM-a CYT-2, JM-b CYT-1 and JM-b CYT-2 (as discussed in section 1.4). The four isoforms are structurally different in two domains: the extracellular juxtamembrane JM domain (JM-a and JM-b) and intracellular CYT domain (CYT-1 and CYT-2). Compared to the CYT-2 domain, the CYT-1 contains a 16 amino acid insertion that acts as a docking site for multiple factors including STAT5, Yap and PI3K (Elenius et al., 1999; Omerovic et al., 2004; Williams et al., 2004). The JM-a isoform contains 23 amino acids in the JM domain that allow for ectodomain shedding (Junttila et al., 2000). JM-b contains an alternative 13 amino acids that resistant to shedding (Junttila et al., 2000). Cleavage of the JM-a isoform occurs in 2 steps, and produces an 80-kDa soluble fragment. First, the JM-a isoform can be subjected to ectodomain cleavage by the metalloprotease ADAM17 to produce a 120-kDa ectodomain fragment released into the extracellular medium and an 80-kDa fragment anchored in the membrane (Vecchi et al., 1997; Rio et al., 2000; Zhou et al., 2000). The 80-kDa fragment can subsequently be subjected to further cleavage by γ-secretase within the lipid bilayer to release the intracellular domain (Chang-Yuan et al., 2001). The cleavage can be induced by various stimulations such as PMA, NRG1-β1 or GPCR agonists, which potentially activate the ADAMs (Chang-Yuan et al., 2001). The cleavage of JM-a isoform is cell type dependent. In breast cancer cells, ovarian cancer cells, lung cancer cells, and a glioma cell line (Vecchi et al., 1996; Zhou et al., 2000; Määttä et al., 2006; Zeng et al., 2009), the JM-a isoform of ErbB4 is cleaved to produce an 80 kDa intracellular domain (ICD). The ICD can enter the nucleus and interact with transcriptional factors to regulate transcriptional activity (Tidcombe et al., 2003; Zhu et al., 2006b; Gilmore-Hebert et al., 2010). Depending on whether they can be cleaved to release the ICD, or possess the extra 16 amino acids in the intracellular domain, each ErbB4 isoform may therefore play a different role in regulating growth and differentiation (Muraoka-Cook et al., 2009). For instance, the cleavable JM-a isoform is capable of regulating the astrogenesis timing by suppressing astrocyte differentiation, whereas the non-cleavable isoform JM-b cannot (Sardi et al., 2006) (refer to the Chapter 1 section 1.4.3 for more detail); the CYT-2 ICD promotes mammary cell proliferation, whereas CYT-1 ICD promotes differentiation (more acinar structures in 3D culture) (Muraoka-Cook et al., 2009). We have previously shown that all ErbB4 isoforms are detectable in rat neonatal...
primary cardiomyocytes (Dr. Hsiu-wen Chan, PhD thesis). However, the regulation of these isoforms in cardiac development and pathological conditions has not been investigated. In addition, whether the JM-a-containing isoforms can be cleaved to release the ICD and enable trafficking of the ICD to the nucleus of cardiomyocytes is not known. Finally, the ability of each individual isoform to mediate cardiomyocyte hypertrophy has not been previously examined. The following studies aim to answer these questions.
4.2 Methods

4.2.1 Animals

To investigate the regulation of the ErbB4 isoforms in cardiac development and cardiac pathology models (ischaemia-reperfusion model and pathological cardiac hypertrophy model), we collaborated with other groups who have isolated RNA samples from these models. RNA isolated from embryonic CD-1 mouse hearts (E10.5, E13.5, E16.5, and E18.5) was a gift from Dr. David Pennisi (University of Queensland). The RNA from CD-1 mouse hearts at postnatal days 1, 6, 14 and 28 was kindly provided by Dr. Enzo Porrello (University of Queensland). The hearts from an ischaemia-reperfusion model and a pathological cardiac hypertrophy model were from Prof. Eric N. Olson’s group (University of Texas) and RNA was extracted by Dr. Enzo Porrello. For the ischaemia model, 8-12-week old mice (under isoflurane anaesthesia) underwent 45 min of ischaemia induced by temporary ligation of the left anterior descending coronary artery (LAD) followed by reperfusion. Control animals underwent a sham operation without occlusion of the LAD. After 24 hours or 7 days recovery, cardiac tissues were collected from both groups (Aurora et al., 2012) and RNA extracted. For pathological cardiac hypertrophy model, the calcium-dependent phosphatase calcineurin driven by cardiac-specific gene promoter αMHC was overexpressed in mice. The mutant mice develop cardiac hypertrophy soon after birth and reached maximal hypertrophy at 8 weeks of age. Then they progressed to dilated cardiomyopathy and heart failure (Molkentin et al., 1998). RNA was extracted from hearts collected from transgenic and wild type animals at 8 weeks of age.

4.2.2 Relative quantitation real-time PCR with TaqMan probes

Real-time PCR quantification of ErbB4 isoforms was performed with specific primers and probes described previously in the literature (Junttila et al., 2003; Veikkolainen et al., 2012). Probes for JM-a, JM-b, CYT-1 and CYT-2 annealed to exons 16, 15, 26 or the junction between exons 25 and 27, respectively (Figure 4.1 A). The primers were synthesized based on the exon sequences flanking the site recognized by the probe. Amplification of ribosomal 18S was used as an internal control. PCR was performed in a solution containing 300 nM of each primer (Sigma), 200 nM of probe, 1×TaqMan advanced fast master mix (Applied Biosystems) and 5-10 ng cDNA template in a final volume of 10 µl. Thermal cycling was performed with StepOnePlus Real-Time PCR system (Applied Biosystems). Cycling was initiated 20 s at 95°C, followed by 40 cycles of 1 s at 95°C and 20 s at 60°C. Expression levels of all isoforms were normalized to 18S expression using the $2^{\Delta\Delta CT}$ method as described (Livak et al., 2001).
4.2.3 Absolute quantification real-time PCR

Absolute quantification uses serially diluted standards of known concentrations to generate a standard curve. The standard curve produces a linear relationship between the initial amounts of DNA template (N_0) and the threshold cycle (C_T) and thus can be used to quantify the unknown samples. This method assumes all standards and samples have equal amplification efficiency. Thus, standards and samples have to be amplified in the same plate under same PCR conditions (same probe, primers, reagents, etc). The relationship between the $\log(N_0)$ and $\log(C_T)$ is described in the linear function: $\log(N_0) = \log(E+1) \cdot C_T + \log(N_T)$ as previously described (Rutledge et al., 2003). E is amplification efficiency; N_T is the number of amplicon molecules at fluorescent threshold; N_T and E are constants (Rutledge et al., 2003). In my study, serially diluted (1:5) standards for each ErbB4 isoform (see section 4.2.4 for standards generation) and the unknown samples were amplified in the same plates using the primers and probe described in section 4.2.2. Standard curves for each isoform of ErbB4 were generated by analyzing the initial amounts of standards and threshold cycle (Figure 4.2). The initial template amounts (N_0) of unknowns can be calculated by putting its C_T value into the corresponding function.

4.2.4 Generation of standards for absolute quantification real-time PCR

Standards should be made from a high quality template because any degradation will affect the results. PCR products can slightly degrade during storage and thus are not a suitable standards resource, whilst the cloned target sequence is more stable (Dhanasekaran et al., 2010). To get a clean and consistent source for the standards, the PCR products in section 4.2.2 were cloned into TA vectors. Briefly, the PCR products were subjected to DNA purification (DNA extraction kit, Qiagen) following agarose gel electrophoresis. Then the purified PCR products were ligated into linearized T-overhang vectors using TOPO® TA Cloning® Kit (Invitrogen). The ligation was transformed into competent *E. coli* cells (New England Biolabs) and then subjected to kanamycin selection on LB agar plates. Positive clones were confirmed with plasmid extraction followed by sequencing. The positive clone was preserved at -80°C supplemented with 40 % glycerine.

The recombinant T vector cannot be used directly as a standard because it is circular DNA, whereas the samples to be tested are linear cDNAs. Circular DNA templates are amplified with a different efficiency from linear DNA templates even under the same PCR condition (Lin et al., 2011). Thus, before performing the real-time PCR, the concentrated standard is released from the recombinant T vector by double enzyme digestion with Hind III and EcoV (New England Biolabs). These two
digestion sites were in the T-vector, and flanked the sequence of the inserted standards. The digest was purified via agarose gel electrophoresis and DNA extraction (Qiagen).

The concentration of the purified DNA fragment was measured in triplicate by Nano drop. The molar concentration was calculated as: molar concentration (mol/L) = mass concentration (g/L)/ molecular weight (g/mol). The molecular weight of each DNA fragment was determined by the online tool Oligo Calc (http://www.basic.northwestern.edu/biotools/oligocalc.html).

4.2.5 Generation of pEGFP-N1-ErbB4

The plasmid p-EGFP-N1-ErbB4, expressing full length rat ErbB4 individual isoform with a C-terminal EGFP fusion was generated by subcloning the ErbB4 isoform from the pIRESpuro2 vector into pEGFP-N1. Rat ErbB4 isoforms (JM-a CYT-1, JM-a CYT-2, JM-b CYT-1 and JM-b CYT-2) in the pIRESpuro2 vector were gifts from Dr Giovanna Gambarotta (University of Torino, Italy). For subcloning, stop codons were removed and NheI and AgeI sites were introduced into the N- and C-terminals of the ErbB4 sequence using PCR. The PCR product was ligated with NheI and AgeI digested p-EGFP-N1 vector before transformation in competent E. coli cells (New England Biolabs). Kanamycin resistance was used for colony selection. Positive clones were determined via NheI/HpaI double digestion followed by agarose gel electrophoresis and sequencing.

4.2.6 Live cell imaging using confocal microscopy

For confocal microscopy, cardiomyocytes were plated in glass-bottomed confocal dishes (MatTek) and maintained in DMEM CCT SS2 medium (refer to Appendix A for medium recipe). The recombinant vectors expressing individual ErbB4-GFP isoforms were delivered into myocytes via DNA transfection, as described earlier (section 2.5). At 48h after transfection, cell dishes were subject to live imaging with an Olympus FV1000 confocal microscope system. All observations were performed at 37°C with 60x10 magnification. To avoid interference with the observation, the intracellular fluorescence of ErbB4-GFP in the cytoplasm was bleached before stimulation with NRG1 or PMA. For this, the region of interest (ROI) (cytoplasm) was manually selected by drawing a circle around the ROI with the Olympus FV1000 software. The ROI was then subjected to photo-bleaching with 50% of the maximum power of the 405 laser in the SIM light bleaching mode for 800ms at 10.0 µs/pixel. The bleaching process was repeated 2-3 times until no fluorescence remained observable in the cytoplasm and nucleus. After photobleaching, cells were treated with PMA (100nM), NRG1 (10nM) or vehicle. Images were acquired immediately before
and 1 min, 5 min and 15 min after stimulation. The 405 and 473 lasers were sequentially used for fluorescence excitation with 5% of maximum laser power.
4.3 Results

4.3.1 Expression profiles of ErbB4 isoforms throughout development using relative quantification

The expression of ErbB4 isoforms (JM-a CYT-1, JM-a CYT-2, JM-b CYT-1 and JM-b CYT-2) exhibits distinct tissue specific patterns (Elenius et al., 1997; Elenius et al., 1999). Moreover, some studies showed that the expression of ErbB4 isoform is developmentally regulated by physiological stage: the JM-a isoform is reduced in neuronal precursor cells at late stages of embryonic development (Fox et al., 2005; Sardi et al., 2006). In the adult mouse and human heart, JM-b CYT-1 is predominant isoform (Elenius et al., 1997; Elenius et al., 1999), however there is limited information on how ErbB4 isoform expression is regulated during heart development. To address this, the developmental expression profile of each isoform was assessed. Mouse hearts at embryonic days (E) 13.5, 16.5, 18.5 and postnatal days (P) 1, 7, 14 and 28 were collected and RNA extracted. Quantitative PCR (TaqMan, relative expression) was used to detect each isoform with 18S as an internal control. Throughout development from E13.5 to P28 expression of all four isoforms decreased: JM-a isoform at P28 is approximately 300-fold lower than E13.5, JM-b is 17-fold lower, CYT-1 isoform is 73-fold lower, and CYT-2 is 40 fold lower (Figure 4.1 B). This pattern is similar for all four isoforms, suggesting that they are regulated in a similar manner during heart development.
Figure 4.1 The developmental expression profile of ErbB4 isoforms. A. Design of primers and probes to specifically detect individual isoforms using qPCR. Probes for JM-a, JM-b, CYT-1 and CYT-2 were designed to anneal to exons 17, 16, 27 or the junction between exons 26 and 28, respectively. The primers were complementary to the exon sequences flanking the site recognized by the probe. The same pair of primer was used for detection of either JM-a and JM-b isoforms or CYT-1 and CYT-2 isoforms. B. Quantitative qPCR (TaqMan) was used to detect JM-a, JM-b, CYT-1 and CYT-2 isoforms at in mouse hearts embryonic days 13.5, 16.5, 18.5 and postnatal days 1, 7, 14 and 28. Ribosomal 18S was used as an internal control. Data was expressed as ratio of expression at P28 and presented as mean ± SEM, n=3.
4.3.2 Expression profiles of ErbB4 isoforms throughout development using absolute quantification

The results described above use different primer/probe sets to amplify the individual ErbB4 isoforms, and therefore the efficiency of PCR amplification may differ for each isoform. Thus, we cannot directly compare the expression levels of individual isoforms to each other from the relative quantification PCR data. Instead, we used absolute real-time PCR to identify the predominant isoforms expressed at different stages of cardiac development. Generation of the standard curves (Figure 4.2) is described in section 4.2.3 - 4.2.4. All four isoforms were detectable in mice heart throughout development (Figure 4.3). From the embryo stage (E10.5) into young adulthood (P28), the expression profile of all four isoforms was consistent with that identified using relative quantification (Figure 4.1). The JM-b:JM-a ratio ranged from 3:1 at E10.5 to 40:1 at P28, suggesting that during embryogenesis expression of the two isoforms is similar, but the JM-b isoform dominates as the heart matures. This is consistent with the literature (Elenius et al., 1997; Elenius et al., 1999) that JM-b is the primary isoform in the adult mice heart. In contrast, the CYT-2:CYT-1 ratio did not differ notably and only shifted from 1:1 at E10.5 to 1.7:1 at P28, suggesting that there are similar levels of CYT-1 and CYT-2 in the heart throughout development. The sum of the CYT-1 and CYT-2 copy numbers is approximately equal to the sum of the JM-a and JM-b copy numbers at each individual developmental stage, indicating this absolute quantification is accurate. Together, these suggest that the non-cleavable JM-b isoforms predominate in the adult heart, and may therefore be the isoforms most relevant for function.
Figure 4.2 Standard curves for individual ErbB4 isoforms. DNA template dilution series (1:5) was used to generate standard curves by qPCR using the primers and probes specific for the JM-a, JM-b, CYT-1 or CYT-2 isoforms. The template for standard curve was generated by digestion of recombinant vectors containing JM or CYT domain of ErbB4 isoforms. \(N_0 \) is the copy number of templates for each dilution. \(C_T \) is the threshold cycle value.
Figure 4.3 Absolute expression of ErbB4 isoforms in the heart at different developmental stages. Absolute quantitative qPCR (TaqMan) was used to measure expression of JM-a, JM-b, CYT-1 and CYT-2 ErbB4 isoforms at in mouse heart at E10.5, E18.5, P1 and P28. Ribosomal 18S was used as an internal control. Data was expressed as absolute copy number of each isoform per ng RNA, presented as mean ± SEM, n=3 for each time point. Data was analysed by one-way ANOVA with Bonferroni post-test, ****P<0.0001, ***P<0.001, vs E10.5.
4.3.3 Regulation of ErbB4 isoform expression in models of cardiac pathology

The regulation of ErbB4 isoform expression by cardiac stressors such as pathological cardiac hypertrophy or myocardial infarction was also assessed. First, we examined the regulation of the four isoforms in an ischaemia-reperfusion (IR) model (section 4.2.1). JM-a isoform expression was significantly increased at 24 h after reperfusion, whereas JM-b was not, suggesting that the cleavable JM-a isoform was up-regulated by the ischaemia-reperfusion injury (Figure 4.4). The mRNA level of the CYT-2 isoform was significantly reduced (by ~ 40%) at 24 h after IR while CYT-1 was not changed (Figure 4.4). The JM-b:JM-a ratio is reduced by 50% at 24 h and 35% at 7 days after reperfusion compared to the sham-operated controls (Figure 4.4), suggesting that these two isoforms may play different roles in regulating cardiac biological activity after IR. In contrast, the ratio of CYT-2/CYT-1 was not changed indicating no potential functional differences related to the CYT-2 and CYT-1 isoforms in the heart after IR (Figure 4.4).

A transgenic model of cardiac hypertrophy caused by calcineurin overexpression was used to investigate the regulation of ErbB4 isoforms in pathological hypertrophy (section 4.2.1). Surprisingly, expression of all of four isoforms was significantly reduced in calcineurin-overexpressing animals compared to the controls (Figure 4.5). The JM-b:JM-a and CYT-2:CYT-1 ratios were not changed, suggesting that the reduction of all isoforms may be due to the inhibition of whole gene expression, but not specific regulation of an individual isoform. The down-regulation of ErbB4 expression in the pathologically hypertrophic heart suggests that ErbB4 may not mediate this pathological hypertrophy, and that calcineurin-induced signalling may negatively regulate ErbB4 signalling.
Figure 4.4 Regulation of ErbB4 isoform expression in an ischaemia-reperfusion model. Mouse hearts were collected following 24h (IR24h) or 7 days (IR7d) of reperfusion after 45 min of ischaemia, or from non-ischemic sham controls. Absolute quantitation qPCR (TaqMan) was used to measure the copy number of JM-a, JM-b, CYT-1 and CYT-2 isoforms per ng of total RNA. The right hand panels show the ratios (JM-b:JM-a and CYT-2:CYT-1) of the copy numbers. Data is presented as mean ± SEM and analysed with One-way ANOVA with Bonferroni’s multiple comparisons; n=3 for each treatment, *P<0.05, **P<0.01 vs. control.
Figure 4.5 Regulation of ErbB4 isoform expression in a transgenic model of cardiac hypertrophy. Hearts were collected from calcineurin-overexpressing and wild type mice 8 weeks after birth and absolute quantitation qPCR (TaqMan) used to measure the copy number of JM-a, JM-b, CYT-1 and CYT-2 isoforms per ng of total RNA. The right hand panels show the ratios (JM-b:JM-a and CYT-2:CYT-1) of the copy numbers. Data is presented as mean ± SEM and analysed with Student’s unpaired t-test; n=3, **$P<0.01$ vs. control.
4.3.4 The cleavage of ErbB4 isoforms in isolated cardiomyocytes

As discussed in section 4.3.3, the JM-a isoform is significantly up-regulated and the JM-b:JM-a ratio reduced after ischaemia-reperfusion injury. It can be inferred that the JM-a isoform has a unique role in heart after IR. There are many biological processes occurring after IR, such as cardiomyocytes apoptosis, fibroblast proliferation, and activation of immune system. In addition, a few studies showed that a small proportion of cardiomyocytes can proliferate as part of regeneration after IR (Beltrami et al., 2001; Malliaras et al., 2013). Given the ErbB4 receptors are mainly expressed in cardiomyocytes and primarily function as growth regulators, I proposed that the up-regulated JM-a isoform might play a role in cardiomyocyte regeneration, and this function might be contributed by the JM-a domain. The JM-a isoform has a protease cleavage site in the juxtamembrane domain, which allows the receptor to be cleaved, releasing an intracellular domain (ICD) that can enter into cytoplasm or nucleus (Vecchi et al., 1997; Rio et al., 2000; Zhou et al., 2000). It has been suggested that the ICD plays a role in regulating cell apoptosis and proliferation in many cell types (Zhu et al., 2006b; Gilmore-Hebert et al., 2010). However, shedding of the ICD has not yet been demonstrated in primary cardiomyocytes. Thus, to investigate the function of the ICD in cardiomyocytes, we studied whether the JM-a isoform is cleaved after agonist stimulation. Phorbol 12-myristate 13-acetate (PMA) causes cleavage of the JM-a isoform and release of the ICD in many cell lines (Vecchi et al., 1996; Zhou et al., 2000; Määttä et al., 2006; Zeng et al., 2009). NRG1 also induces the cleavage of JM-a isoforms in fibroblast and ovarian carcinoma cell lines (Vecchi et al., 1996; Zhou et al., 2000). Thus, we stimulated isolated rat cardiomyocytes with PMA (10 nM - 5 µM) for 30 min and probed for the ICD and full-length intact ErbB4 using Western blotting. As shown in Figure 4.6 A, we detected no ICD in cardiomyocytes treated with increasing concentrations of PMA for 30 min. We then examined different time points for PMA (100 nM) stimulation. As shown in Figure 4.6 B treatment with PMA for 5 to 60 min did not produce any detectable ICD in cardiomyocytes. However, it should be noted that the endogenous JM-a isoform has very limited expression in primary cardiomyocytes, where expression of the ErbB4 JM-b isoforms is predominant (Figure 4.3). In addition, PMA only cleaves a portion of JM-a isoforms to generate the ICD in other cell types (Vecchi et al., 1996), which could make it difficult to detect.
Figure 4.6 No evidence for cleavage of endogenous ErbB4 in primary cardiomyocytes following PMA stimulation. A. Cardiomyocytes were treated with increasing concentrations (10 nM – 5 µM) PMA or a vehicle control for 30 min, harvested with lysis buffer and subjected to Western blotting. B. Cardiomyocytes were treated with 100 nM PMA for 0 – 60 min before harvesting and Western blotting. A primary antibody (sc-283, Santa Cruz) recognizing the C-terminal of ErbB4 was used to probe for both the ICD and intact ErbB4, and β-actin was used as a loading control.
To further examine the cleavage of ErbB4 isoforms in cardiomyocytes, we generated four vectors expressing the individual isoforms tagged with GFP at the C-terminus. The vectors were delivered into cardiomyocytes via transfection, and the cleavage and trafficking of the ICD following stimulation with PMA or NRG1 was observed by live-cell imaging using confocal microscopy. To confirm that the GFP-tagged ErbB4 isoforms can be successfully expressed, the recombinant expressing vector was delivered into HEK-293 cells and Western blot used to detect the exogenously expressed ErbB4-GFP. We also confirmed that the GFP-tag did not affect the response of ErbB4 to PMA and the ability of cleavable isoform to release the ICD by stimulating the HEK-293 cells with PMA (100 nM) after transfection. Full-length ErbB4 and the ICD were detected by Western blot using an antibody to the C-terminus of ErbB4. As shown in Figure 4.7 A, a 210 kDa band was detected in all samples, representing the intact GFP-tagged JM-a CYT-1 isoform. An 110 kDa band representing the ICD-GFP was detected after 3 min of stimulation with PMA. The intensity of this 110 kDa band increased with prolonged PMA treatment, suggesting that cleavage of JM-a CYT-1-GFP (a1-GFP) and release of the ICD-GFP is PMA dependent and that the minimum time required for cleavage is 3 min. Cells transfected with JM-a CYT-2-GFP (a2-GFP) showed low levels of ICD-GFP in the absence of stimulation (Figure 4.7 B), suggesting some autocleavage of JM-a CYT-2 under basal conditions. The ICD-GFP band generated from JM-a CYT-2-GFP has more intensity than the band from JM-a CYT-1-GFP under the same conditions, suggesting that the intracellular CYT-2 domain promotes cleavage of the JM-a isoform. This is consistent with previous work showing that cleavage of the JM-a isoform and generation of the ICD is kinase dependent, and the CYT-2 isoform possesses stronger kinase activity (Sundvall et al., 2007). There were no ICD-GFP bands detected in HEK-293 cells transfected with the non-cleavable isoforms JM-b CYT-1-GFP (b1-GFP, Figure 4.7 C) and JM-b CYT-2-GFP (b2-GFP, Figure 4.7 D).
Figure 4.7 Cleavage of exogenous ErbB4-GFP in PMA-stimulated HEK-293 cells. HEK-293 cells were transfected with 600 ng of either JM-a CYT-1-GFP (a1-GFP, A), JM-a CYT-2-GFP (a2-GFP, B), JM-b CYT-1-GFP (b1-GFP, C) or JM-b CYT-2-GFP (b2-GFP, D). Following transfection, cells were cultured in serum-free DMEM for 24 h before stimulation with 100 nM PMA for 1 to 30 min. Cells were then harvested for Western blot analysis. The primary antibody (sc-283, Santa Cruz) recognizing the C-terminal of ErbB4 was used to detect both the ICD and the full-length ErbB4.
After confirming that the GFP tag did not affect the cleavage of ErbB4, we introduced these recombinant vectors to cardiomyocytes via transfection. Confocal microscopy was used to record the trafficking of ErbB4-GFP in primary cardiomyocytes following stimulation with PMA or NRG1 (section 4.2.6). Before stimulation, the majority of fluorescence representing the ErbB4-GFP was located on the cell membrane, as expected (Figure 4.8). However, a small amount of intracellular fluorescence was observed, potentially due to activities such as ErbB4 protein synthesis, recycling and trafficking. The intracellular fluorescence might interfere with observing the location of the ICD-GFP stimulation. To avoid this, I photo-bleached the intracellular area without affecting membrane before stimulation (section 4.2.6). As shown in Figure 4.8, after bleaching the fluorescence was only located in the cell membrane. After PMA and NRG1 stimulation, a small amount of fluorescence in a1-GFP transfected cells accumulated in the cytosol (Figure 4.8 A). However, little fluorescence was observed in the nucleus after stimulation. Vehicle (PBS) treatment did not induce trafficking of the green fluorescence from the membrane into the cytosol. Similarly, a2-GFP transfected live cardiomyocytes displayed PMA- and NRG1- but not vehicle- induced accumulation of the green fluorescence in cytosol (Figure 4.8 B). However, unexpectedly, the non-cleavable isoforms b1-GFP and b2-GFP also displayed intracellular fluorescence accumulation in cardiomyocytes (Figure 4.8 C and D). Thus, the fluorescence observed in the cytoplasm may represent the trafficking of intact receptor and not the released ICD. The mechanism by which the intact ErbB4 receptor trafficks into the cytosol is unclear. It is maybe due to receptor endocytosis, or movement of the receptor in cytoplasm following stimulation. When taken together with the Western blot data described above, this suggests that PMA or NRG1 do not cleave the JM-a isoform to release the ICD in cardiomyocytes.
Chapter 4: Investigation into the roles of ErbB4 isoforms in cardiomyocyte hypertrophy

A. a1-GFP (before bleach) bleach (0 min) treatment 1 min treatment 5 min treatment 15 min

PBS

PMA

NRG1

B. a2-GFP (before bleach) bleach (0 min) treatment 1 min treatment 5 min treatment 15 min

PBS

PMA

NRG1
Figure 4.8 Trafficking of ErbB4-GFP in cardiomyocytes following stimulation with PMA or NRG1. Cardiomyocytes were maintained in serum-free DMEM CCT SS2 and transfected with 500ng pEGFP-N1-JM-a CYT-1 (A), pEGFP-N1-JM-a CYT-2 (B), pEGFP-N1-JM-b CYT-1 (C) or pEGFP-N1-JM-b CYT-2 (D). 48h after transfection cell nuclei were stained with 10 µg/ml Hoechst 333258 for 30 min before commencing live cell imaging. Cellular fluorescence was bleached as described in section 4.2.6. PMA (100 nM) or NRG1 (10 nM) were added immediately after bleaching and images taken at 1, 5 and 15 min after stimulation. All images were taken at 60×10 magnification.
4.3.5 The role of individual ErbB4 isoforms in mediating NRG1-induced cardiomyocyte hypertrophy

The results in section 4.3.4 suggest that the JM-a isoform cannot be cleaved in isolated cardiomyocytes in vitro, although it is endogenously expressed in neonatal cardiomyocytes (Dr. Hsiu-wen Chan, PhD thesis). This leads to the question of whether there is a functional difference between the JM-a and JM-b isoforms if the JM-a isoform cannot be cleaved in cardiomyocytes. In addition, whether there are any functional differences between the CYT-1 and CYT-2 isoforms in cardiomyocytes is unknown. The results in chapter 3 of this thesis show that NRG1-induced cardiomyocyte hypertrophy requires ErbB4. To investigate which isoform of ErbB4 contributes to this hypertrophic signalling, we designed a rescue system to generate cardiomyocytes in which only one ErbB4 isoform is expressed. In this system, the shRNA used to knockdown endogenous ErbB4 was co-transfected with a vector expressing a knockdown resistant variant of one ErbB4 isoform. NRG1 was used to induce hypertrophic signalling, and activation of ANP, CyclinD and MLC-2V measured with promoter-reporter assays as previously described (section 2.6). Knockdown of ErbB4 reduced the NRG1-induced MLC-2V (Figure 4.9 A) ANP (Figure 4.9 B), and Cyclin D (Figure 4.9 C) promoter activity. Interestingly, all isoforms of ErbB4 could rescue the hypertrophic response, suggesting that they can all mediate hypertrophic signalling. This may indicate that ErbB4-mediated activation of hypertrophic gene expression is dependent on a function common to all four isoforms - i.e. the tyrosine kinase activity. The hypertrophic signalling mediated by the individual isoforms follows a similar pattern for all hypertrophic genes: the CYT-2 isoform seems to have a greater ability to promote the signalling than CYT-1 isoform, although this difference is not statistically significant. In contrast, the JM-a and JM-b isoforms both promote hypertrophic signalling to a similar extent. Promoter activity for each hypertrophic gene was elevated in cells expressing individual ErbB4 isoforms (compared to the knockdown group) even without stimulation, indicating a low level of auto-activation of ErbB4. This activation is probably caused by the over-expression of the delivered isoform(s) of ErbB4.
Figure 4.9: Hypertrophic gene promoter activity in NRG1-stimulated cardiomyocytes expressing only a single isoform of ErbB4. All cardiomyocytes were transfected with three separate constructs. The first construct (100 ng) encoded a knockdown resistant (kdr) isoform of ErbB4 (kdr-JM-a CYT1, a1; kdr-JM-a CYT2, a2; kdr-JM-b CYT1, b1; kdr-JM-b CYT2, b2) or an empty vector control. The second construct (100 ng) encoded either shErbB4 or shControl (shCon), whilst the third was a hypertrophic gene promoter driven luciferase reporter construct (300 ng) using the promoter sequence of either ANP (A), MLC-2V (B) or CyclinD (C). Cells were then stimulated with NRG1β1 for 48 h or left unstimulated. The promoter activity of each hypertrophic gene was measured using luciferase assays. Data are normalized to the unstimulated shControl group and presented as mean ± SEM. For statistical analysis, the original data was normalized by log transformation to achieve equal variance distribution for each group. Normalised data was then analysed by Two-way ANOVA with Dunnett’s multiple comparison tests. ****P<0.0001, ***P<0.001 and **P<0.01 vs. NRG1-stimulated knockdown (vector); ###P<0.001 and ####P<0.0001 vs. unstimulated knockdown (ANP, n=5; MLC-2V, n=4; CyclinD, n=5).
4.4 Discussion

In this chapter, I investigated the expression and cleavage of ErbB4 isoforms, and their ability to promote hypertrophy in cardiomyocytes. The main discoveries of these studies are: (1) cardiac ErbB4 expression is highest in the embryonic state and declines postnatally. The expression of all four isoforms of ErbB4 gradually decreased from embryogenesis to the adult stage. The predominant isoform in the adult heart is the JM-b isoform. There is no obvious isoform alteration in IR injury or pathological models of cardiac hypertrophy. (2) JM-a cleavage cannot be observed in purified cultures of primary cardiomyocytes following stimulation with NRG1 or PMA. However, cleavage of the JM-a isoform could be demonstrated in HEK-293 cells. (3) All four ErbB4 isoforms could mediate NRG1-induced cardiomyocyte hypertrophy.

In the literature, the JM-b isoform is proposed to be the only isoform in the adult mice heart (Elenius et al., 1997; Elenius et al., 1999). My study showed that, whilst the JM-b isoform is predominant, both the JM-a and JM-b isoforms are detectable in the adult mice heart. The reason these previous studies did not detect JM-a may be because they used traditional end-point PCR and agar gel electrophoresis, which is less sensitive than the TaqMan method used in my study. Despite this disagreement on the expression of JM-a in postnatal heart, my finding that the JM-b isoform is the major isoform in adult heart is in agreement with previous work.

One interesting result in my study is that ErbB4 is expressed at a much higher level in the embryonic heart than in the adult. ErbB4 is essential for cardiac growth: deletion of ErbB4 inhibited normal cardiac growth in both the embryonic (Gassmann et al., 1995) and postnatal stages (Garcia-Rivello et al., 2005). The high level of ErbB4 in embryonic heart is consistent with the strong requirement for cardiac growth during development. However, determining which isoforms of ErbB4 are predominant in embryonic heart has not been investigated previously. Our results showed that in the earlier embryonic stage (E10.5) the JM-b:JM-a ratio is 3:1, whilst in the adult this increases to 40:1. We were unable to detect the expression of four isoforms any earlier than E9 due to the tiny size of the heart tube and inefficient RNA extraction from the heart tube at this stage. While alternative methods to detect RNA expression (i.e., in situ hybridisation) were not performed, based on the expression pattern throughout the cardiac development (Figure 4.1), it may be inferred that at earlier embryo stage E9, the JM-b and JM-a might be expressed at a similar level. Because ErbB4 is primarily expressed in cardiomyocytes (which comprise two thirds of the volume of the whole heart), and not detectable in fibroblasts (which comprise one third of the volume) (Zhao et
Chapter 4: Investigation into the roles of ErbB4 isoforms in cardiomyocyte hypertrophy

al., 1998), I would propose that my study reflects the developmental regulation of ErbB4 expression in cardiomyocytes instead of other cells, although further experiments can be employed to confirm this. The decrease in the JM-a:JM-b ratio is coincident with loss of the ability of cardiomyocytes to proliferate. In the embryonic heart, cardiomyocytes can both proliferate and enlarge to contribute to the cardiac growth. However, shortly after birth, the cardiomyocytes exit the cell cycle and heart growth becomes dependent on cardiomyocyte enlargement (cardiomyocyte hypertrophy) (Markwald et al., 2010). Whilst the ability of ErbB4 to promote cardiac development is well-established in literature (section 1.6.7), it is not yet known whether the different isoforms of ErbB4 can mediate different functional effects. In many cell lines, ErbB4 isoforms have different growth promoting abilities. These differences are primarily related to the JM and CYT domains. By overexpressing full-length JM-a and JM-b in mouse embryonic astrocytes in an ErbB4-null background, Sardi et al. found only the cleavable JM-a isoform is capable of suppressing astrocyte precursor differentiation and maintaining their neurogenic potential (Sardi et al., 2006). In human breast cancer cells, the JM-a CYT-2 isoform was found to promote the phosphorylation of itself and proliferation of the cancer cells, which was proposed to be related to cleavage of the receptor (Määttä et al., 2006; Zhu et al., 2006b). Mammary cell lines expressing exogenous CYT-2 ICD grow more rapidly than the same cell line expressing CYT-1 ICD (Muraoka-Cook et al., 2009). In a mouse fibroblast cell line, the ICD of JM-a CYT-2 was found to interact with AP-2 to positively regulate the platelet-derived growth factor receptor-alpha (PDGFA) promoter leading to cell proliferation (Sundvall et al., 2010). Taken together with these observations, our data suggests that cardiomyocytes require different isoforms to proliferate or hypertrophy. Embryonic cardiomyocytes, for example, might require the JM-a isoform, but not the JM-b isoform, to proliferate.

Although it has been confirmed in the literature (Elenius et al., 1997; Elenius et al., 1999) as well as in our laboratory that primary isoforms of ErbB4 in the adult heart are JM-b isoforms, there was the possibility that this could be altered in pathological conditions. We therefore characterized the cardiac expression of ErbB4 isoforms using in vivo models of ischaemia-reperfusion injury and pathological hypertrophy. Only the JM-a and CYT-2 isoforms are regulated after ischaemia while the expression levels of the JM-b and CYT-1 isoforms were not significantly altered. Although the increase of JM-a isoforms at 24h after ischaemia reperfusion is up to 2 fold, the absolute amount of JM-a is still diminutive compared to the JM-b isoforms (approximately 1:20). This suggests there is no alteration in the primary isoform of ErbB4 expressed in cardiac tissue, and that expression of the JM-b isoforms dominates in the heart, even in pathological conditions. If JM-a does relate to the
Chapter 4: Investigation into the roles of ErbB4 isoforms in cardiomyocyte hypertrophy

proliferation of the cardiomyocytes as discussed above, the low expression levels of JM-a in IR model described here is consistent with the limited regenerative capacity of the injured heart (Laflamme et al., 2011). It is believed that shortly after birth the majority of cardiomyocytes in heart exit the cell cycle and lose the ability to proliferate. Thus, the injured adult heart cannot be repaired via generation of new cardiomyocytes.

In the pathological hypertrophy model, expression of all four isoforms was significantly reduced. However, since this affects all isoforms equally this change may reflect reduced transcription of the entire gene and not isoform specific regulation. In this model, the pathological hypertrophy is induced by genetically overexpressed calcineurin, a calcium-dependent phosphatase. It causes cardiac hypertrophy via dephosphorylating the transcription factor NF-AT3 and enabling its translocation to the nucleus where NF-AT3 can interact with GATA4 to activate cardiac transcription and hypertrophic growth (Molkentin et al., 1998). The decrease of ErbB4 in pathological hypertrophy suggests that ErbB4 is not required by the calcineurin signalling to mediate cardiac hypertrophy. NRG1 induces cardiomyocyte hypertrophy via activation of ERK (Baliga et al., 1999), which can also activate the GATA4 to contribute to the hypertrophic growth (Yanazume et al., 2002; Akazawa et al., 2003). However, the activation of calcineurin signalling and NRG1-ErbB4 signalling in vivo leads to different results in the heart. The former eventually leads to heart failure following cardiac hypertrophy (Molkentin et al., 1998) whereas the latter enhances cardiac function via regulating contractile and sarcomere proteins in cardiomyocytes (Jiang et al., 2010) and reducing the cardiomyocyte death even in the presence of pathological stress, such as infarction, cardiomyopathy and myocarditis (Liu et al., 2006).

In addition to investigating the regulation of ErbB4 isoform expression in various models, I also studied the cleavage of JM-a isoforms. While specific cleavage of JM-a ErbB4 isoforms was confirmed in transfected HEK294 cells, no cleavage was observed in neonatal rat cardiomyocytes stimulated with either PMA or NRG1. This result was first demonstrated by Western blot and confirmed by observing the trafficking of ErbB4 with confocal microscopy live cell imaging. If the JM-a isoform cannot be cleaved in cardiomyocytes, there may be no functional differences between the JM-a and JM-b isoforms. Our lab has previously detected expression of both isoforms in purified cultures of primary neonatal rat cardiomyocytes (Dr. Hsiu-wen Chan, PhD thesis) and expression of the JM-b isoform is much higher than the JM-a isoform (Mr. Hengbo Shi, unpublished data). If there is no functional difference, the reasons underlying the marked difference in the expression levels of JM-a and JM-b isoforms in postnatal cardiomyocytes remain unclear.
The reason for the lack of cleavage of JM-a in cardiomyocytes has not been identified. One possibility is that cardiomyocytes lose some components required for the cleavage during the isolation and purification of the cells, and therefore cannot cleave ErbB4 \textit{in vitro}. For instance, the functional loss of protein, such as the expression of AT$_1$R, during cardiomyocyte isolation has been proposed previously (Thomas \textit{et al.}, 2002). Another possibility is that cardiomyocytes require the surrounding cells, such as fibroblasts or endothelial cells, in order to undertake cleavage. As discussed in section 1.4.2, the mechanism for JM-a isoform cleavage (in other cell types) involves the activation of ADAM17 or MMP to cleave the JM-a isoform in the juxtamembrane region and remove the ectodomain from the receptor (Rio \textit{et al.}, 2000; Chang-Yuan \textit{et al.}, 2001). The remaining intracellular part of the receptor anchored in the cell membrane is then subjected to additional cleavage by γ-secretase to generate the 80 kD ICD (Rio \textit{et al.}, 2000; Chang-Yuan \textit{et al.}, 2001). However, the mechanism is still not fully resolved and additional proteins may be involved in this process. Whether cardiomyocytes are subject to the full range of ErbB4 regulation observed in other cell types is unknown. Perhaps some unidentified components located on the membrane of neighbouring cells can cause cleavage of a substrate located on the membrane of adjacent cardiomyocytes - if so, this would explain why we did not observe JM-a cleavage in purified cardiomyocytes. Moreover, we only examined ErbB4 receptor trafficking after stimulation with factors that are known to induce cleavage of the JM-a isoform in other cell types. It is possible that there are additional factors that can induce cleavage of the JM-a isoform which have not yet been identified, and that these may initiate cleavage of the JM-a isoform in cardiomyocytes.

Finally, my study found that all four isoforms of ErbB4 can mediate NRG1-induced cardiomyocyte hypertrophy. This suggests that the pro-hypertrophic ability of the four isoforms depends on a common feature among them (e.g. the tyrosine kinase activity), but does not relate to possession of the cleavable domain or intracellular binding domain. However, the magnitude of hypertrophy seems to be influenced by the CYT domain although this was not statistically significant due to inherent variability in the data set. One reason why the CYT2 isoform can promote hypertrophic signalling more than CYT1 may be due to the intracellular kinase domain, which is more easily phosphorylated in CYT2 isoforms (Sundvall \textit{et al.}, 2007). The mechanism for this is still not clear, however it is proposed that a “loop structure” exists in the intracellular domain possessing CYT1, and that this may inhibit tyrosine kinase activity (Sundvall \textit{et al.}, 2007). Our data suggests that the JM-a and JM-b isoforms have comparable abilities to promote hypertrophic signalling. This is consistent with earlier studies in this chapter suggesting the JM-a isoform cannot be cleaved in purified cardiomyocytes. The only known difference between the JM-a and JM-b isoforms is that
the JM-a isoform can be cleaved while the JM-b cannot. If cardiomyocytes lack the JM-a cleavage mechanism, I would not predict any functional difference between the JM-a and JM-b isoforms. This could explain the absence of functional differences between JM-a and JM-b isoforms in our hypertrophic signalling experiments. It should be noted that the hypertrophic gene signal in all the ‘rescued’ groups is greater than that of the controls, suggesting that the expression level of the delivered ErbB4 isoforms is higher than endogenous expression levels. This high expression might mask the potential differences between the four isoforms in their ability to mediate hypertrophy. There is the possibility that when expressed at a lower level (closer to that of endogenous expression), the capacity of individual ErbB4 isoforms to differentially regulate hypertrophic gene expression may be exposed. Taken together, in my study, no cleavage of the JM-a isoforms has been found in cardiomyocytes, and the ability of ErbB4 to promote hypertrophic seems to be kinase activity dependent and independent of isoform cleavage.
CHAPTER 5
THE FUNCTION OF ErbB4 IN THE ADULT HEART
5. Function of ErbB4 in the adult heart

5.1 Background

ErbB4 is critical for heart development, anti-apoptosis and hypertrophy. Global deletion of ErbB4 is lethal by embryonic day 11 in mice due to defective development of the heart (Gassmann et al., 1995). The heart defect in the ErbB4 null mice could be rescued by expressing ErbB4 under a heart specific myosin promoter. These mice reached adulthood and are fertile (Tidcombe et al., 2003), indicating that ErbB4 plays a significant role in heart development. In addition to cardiac development, ErbB4 signalling also prevents cardiac injury in adults. The ErbB4 agonist neuregulin1 (NRG1) rescues adult ventricular myocytes from hypoxia-reoxygenation-induced apoptosis, whereas the endothelium-selective deletion of NRG1 decreases the ability of the myocytes to tolerate an ischemic insult (Hedhli et al., 2011). Exogenous NRG1 also decreased the number of apoptotic cells and improved heart function in a rat model of diabetic cardiomyopathy with systolic and diastolic dysfunction (Li et al., 2011), and in cultured myocytes NRG1 inhibits the apoptosis induced by serum starvation (Zhao et al., 1998). Taken together, these studies indicate that NRG-ErbB4 signalling is important in cardiac protection. Finally, ErbB4 also mediates cardiac hypertrophy. NRG1 promotes hypertrophy in both adult and neonatal rat primary cardiomyocytes, which is accompanied by enhanced expression of the hypertrophic genes ANP and skeletal α-actin (Zhao et al., 1998), indicating that ErbB4 might play an important role in adult cardiac function and structure maintenance. To date, few studies have examined the role of ErbB4 in the adult heart. A study using a targeted knockout model demonstrated that cardiac specific deletion of ErbB4 led to severe dilated cardiomyopathy in adult mice, characterized by thinner ventricular walls with reduced contractility and conduction delays (Garcia-Rivello et al., 2005). However, in this study deletion of the ErbB4 occurred before birth making it hard to exclude the possibility that the cardiomyopathy observed in the adult stage was due to a defect during cardiac development. To overcome the requirement of ErbB4 for cardiac development and investigate the function of ErbB4 in the adult heart, we used a conditional knockout model, the αMHC-MerCreMer/loxP system (Sohal et al., 2001), to specifically delete ErbB4 from adult cardiomyocytes.

The Cre-loxP system is a commonly used tool to provide targeted gene deletion. Cre recombinase is found in P1 bacteriophage and is a 38kD site-specific recombinase that catalyzes the recombination between two DNA recognition sites, termed loxP (Hamilton and Abremski, 1984). The loxP site is a 34 bp consensus sequence, consisting of a core spacer sequence of 8bp and two 13bp palindromic
flanking sequences. The asymmetric core sequence defines the orientation of the loxP site. The Cre recombinase can excise a DNA segment from the genome when the segment is flanked by loxP sites in the same orientation (Nagy, 2000). To delete genes in a tissue specific manner, Cre recombinase can be driven by a tissue specific gene promoter. To give temporal control of gene deletion, Cre recombinase can be fused to a mutated estrogen receptor ligand binding domain (ER-LBD) (MerCreMer) (Nagy, 2000; Chien, 2001). This mutant ER selectively binds the synthetic ER antagonist tamoxifen (rather than endogenous estrogen), and upon tamoxifen treatment, the activated ER-LBD causes translocation of Cre recombinase to the nucleus, where it causes recombination of the gene flanked by loxP (Sohal et al., 2001). Thus, in this system, the targeted gene deletion is not only tissue specific but also temporally controlled by tamoxifen injection. The first application of this system to gene deletion from cardiomyocytes was achieved by Sohal et al. in 2001 (Sohal et al., 2001). They linked the cardiac-specific α-MHC (alpha-myosin heavy chain) promoter to the Cre/ER-LBD gene (αMHC-MerCreMer transgene). Transgenic mice with Cre-dependent, loxP-inactivated lacZ were crossed with transgenic mice containing the αMHC-MerCreMer gene to generate the αMHC-MerCreMer/lacZ mice. Using lacZ as a reporter, they demonstrated that tamoxifen-induced Cre activity caused 80% recombination of targeted gene in the embryonic, neonatal, or adult heart, but not other tissues. Taking advantage of this model, we will delete ErbB4 from adult mice heart to investigate its function in this stage.

5.2 Methods

5.2.1 Animals

The homozygous ErbB4^{fl/fl} mouse line (with exon2 of ErbB4 gene flanked by loxP sites) was crossed with the homozygous αMHC-MerCreMer mouse line (Cre^{+/+}) to generate double heterozygous αMHC-MerCreMer and ErbB4-floxed mice (Cre^{+/+}/ErbB4^{fl/fl}). These mice were then backcrossed with the ErbB4^{fl/fl} line to generate heterozygous αMHC-MerCreMer and homozygous ErbB4-floxed animals (Cre^{+/+}/ErbB4^{fl/fl}), and homozygous Cre^{+/+}/ErbB4^{fl/fl} mice in the offspring (Figure 5.1). To generate the Cre^{+/+}/ErbB4^{wt/wt} animals, Cre^{+/+}/ErbB4^{fl/fl} mice were backcrossed with Cre^{+/+} mice (Figure 5.4). The original homozygous ErbB4^{fl/fl} and homozygous α-MHC-MerCreMer mice lines (Cre^{+/+}) were obtained from Dr Kent Lloyd, University of California (Mutant Mouse Regional Resource Centres) and Jackson Laboratories, respectively. Both of the strains are on a B6/129 mixed background.
Animals were housed under standard conditions at 22°C with a 12-h light/12-h dark cycle and free access to water and commercial mouse chow. All experiments were conducted in accordance with the Australian Code of Practice for Care and Use of Animals for Scientific Purposes and approved by the institutional ethics committees of The University of Queensland.

5.2.2 Genotyping
Mice were toe-clipped at 7-10 days of age to provide tissue samples for genotyping. The toes were digested in DNA extraction buffer (100 mM Tris-HCl (pH8.5), 5 mM EDTA (pH8.0), 200 mM NaCl, 0.2% SDS and 0.48mg/ml proteinase K) at 55°C overnight. The genomic DNA was precipitated with ammonium acetate and ethanol before PCR amplification using primers specific for Cre, or ErbB4 wild type and ErbB4 floxed DNA sequences (Figure 5.2 A). The former reaction will yield a 440bp band (Cre), and the latter will yield 350bp and 400bp products for ErbB4 wild type and ErbB4 floxed alleles respectively. The primer sequences are listed in Appendix B. PCR reactions (20μl total volume) contained 20 ng genomic DNA, 0.5 μM of each primer, 0.2 mM each of dNTPs, 5% DMSO, 0.375 U of Phire Hot Start II DNA Polymerase (Finnzymes) and 1× Phire reaction buffer (final concentration). The PCR cycling conditions started with an initial denaturation at 98°C for 30s, followed by 35 cycles of denaturing at 98°C for 5 s, annealing at 58°C for 5 s (for ErbB4 floxed and wild type) or 55°C for 5 s (for Cre), extension at 72°C for 10s, and a final incubation at 72°C for 1 min. PCR products were separated using 1.5-2% agarose gel electrophoresis and images were captured with the Quantity One system. To detect the Cre copy number, qPCR (SYBR) was employed to quantify the genomic Cre level and genomic 18S level was used as an internal control. The qPCR condition followed the standard amplification protocol (refer to section 2.8). The sequence of primers used is listed in Appendix B.

5.2.3 Tamoxifen injection
To induce Cre-mediated recombination, all animals (9-10 week of age) were treated with tamoxifen (Sigma) by intraperitoneal injection for 10 consecutive days at a dosage of 20 mg/kg/day. Tamoxifen was dissolved in peanut oil at a concentration of 4 mg/ml at 37°C for 2 hours and made up fresh each day. The success of deletion of ErbB4 in the Cre+/ErbB4(fl/fl) mouse heart was determined by qPCR in an initial cohort of animals at 10 days after tamoxifen injection. Separate cohorts of animals were then phenotypically examined at 3-4 months or 7-8 months after tamoxifen injection.
5.2.4 Echocardiography

Echocardiography was conducted on all animals using a Philips HD15 ultrasound system equipped with a 15-MHz transducer. Mice were anesthetized with 2% isoflurane in O₂ by inhalation and normal body temperature was maintained using an external heat source. Two-dimensional mid-papillary level short axis views of the ventricle were captured. M-mode images were obtained by positioning a cursor in the 2-dimensional view from the anterior to the posterior wall of the left ventricle and adjacent to the two papillary muscles. M-mode images were used to obtain the following measurements during both systole and diastole: interventricular septal thickness (IVS), left ventricular posterior wall thickness (LVPW), left ventricular internal diameter (LVID). The fractional shortening (FS) was calculated using the equation (FS= (LVID (diastolic)-LVID (systolic))/LVID (diastolic)). The measurements were repeated 5 times over 5 cardiac cycles for each parameter and the average of these used for statistical analysis. Heart rate was monitored by electrocardiography during the procedure. The experimenter was blinded to the genotype of the animals for all echocardiographic assessments and decoded post-analysis.

5.2.5 Measurement of heart/kidney/body weight and tibial length

Animals were euthanased and the heart and kidneys was carefully removed and weighed. Tibial length was measured after the skeletal muscle was completely removed from the bone. The left and right tibias were measured three times each with a digital calliper, and the average of these 6 measurements was used as the final tibial length for each mouse.

5.2.6 Histology

Mid-ventricular sections were fixed in 4% PFA for 48 hours and then embedded in paraffin. Sections (5 μm thick) cut from paraffin-embedded specimens was deparaffinised in xylene followed by hydration through an ethanol gradient to PBS or distilled water before being used for wheat germ agglutinin (WGA) staining, Masson's trichrome staining, TUNEL staining or immunofluorescence.

5.2.7 WGA staining

Sections were incubated with 50 μg/ml WGA conjugated with Alexa Fluor®594 (Invitrogen) for 60 min, washed 3 times with PBS and mounted for fluorescence microscopy. 5 images were taken for each section under 400 × magnification. The images were taken randomly from two fields next to the endocardium, two fields next to the epicardium and one field in the papillary muscle area. In each field, the cross sectional area of 40 - 130 cells was measured. For the cell size quantification,
images were opened with Image J. To perform an unbiased measurement, a grid with 3×4 (horizontal × vertical) test lines was generated with Image J and applied to every image. Only cells intersected with the grid lines were measured and the experimenter was blinded for all measurements.

5.2.8 Masson’s trichrome staining

Masson’s trichrome staining was performed according to the manufacturer’s protocol (Polysciences). Briefly, sections were merged in Bouin’s solution at 60°C for 1 hour, washed in running tap water to for 5 minutes, followed by incubation in Weigert’s iron hematoxylin working solution for 10 minutes. After washing in running tap water, sections were placed in Biebrich Scarlet-Acid Fuchsin Solution for 5 minutes and rinsed in distilled water. Sections were differentiated with phosphotungstic/phosphomolybdic acid for 10 minutes and transferred directly into Aniline blue for 5 minutes for counterstaining. Sections were rinsed in distilled water before differentiating in 1% Acetic acid for 1 minute and performing a final rinse in distilled water. This stains collagen fibres in blue, nuclei in black and the cytoplasm in red. Five images were captured for each section and the area of cardiac fibrosis (excluding the perivascular area) was measured using Image J.

5.2.9 Immunofluorescence

For phospho-histone3 (pH3) staining and Troponin-T co-staining, the slides were pretreated with antigen retrieval buffer (refer to Appendix A for composition) at 110°C for 20 min in a Decloaker apparatus before gradually cooling to room temperature by addition of PBS. Following this, the slides were permeabilized in 0.3% Triton for 5 min before being washed with PBS and blocked with 10% goat serum at room temperature for 20 min. Sections were then incubated with antiphosphohistone H3 (rabbit, Millipore) and anti-Troponin-T (mouse, Thermoscientific) primary antibodies (1:100 dilution with 2% goat serum in PBS) at 4°C overnight. After washing 3 times with PBS, the sections were incubated with Alexa Fluor 488-conjugated (goat anti-rabbit, Invitrogen) and Alexa Fluor 555-conjugated secondary antibodies (goat anti-mouse, Invitrogen) at RT for 1h. Hoechst (10µg/ml, Sigma) stain was used to visualize nuclei before slides were washed 3 times in PBS and mounted with Fluoromount G mounting medium (Southern Biotech).
5.2.10 Statistical analysis

Values are expressed as mean ± SEM, unless indicated otherwise. Comparisons between wild-type and ErbB4 conditional knockout animals were analysed by unpaired Student’s t-test using Graphpad Prism 6. P values ≤ 0.05 were considered significant.
5.3 Result

5.3.1 Generation of Cre$^{+/−}$/ErbB4$^{fl/fl}$ mice

To investigate the function of ErbB4 in adult mice heart, I adopted the αMHC-MerCreMer/loxP system, which allowed me to delete the ErbB4 receptor from cardiomyocytes in adult mice. Two original breeding lines of mice (homozygous αMHC-MerCreMer mice (Cre$^{+/+}$) and homozygous ErbB4$^{fl/fl}$) were used to generate Cre$^{+/−}$/ErbB4$^{fl/fl}$, and Cre$^{−−}$/ErbB4$^{fl/fl}$ mice (section 5.2.1 and Figure 5.1). Following tamoxifen injection, the ErbB4 can be deleted from cardiomyocytes in Cre$^{+/−}$/ErbB4$^{fl/fl}$ animals since they contain both Cre and loxP flanked-ErbB4 genes, but not in the Cre$^{−−}$/ErbB4$^{fl/fl}$ animals, which lack the Cre gene. Thus Cre$^{+/−}$/ErbB4$^{fl/fl}$ animals were used as the knockout group and ErbB4$^{fl/fl}$ animals were used as the control group. In total, 9 breeding pairs of Cre$^{+/−}$/ErbB4$^{fl/wt}$ and ErbB4$^{fl/fl}$ produced 75 offspring.
Figure 5.1 Breeding scheme for transgenic animal generation. The original homozygous ErbB4$^{fl/fl}$ breeders were bred with homozygous Cre$^{+/+}$ breeders to generate double heterozygous Cre$^{+/+}$/ErbB4$^{fl/wt}$ mice. These were then backcrossed with the ErbB4$^{fl/fl}$ mice to generate Cre$^{+/+}$/ErbB4$^{fl/fl}$ mice (conditional knockout group) and the Cre$^{-/-}$/ErbB4$^{fl/fl}$ mice (control group).
5.3.2 Genotyping

All offspring were genotyped using separate PCR reactions for the Cre and Floxed ErbB4 transgenes. To detect the inserted Cre gene, PCR was used to amplify a 440 bp Cre gene fragment from whole DNA genome (Figure 5.2 A). A single band in 440bp in electrophoresis indicates the Cre positive genotype and otherwise indicates the Cre negative genotype (Figure 5.2 B). To differentiate the ErbB4\(^{fl/fl}\) animals from the ErbB4\(^{fl/wt}\) animals, PCR was used to amplify the wild type ErbB4 gene fragment and the mutated fragment (flanked by loxP site) with three primer sets in one reaction. One is a common sense primer annealing the 5’ sequence in exon2 of ErbB4, and the others are two reverse primers annealing to the 3’ sequence in exon2 and the sequence in the loxP site, separately (Figure 5.2 A). A single band in 400 bp in electrophoresis indicates the ErbB4\(^{fl/fl}\) genotype, and two bands in a 350 bp and 400 bp, separately indicated the ErbB4\(^{fl/wt}\) genotype (Figure 5.2 B) (Jackson-Fisher et al., 2006). Among the 75 offspring produced, 20 mice were the Cre\(^{+/+}\)/ErbB4\(^{fl/fl}\) genotype and 20 mice were the Cre\(^{-/-}\)/ErbB4\(^{fl/fl}\).
Figure 5.2 Genotyping of the Cre recombinase and floxed ErbB4 transgenes. A. The presence or absence of the Cre recombinase gene was determined by amplifying a 440 bp region of the Cre gene. In separate PCR reactions, we used a common sense primer binding within exon 2 of ErbB4, and two anti-sense primers which bound either the downstream region of exon2 or within the loxP site. This led to amplification of both the wild type (350 bp PCR product) and floxed ErbB4 (400 bp product) genes, respectively. Reaction products were separated by agarose gel electrophoresis (1.5% and 2% for Cre recombinase and ErbB4 respectively) B. Representative image of agarose gel electrophoresis for genotyping. Lane 1 represents the Cre\(^+/\)ErbB4\(^{fl/wt}\) genotype, lane 2 and 3 represent Cre\(^+/\)/ErbB4\(^{fl/fl}\), lane 4, 6, and 7 represent Cre\(^+/\)/ErbB4\(^{fl/wt}\) and lane 5 represents the Cre\(^+/\)/ErbB4\(^{fl/wt}\) genotype.
5.3.3 Optimization of tamoxifen administration

In this conditional knockout animal model, the deletion of ErbB4 is triggered by administration of tamoxifen. An insufficient dose of tamoxifen may cause failure of the deletion, but too high a dose of tamoxifen is toxic and may lead to the death of the mouse. Previous work in our lab used 3 different doses of tamoxifen: 20, 30 and 40 mg/kg/day for four days of consecutive ip injection. At the highest dose (40 mg/kg/day), tamoxifen induced an efficient deletion of ErbB4, but with a high mortality rate. The intermediate dose of tamoxifen (30 mg/kg/day) induced less deletion of ErbB4, and greatly reduced the mortality rate. The lowest dose of tamoxifen (20 mg/kg/day) failed to induce the deletion of ErbB4 (Schlegel et al., unpublished data). To avoid the toxicity associated with high dose tamoxifen yet still achieve significant deletion of ErbB4, we tested the low dose of tamoxifen over an extended injection period (Hsieh et al., 2007). We injected Cre$^{+/−}$/ErbB4$^{fl/fl}$ and Cre$^{−/−}$/ErbB4$^{fl/fl}$ animals with 20 mg/kg/day tamoxifen for 10 consecutive days. Animals were allowed 10 days recovery after the end of the tamoxifen treatment before being euthanased and tissues examined for ErbB4 expression by qPCR. This treatment regime had no obvious adverse effects on the health of the animals. The RT-qPCR revealed that the mRNA level of ErbB4 in heart was reduced by ~ 90% compared to the control, but the mRNA level of ErbB4 in skeletal muscle was not changed (Figure 5.3), thus confirming specific deletion of ErbB4 in the heart.
Figure 5.3 Heart-specific deletion of ErbB4 in knockout animals. Mice in both groups were injected with tamoxifen (20 mg/kg/d ip) for 10 days. After 10 days of recovery, animals were euthanased and RNA was extracted from heart (A) and skeletal muscle (B) tissue. The expression level of ErbB4 was determined using RT-qPCR, and normalized to 18S (endogenous control). Data was expressed relative to the Cre$^{-/}$ErbB4$^{0/0}$ group. Data was analysed by unpaired Student’s t-test and presented as mean ± SEM. * $P<0.05$ compared with Cre$^{-/}$ErbB4$^{0/0}$ group; Cre$^{-/}$ErbB4$^{0/0}$ group, n=6; Cre$^{+/}$ErbB4$^{0/0}$ group, n=3.
5.3.4 Generation of the Cre$^{+/−}$/ErbB4$^{wt/wt}$ animals

In the study above, Cre$^{+/−}$/ErbB4$^{fl/fl}$ animals were used as the ErbB4 conditional knockout group (ErbB4-cKO) and Cre$^{+/−}$/ErbB4$^{fl/fl}$ animals as the control group. Because all animals received tamoxifen treatment, the effect of the drug itself potentially affecting the result can be excluded in this model. Another advantage of this model is that ErbB4-cKO and control animals can be generated from the same breeding and thus the cost for breeding was reduced and the workload for genotyping was minimized. Using these animals, we answered the question whether the ErbB4 can be deleted from the heart with tamoxifen injection and screened the optimal dose and treatment period of tamoxifen. However, the obvious possible confounder in this model is that the ErbB4-cKO group has increased Cre activity whereas the control group did not. Thus, enhanced Cre activity is another factor induced in the ErbB4-cKO group, besides the ErbB4 deletion. Accumulated studies have proposed that the Cre recombinase itself might be cardiotoxic (Koitabashi et al., 2009; Hall et al., 2011). Accordingly, whether any phenotype of the cardiac ErbB4 deleted mice (Cre$^{+/−}$/ErbB4$^{wt/wt}$) is due to the loss of ErbB4, or due to the induction of Cre activity might be hard to determine. To evaluate the effect of Cre recombinase activity, I compared cardiac parameters in Cre positive animals (Cre$^{+/−}$/ErbB4$^{wt/wt}$) and Cre negative animals (Cre$^{−−}$/ErbB4$^{fl/fl}$) at 3-4 and 7-8 months after tamoxifen injection. The generation of the Cre$^{+/−}$/ErbB4$^{wt/wt}$ animals was described in 5.2.1. There are four potential genotypes in the offspring (Figure 5.4). To distinguish between offspring that were homozygous or heterozygous for Cre recombinase, we used qPCR to determine the Cre recombinase copy number. Two pairs of primers, pair Cre1 (pcre1) and pair Cre2 (pcre2) (refer to Appendix B for sequence), were designed to amplify two different region of Cre gene (Figure 5.5 A). Animals of a known genotype were used to show that we could successfully identify animals with any pair of primers that were heterozygous, homozygous or lacking the Cre gene (Figure 5.5 B). This method was then applied to detect the copy number of Cre in animals with unknown genotype (Figure 5.5 C). Among 107 offspring generated, 22 mice were Cre$^{+/−}$/ErbB4$^{wt/wt}$ animals.
Figure 5.4 Breeding scheme for control animal generation. Homozygous ErbB4fl/fl mice were bred with homozygous Cre+/+ mice to generate double heterozygous Cre+/+/ErbB4fl/wt mice. These were then backcrossed with the Cre+/+ mice to generate Cre+/+/ErbB4wt/wt mice.
Figure 5.5 Cre copy number detected with qPCR. A. Two pairs of primers (termed as pcre1 and pcre2, refer to the Appendix B for the primer sequence) were designed to amplify the different regions of the Cre gene. B. Homozygous, heterozygous and wild type Cre animals can be differentiated by qPCR with both pairs of primers (validation using animals of known genotype). C. Representative graph for detection of Cre copy number in animals with unknown genotypes.
5.3.5 Determining the effects of Cre recombinase on the heart

To detect whether Cre activity itself induces a cardiac phenotype in adult mice without deletion of the floxed gene, we examined cardiac functional parameters on Cre+/ErbB4wt/wt (Cre positive) and Cre-/ErbB4fl/fl (Cre negative) animals at 3-4 or 7-8 months after the tamoxifen treatment. Echocardiography revealed that the left ventricular internal dimensions diastole (LVIDd) and systole (LVIDs) and fractional shortening (FS) (calculated as (LVIDd-LVIDs/LVIDd) was not significantly different between the two groups at 3-4 months post-tamoxifen, suggesting that the contractile ability of the heart was not affected by the induction of Cre (Figure 5.6 A and B). Similarly, the left ventricular wall thickness (reflected by the intraventricular septal wall thickness (IVS) and left ventricle posterior wall thickness (LVPW)) was not changed at 3-4 months post-tamoxifen (Figure 5.6 C). There was a modest decrease in fractional shortening in Cre positive animals at 7-8 months after tamoxifen injection, but this was not statistically significant (Figure 5.7 A). However, at 7-8 months post-tamoxifen both the IVS (systolic) and LVPW (both systolic and diastolic) were significantly decreased in Cre positive animals (Figure 5.7 B and C). This data suggests that that even short-term increases in Cre activity can have long-term effects on cardiac structure. This result was confirmed by the data from post-mortem studies, which showed that the heart weight:tibia length ratio of the Cre positive animals was significantly decreased at both 3-4 and 7-8 months post-tamoxifen (Figures 5.8 and 5.9). This was specific to the heart, as kidney weight was not changed during this period. This indicates that the cardiac-specific induction of Cre activity might cause the loss of cardiac mass. Then we investigated the expression of hypertrophic (α-MHC, β-MHC and BNP) and fibrosis genes (COL1A1 and PAI-1) in Cre positive and negative animals. RT-qPCR revealed that the hypertrophic genes and fibrosis genes are expressed at similar levels in both groups (Figure 5.10 A and B). In addition, expression of the ErbB receptors (ErbB1 and ErbB4) was also not affected by Cre activity (Figure 5.11). Together, these data indicate that induction of Cre activity can have a long term effect on the heart, although the mechanism of this is not clear. However, this does suggest that the Cre-/ErbB4fl/fl genotype is not an appropriate control for our study. To circumvent the negative effect of Cre activity on cardiac tissues, I used the Cre-only transgenic mice (Cre+/ErbB4wt/wt) as the control in our following study examining the effects of cardiac ErbB4 deletion (Molkentin et al., 2009). Both Cre+/ErbB4fl/fl (ErbB4 conditional knockout group, ErbB4-cKO) and Cre+/ErbB4wt/wt (control group) animals received tamoxifen treatment. Around 3-4 months or 7-8 months later, the cardiac phenotype of ErbB4 deletion was determined.
Figure 5.6 Effect of Cre recombinase induction on cardiac function at 3-4 months post-tamoxifen. A. Example of a typical echocardiogram in 2D (top) and M-mode (bottom) obtained in short axis view for the Cre negative (Cre^{-/-}/ErbB4^{fl/fl}, left) and Cre positive (Cre^{+/+}/ErbB4^{wt/wt}, right) animals. B. Left ventricular internal dimensions during diastole (left) and systole (middle) and fractional shortening (right) in Cre negative (Cre Neg.) and Cre positive (Cre Pos.) animals. C. Intraventricular septal wall thickness of diastolic (IVSd) and systolic (IVSs) dimension and left ventricle posterior wall thickness of diastolic (LVPWd) and systolic (LVPWs) dimension in Cre negative and Cre positive animals. Data was analysed by unpaired Student’s t-test and presented as mean ± SEM.
Figure 5.7 Effect of Cre recombinase induction on cardiac function at 7-8 months post-tamoxifen. A. Left ventricular dimensions during diastole (left) and systole (middle) and fractional shortening (right) in Cre negative (Cre^{−/−}/ErbB4^{fl/fl}, Cre Neg.) and Cre positive (Cre^{+/−}/ErbB4^{wt/wt}, Cre Pos.) animals. B. Intraventricular septal wall thickness of diastolic (IVSd) and systolic (IVSs) dimension and left ventricle posterior wall thickness of diastolic (LVPWd) and systolic (LVPWs) dimension in Cre negative and Cre positive animals. Data was analysed by unpaired Student’s t-test and presented as mean ± SEM. * P<0.05 compared with Cre Neg.; ** P<0.01 compared with Cre Neg.; Cre Neg., n=9; Cre Pos., n=7.
Figure 5.8 Effect of Cre recombinase induction on heart weight at 3-4 months post-tamoxifen. The heart weight normalized to tibial length (HW:TL) (A), kidney weight to tibial length (KW:TL) (B), the tibial length (TL) (C) and body weight (BW) (D) was measured in Cre positive and Cre negative animals at 3-4 months after induction of Cre activity. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. * P<0.05 compared with Cre Neg.; Cre Neg., n=9; Cre Pos., n=8.
Figure 5.9 Effect of Cre recombinase induction on heart weight at 7-8 months post-tamoxifen. The heart weight (normalized to tibial length) (A), kidney weight to tibial length (B), the tibial length (C) and body weight (D) was measured in Cre positive and Cre negative animals at 7 months after induction of Cre activity. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. ** $P<0.01$ compared with Cre Neg.; Cre Neg., n=9; Cre Pos., n=8.
Figure 5.10 The regulation of hypertrophic genes and fibrosis genes at 8 months following Cre induction. Expression of the hypertrophic genes BNP, α-MHC, β-MHC and fibrosis genes COL1A1 and PAI-1 were detected by RT-qPCR, normalized to 18S (endogenous control) and expressed relative to the Cre negative group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. Cre Neg., n=9; Cre Pos., n=8.
Figure 5.11 The expression of ErbBs was not affected by the induction of Cre activity. Expression of ErbB1 and ErbB4 was detected with RT-qPCR, normalized to 18S (endogenous control) and expressed relative to the Cre negative group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. Cre Neg., n=9; Cre Pos., n=8.
5.3.6 Effect of cardiac-specific deletion of ErbB4 on cardiac function

As shown in Figure 5.3, tamoxifen treatment of ErbB4-cKO (Cre+/ErbB4^{fl/fl}) mice deleted approximate 90% of cardiac ErbB4 at 10 days after the tamoxifen treatment (measured by RT-qPCR). At 3-4 months after the tamoxifen injection, we performed echocardiography on the mice to examine their cardiac function. Key echocardiography parameters were measured in both systolic and diastolic phase, including left ventricular internal dimension (LVID), intraventricular septum thickness (IVS) and left ventricle posterior wall thickness (LVPW). Statistical analysis revealed a marked increase in the diastolic LVID, suggesting the ErbB4-cKO animals might undergo heart enlargement. No significant difference in systolic LVID was observed between the ErbB4-cKO and control (Cre⁻/ErbB4^{fl/fl}) animals (Figure 5.12 A). In addition, there was no significant change in the fractional shortening in ErbB4-cKO animals, indicating that the contractile ability of the heart was not affected after 3-4 months of ErbB4 deletion. The systolic IVS in ErbB4-cKO animals was significantly increased and the diastolic IVS tended to increase, but was not statistically significant (Figure 5.12 B).
Figure 5.12 Echocardiographic assessment of cardiac function at 3-4 months after ErbB4 deletion. A. The diastolic (left) and systolic (middle) left ventricular internal dimension and fractional shortening (right) were measured in ErbB4-cKO and control animals. B. The diastolic and systolic IVS and left ventricle posterior wall thickness in diastolic and systolic dimension were measured in ErbB4-cKO (n=5) and control animals (n=7). Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. * P<0.05 compared with control; control, n=7; ErbB4-cKO, n=5.
5.3.7 Effect of cardiac-specific deletion of ErbB4 on heart weight

After the echocardiography measurement, both ErbB4-cKO animals and control animals were euthanased and the heart weight:tibia length ratio was determined. The ratio of heart weight to tibia length in ErbB4-cKO animals was significantly increased compared to the controls (Figure 5.13 A). In contrast, the kidney weight:tibia length was not changed (Figure 5.13 A). This suggested that the knockout of ErbB4 in cardiomyocytes leads to cardiac hypertrophy. RT-qPCR was used to examine whether this increase in heart weight was associated with altered expression of pathological hypertrophy marker genes. We found that the mRNA levels of α-MHC, β-MHC and BNP in ErbB4-cKO animals were not changed relative to the controls (Figure 5.13 B). Together, this suggested that the ErbB4-cKO animals undergo physiological, not pathological, hypertrophy.
Figure 5.13 Effect of ErbB4 deletion on heart weight. A. Heart (left) and kidney (right) weight was measured and normalized to tibia length in control (n=8) and ErbB4-cKO (n=6) animals. B. The expression of BNP, α-MHC, β-MHC as detected by qPCR were normalized to the 18S (endogenous control) and expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. *** P<0.001 compared with control; control, n=8; ErbB4-cKO, n=6.
Following the study above, we investigated the mechanisms underlying the cardiac hypertrophy observed in ErbB4-cKO animals. We first investigated whether the cardiomyocytes undergo hypertrophy, which is defined as an increase in cell mass without proliferation. As we have not established a system in our lab to accurately determine the mass of individual cardiomyocytes, we used the measurement of cross sectional area to reflect cardiomyocyte hypertrophy. Statistical analysis showed that there was no significant change in the cross sectional area of cardiomyocytes in the ErbB4-cKO group compared to the control (Figure 5.14 A and B). To further confirm this result, the frequency distribution of cardiomyocyte area was analysed for both ErbB4-cKO and control groups. If cardiomyocytes undergo hypertrophic growth, the frequency of cardiomyocytes with a larger cell area will increase, thus shifting the frequency distribution curve to the right and increasing the area range in the X axis. However, our data showed no shift, and the frequency distribution curves for ErbB4-cKO and control groups were similar (Figure 5.14 C). Together, these studies suggested that the cardiac hypertrophy caused by cardiac ErbB4 deletion in vivo is not via hypertrophic growth of the cardiomyocytes, but occurs by some other mechanism.
Figure 5.14 Effect of ErbB4 deletion on cardiomyocyte cross sectional area. A. Representative images of WGA stained sections of hearts from control (top) and ErbB4-cKO (bottom) animals (200×). B. The grouped data for cardiomyocyte cross sectional area. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM; control, n=8; knockout, n=6. C. The frequency distribution of cardiomyocyte cross sectional area for control and ErbB4-cKO animals. Bin width is set as 50 μm².
5.3.8 Effect of cardiac-specific deletion of ErbB4 on cardiac fibrosis.

Fibroblasts are the second major component of heart tissue besides cardiomyocytes (Brown et al., 2005). Cardiac fibrosis (where lost cardiomyocytes are replaced by proliferating fibroblasts and the secreted collagen) can be observed in the late stages of pathological cardiac hypertrophy (Manabe et al., 2002). Cardiac fibrosis can be measured by histological staining for collagen or by qPCR for the expression of fibrosis molecular marker genes such as alpha-1 type I collagen (COL1A1), alpha-1 type III collagen (COL3A1) and plasminogen activator inhibitor type 1 (PAI-1). In our study, RT-qPCR revealed that the mRNA levels of COL1A1, COL3A1 and PAI-1 didn't change in the ErbB4-cKO animals compared to the controls (Figure 5.15 A). To further confirm these results, we examined collagen deposition in heart sections using Masson’s Trichrome. Masson’s Trichrome stains the collagen in blue, the cytoplasm in red and the nucleus in black. The normal heart should have little collagen accumulated around cardiomyocytes, but some should be present in the perivascular area. Here, we observed blue collagen staining around the vascular area in heart sections from both the ErbB4-cKO and control animals. However, the myocardial area of both groups showed minimal collagen staining (Figure 5.15 B), suggesting that knockout of ErbB4 did not lead to cardiac fibrosis.
Figure 5.15 Effect of ErbB4 deletion on cardiac fibrosis. A. The expression levels of the fibrosis marker genes, COL1A1, COL3A1, and PAI-1 were detected by RT-qPCR and normalized to 18S. Data was expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM; control, n=8; ErbB4-cKO, n=6. B. Representative sections of Masson’s Trichrome staining on heart tissues from control (left) and ErbB4-cKO animals (right).
5.3.9 Expression of the ErbB receptor family following ErbB4 deletion

Only a mild phenotype was observed in the ErbB4-cKO animals, which were characterized by physiological cardiac hypertrophy. No severe cardiac dysfunction or other structural abnormalities were found. This result was surprising because accumulated evidence in literature indicates that ErbB4 is critical for cardiac function and structural maintenance (Gassmann et al., 1995; Tidcombe et al., 2003; Garcia-Rivello et al., 2005). Thus in the following study, we investigated whether the deletion of ErbB4 was compensated for by other ErbB receptor systems. There are four subtypes of ErbB receptor (ErbB1, ErbB2, ErbB3, and ErbB4) detectable in the heart. We examined whether the deletion of ErbB4 may trigger a compensatory up-regulation of other ErbB receptors. At 3-4 months after ErbB4 deletion, there was a small increase in ErbB3 mRNA levels and a small decrease in both ErbB1 and ErbB2, however these effects did not reach statistical significance (Figure 5.16). Together, this suggests that the other members of the ErbB family were not significantly up-regulated to compensate for the deletion of the ErbB4.
Figure 5.16 Expression of ErbB1, ErbB2 and ErbB3 following ErbB4 deletion. The expression level of ErbB1, ErbB2 and ErbB3 was detected by RT-qPCR and normalized to the 18S. Data was expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM; control, n=8; ErbB4-cKO, n=6.
5.3.10 Expression of the EGF family following ErbB4 deletion.

Although expression of other ErbB receptors does not change after ErbB4 deletion, the activity of ErbBs can also be influenced by up-regulation of endogenous agonists, and this may serve as compensation for the lost ErbB4. There are multiple agonists (EGF-like factors) for each ErbB receptor, and thus we investigated whether the expression of these agonists was altered by cardiac ErbB4 deletion. We first studied the ErbB4 selective agonists, the NRG family (NRG1, NRG2, NRG3 and NRG4). NRG1 has two isoforms, NRG1α and NRG1β that are generated by alternative splicing. Using RT-qPCR, the expression of both NRG1α and NRG1β is dramatically up-regulated in ErbB4-cKO animals compared to controls (Figure 5.17 A). In contrast, the expression of NRG2, NRG3 and NRG4 (Figure 5.17 B) didn’t change, suggesting that the up-regulation of NRG1 is a specific response to the lost ErbB4. We also examined the regulation of the endogenous agonists for other ErbB receptors. TGFα and amphiregulin (AREG) are selective agonists for ErbB1. HB-EGF, epiregulin (EREG) and betacellulin (BTC) are agonists for both ErbB1 and ErbB4. ErbB2 has no identified ligands. However, none of these factors were regulated at the mRNA level in ErbB4-cKO animals (Figure 5.18). Together, this suggests that NRG1 is the only member of the EGF family that is specifically up-regulated after deletion of ErbB4. NRG1 is a cardioprotective factor (see section 1.6.3) thus the up-regulation of NRG1 might serve as compensatory mechanism to for the deletion of ErbB4, and may explain why we did not see any cardiac dysfunction at 3-4 months after ErbB4 deletion.
Figure 5.17 Expression of NRG family following ErbB4 deletion. The expression levels of NRG1α, NRG1β, NRG2, NRG3 and NRG4 was detected by RT-qPCR and normalized to 18S. Data was expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. ** P<0.01 compared with control; control, n=8; ErbB4-cKO, n=6.
Figure 5.18 Expression of other EGF-like factors following deletion of ErbB4. The expression level of TGF-alpha, amphiregulin (AREG), HB-EGF, epiregulin (EREG) and betacelulin (BTC) was detected by the RT-qPCR and normalized to 18S. Data was expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM; control, n=8; ErbB4-cKO, n=6.
5.3.11 The proliferation of cardiomyocytes following ErbB4 deletion

One question raised from the experiments described in 5.3.7 is how the ErbB4-cKO mice developed cardiac hypertrophy when there was no evidence of cardiomyocyte hypertrophy or fibrosis. The classic theory considers that in adult mammals the majority of cardiomyocytes are fully differentiated, and therefore have a very low rate of proliferation. However, a recent study suggested that NRG1 might promote the proliferation of adult cardiomyocytes (Bersell et al., 2009). To investigate whether the up-regulation of NRG1 in ErbB4-cKO animals causes cardiomyocyte proliferation, we used immunofluorescence to examine expression of the proliferation marker phosphorylated histone H3 (pH3) in heart sections (Figure 5.19). Statistical analysis shows that the total number of pH3 positive cells in ErbB4-cKO animals was significantly increased, although the absolute number of proliferating cells remains low.
Figure 5.19 The proliferation of cardiac cells at 3-4 months following ErbB4 deletion. Heart sections in control and ErbB4-cKO animals were stained for pH3 by immunofluorescence. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. * P<0.05 compared with control; control, n=8; ErbB4-cKO, n=6.
5.3.12 Expression of ErbB4 at 3-4 months after tamoxifen treatment

Following the investigation into the phenotype of ErbB4-cKO animals, we confirmed that the ErbB4 deletion is still valid 3-4 months after the tamoxifen injection. The RT-qPCR data revealed that the mRNA level of ErbB4 in the ErbB4-cKO group was reduced by ~67% compared to the control group (Figure 5.20).
Figure 5.20 Expression of ErbB4 at 3-4 months after tamoxifen injection. At 3-4 months after tamoxifen treatment, the expression level of the ErbB4 was measured by RT-qPCR and normalized to the 18S. Data was expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. * $P<0.05$ compared with control; control, n=8; ErbB4-cKO, n=6.
5.3.13 Cardiac function at 7-8 months after ErbB4 deletion

All of the phenotypic experiments described above were conducted at 3-4 months after cardiac ErbB4 deletion was induced with tamoxifen. However, 3-4 months may be not long enough for the conditional ErbB4-cKO mice to develop a severe phenotype. To determine whether in the longer term the heart will develop dysfunction, we performed similar measurements on a separate cohort of ErbB4-cKO and control animals at 7-8 months after the deletion of ErbB4.

At 7-8 months after tamoxifen injection, we measured left ventricular internal dimension (LVID), interventricular septum thickness (IVS) and left ventricle posterior wall thickness (LVPW) in both the systolic and diastolic phase using echocardiography. Remarkably, in contrast to 3-4 months, statistical analysis revealed there were no marked differences between ErbB4-cKO and control animals at 7-8 months. The LVPW in ErbB4-cKO animals tended to increase but was not statistically significant compared to the controls (Figure 5.21).
Figure 5.21 Echocardiographic assessment of cardiac function at 7-8 months following ErbB4 deletion. A. The diastolic (left) and systolic (middle) left ventricular internal dimension and fractional shortening (right) were measured in control and knockout animals. B. The diastolic and systolic IVS and LVPW dimension were measured in control and ErbB4-cKO animals. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. * P<0.05 compared with control; control, n=7; knockout, n=7.
5.3.14 Cardiac hypertrophy at 7-8 months after ErbB4 deletion

Animals were euthanased following echocardiography, and indices of cardiac hypertrophy measured. The heart weight:tibia length ratio (HW:TL) of the ErbB4-cKO group was significantly increased (~ 19 %) compared to the control group (Figure 5.22). This suggests that ErbB4-cKO animals undergo mild hypertrophy. However, the magnitude of this increase is lower than in previous experiments when HW:TL was measured at 3-4 months after tamoxifen injection (Figure 5.13). We tested the expression of hypertrophic marker genes with RT-qPCR and found no significant changes in expression of the MHC isoforms or BNP (Figure 5.23 A). However, the ratio of α-MHC to β-MHC expression was reduced in the ErbB4-cKO, which may indicate a switch from α-MHC (which is predominant in adult heart) to β-MHC isoform (which is predominant in fetal heart) (Figure 5.23 A). This aligns with our data from the earlier set of experiments, which suggests that there may be increased generation of new cardiomyocytes. The fibrosis genes in both groups were expressed at similar levels (Figure 5.23 B), indicating there is no overt cardiac fibrosis in the ErbB4-cKO animals. Together, this suggests that the cardiac phenotype is milder at 7-8 months post-ErbB4 deletion compared to at 3-4 months after deletion, and that the phenotype observed at 3-4 months seems to undergo recovery by 7-8 months.
Figure 5.22 Effect of ErbB4 deletion on heart weight at 7-8 months after deletion. Heart (left) and kidney (right) weight was measured and normalized to tibia length in control (n=8) and knockout (n=9) animals. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. * P<0.05 compared with control; control, n=8; ErbB4-cKO, n=9.
Figure 5.23 Effect of ErbB4 deletion on expression of hypertrophic and fibrosis genes at 7-8 months after deletion. The expression of hypertrophic genes BNP, α-MHC, β-MHC (A) and fibrosis genes COL1A1 and COL3A1 (B) detected by qPCR was normalized to 18S (endogenous control) and expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM. ** P<0.01 compared with control; control, n=7; ErbB4-cKO, n=9.
5.3.15 Expression of ErbB4 at 7-8 months after tamoxifen treatment

After investigating the function of the heart after long-term deletion of ErbB4, we wanted to confirm that the ErbB4 is still absent in ErbB4-cKO animals at 7-8 months after ErbB4 gene deletion. We tested the expression of ErbB4 in heart tissues with RT-qPCR after 7-8 months of tamoxifen injection. Surprisingly, the ErbB4 expression in ErbB4-cKO animals was not significantly reduced compared to the controls (Figure 5.24). This indicated that either the gene was not initially deleted (unlikely), or that ErbB4 gene expression had somehow recovered by 7-8 months following tamoxifen treatment.
Figure 5.24 Expression of ErbB4 at 7-8 months after tamoxifen injection. At 7-8 months after tamoxifen treatment, the expression level of ErbB4 was measured by RT-qPCR, normalized to 18S and expressed relative to the control group. Data was analysed using unpaired Student’s t-test and presented as mean ± SEM; control, n=7; ErbB4-cKO, n=9.
5.4 Discussion

The importance of NRG1 signalling in the cardiovascular system and its protective effect on the postnatal heart have been previously established (Zhao et al., 1998; Kuramochi et al., 2004; Liu et al., 2006). As NRG1’s primary receptor, ErbB4 is essential in heart (Gassmann et al., 1995; Tidcombe et al., 2003; Garcia-Rivello et al., 2005). Based on these studies, we hypothesised that ErbB4 would be essential for adult heart maintenance, and predicted that ErbB4 deletion from the adult heart would lead to severe cardiomyopathy or heart failure. In this chapter, I used the αMHC-MerCreMer/loxP system to specifically delete ErbB4 from the adult heart, and investigated the cardiac phenotype for up to 7-8 months following deletion. The main findings in this study are: 1) An optimised tamoxifen treatment can specifically reduce ErbB4 mRNA levels by greater than 90% in the heart using the αMHC-MerCreMer/loxP system; 2) Transient Cre activity has long term effects on cardiac physiology; 3) Surprisingly, cardiac-specific deletion of ErbB4 did not lead to any obvious cardiac dysfunction or structural abnormalities except for a mild physiological hypertrophy; 4) Unique among EGF-like ligands, NRG1 was found to be selectively unregulated after ErbB4 deletion; and 5) There is increased proliferation of cardiac cells after ErbB4 deletion.

Tamoxifen is a drug has been used to treat breast cancer due to its anti-estrogen effects, and it is also used in the laboratory to induce gene deletion in MerCreMer/loxP conditional knockout mouse models. The described treatment regimes (dose, method of administration, duration of treatment) for tamoxifen induced gene deletion are highly variable. However, a high dose of tamoxifen can be toxic. In a previous study in our lab, tamoxifen treatment at 40mg/kg/day ip for 4 consecutive days led to a high mortality rate in adult mice. However, lower doses are sometimes not sufficient to cause efficient deletion of the target gene. To conquer this, we adopted the low dose but long term treatment method (Hsieh et al., 2007). This idea is based on the fact that as long as the gene is deleted from genome, it cannot be recovered in the same cell. Although the efficiency of gene deletion is very low with a single tamoxifen injection at low dose, a prolonged accumulating treatment can achieve an excellent outcome. With this method, we achieved a more than 90 percentage deletion of the ErbB4 gene in adult mouse heart with minimal toxicity. There is no obvious or marked difference in the physiology or behaviour between the tamoxifen treated and untreated animals.

Although we were using the optimised dose tamoxifen which is not lethal, the potential side effect of this drug is hard to be excluded. To minimize the potential interference by tamoxifen itself, we
decided to treat both experimental and control groups with tamoxifen. The genotype of the conditional knockout animals is Cre^{+/−} ErbB4^{fl/fl}. Thus, the control animals have to lack either Cre (Cre^{−/−} ErbB4^{fl/fl}) or loxP sites (Cre^{+/−} ErbB4^{wt/wt}) to avoid deletion of ErbB4 when they received tamoxifen. If Cre^{−/−} ErbB4^{fl/fl} animals are used as controls, tamoxifen injection will induce Cre activity in the ErbB4-cKO animals (Cre^{+/−} ErbB4^{fl/fl}) but not the controls (Cre^{−/−} ErbB4^{fl/fl}). Thus, Cre activity is another possible confounding factor induced in the ErbB4-cKO group besides the ErbB4 deletion. When Sohal et al. established the MHC-MerCreMer-loxP system in 2001, it was claimed that expression of the MerCreMer fusion protein in adult heart did not affect cardiac performance or cellular architecture. However, subsequent studies have indicated that the Cre recombinase is cardiotoxic. Hall et al. showed that the induction of Cre recombinase activity leads to decreased systolic function (SF) and alterations in proteins associated with cardiac oxidative phosphorylation. The decreased SF returned to baseline 10 days after tamoxifen injection (Hall et al., 2011). Another study showed that cardiac Cre activity induced a transient dilated cardiomyopathy marked by cardiac dysfunction and reduction in the expression of genes related to metabolism and calcium handling. Some of these defects had disappeared by 1 month after the Cre activity was induced (Koitabashi et al., 2009). Given these studies, supporting the idea that Cre activity might be cardiotoxic, it was important for me to evaluate the effect of Cre in our animals.

To determine the Cre effect, we compared the cardiac function and structure of Cre positive animals to Cre negative animals. We found that the transient Cre activity decreased the heart weight (up to 8 months), while the cardiac function is not altered at either 3-4 months or 7-8 months after tamoxifen treatment. To circumvent the negative effect of Cre activity on cardiac tissues, I decided to use the Cre-only transgenic mice (Cre^{+/−}/ErbB4^{wt/wt}) as the control for my studies.

Against our expectations, we observed that the deletion of ErbB4 in adult mice did not lead to cardiac dysfunction. The important role of ErbB4 in cardiac development is well established (Gassmann et al., 1995; Tidcombe et al., 2003; Garcia-Rivello et al., 2005), and the essentiality of ErbB4 in postnatal heart was confirmed by Garcia-Rivello et al. using a MLC-2V-Cre/loxP system to demonstrate that specific deletion of ErbB4 in cardiomyocytes leads to severe dilated cardiomyopathy in adulthood. Interestingly, no obvious cardiac abnormality (ventricle wall thickness, cardiac cell number) was observed at birth, and the phenotype they observed in adulthood primarily resulted from lack of ErbB4 in the postnatal stage (juvenile or adult) (Garcia-Rivello et al., 2005). The results of my experiments in this chapter indicate that ErbB4 is not critical for maintenance and function of the adult heart, and remarkably its deletion did not result in cardiomyopathy. One interpretation could be that ErbB4 might be essential for the cardiac
development in the juvenile, but not in the older adult. Supporting this, Bersell et al. (Bersell et al., 2009) showed that genetic deletion of ErbB4 at postnatal days 16-18 blocked the DNA synthesis of cardiomyocytes at baseline (measured by BrdU incorporation). Taken together, these studies and ours might suggest the ErbB4 is required for the cardiac development both in embryonic and early postnatal stages. However, once the cardiac development is completed, the subsequent loss of ErbB4 does not lead to severe cardiac dysfunction or structural abnormalities.

One clinical study has indirectly indicated that ErbB4 might be important for adult heart maintenance: trastuzumab (an ErbB2 blocking antibody) has been used for breast cancer therapy and when combined together with other chemotherapy agents the rate of heart failure was significantly increased (27% incidence) (Seidman et al., 2002). Based on this observation, it has been proposed that ErbB2 is important in the adult heart. ErbB2 lacks any identified agonists, and preferentially dimerizes with other ErbB receptors to trigger downstream signalling (Timolati et al., 2006). The inhibition of ErbB2 might affect the signalling of other ErbB receptors, especially its preferential partner ErbB4. Our study suggested ErbB4 deletion did not caused cardiac dysfunction. Thus, the cardiac dysfunction induced by trastuzumab treatment probably reflects effects on the signalling of other ErbB receptors. As mentioned earlier (section 1.2.1), the ErbB2 receptor can adopt an active formation without binding any agonists (Garrett et al., 2003). It is therefore possible that the active ErbB2 signalling itself is essential for the maintenance of heart function.

ErbB4 has been suggested to play a role in the transition from hypertrophy to heart failure. In patients with heart failure, the cardiac expression of ErbB2 and ErbB4 are depressed (Rohrbach et al., 2005). A study in rats also showed that ErbB2 and ErbB4 are significantly reduced in the heart failure period, but not the preceding hypertrophic period in an aortic stenosis model (Rohrbach et al., 1999). However, in our study, the ErbB4-cKO mice developed significant hypertrophy but did not develop into heart failure in the longer term. This suggested that the loss of ErbB4 in the earlier studies might be the result of heart failure but not the reason.

Another interesting result in my study is that ErbB4 deletion caused (somewhat paradoxically) cardiac hypertrophy. Cardiomyocyte hypertrophy and cardiac fibrosis were absent in the ErbB4-cKO animals, and so we proposed that there might be more cardiomyocytes generated. Two potential sources could possibly regenerate new cardiomyocytes: one is stem cells or progenitor cells and another is existing cardiomyocytes. Detecting cardiac stem cells is currently not available in our lab, so I attempted to test whether cardiomyocytes were proliferating in our ErbB4-cKO
animals via co-staining of proliferation maker pH3 (located in nucleus) and the cardiomyocyte marker Troponin by immunofluorescence. However, the cell boundary could not be clearly resolved and there were many very small cells, such as endothelial cells, fibroblast or potential cardiac stem cells located among the cardiomyocytes. Thus, it was difficult to tell whether the positively stained nucleus for pH3 with positive Troponin staining around it was in a cardiomyocyte, or in a small cell among cardiomyocytes. This difficulty has also been described in the literature (Ang et al., 2010). Thus, the positively stained cell number was presented as total cardiac cell number instead of “cardiomyocyte number”. Although we cannot tell exactly the contribution of each cell type in this cardiac cell proliferation, we believe that new cardiomyocytes were generated by cardiomyocytes or stem cells, and contribute to the cardiac hypertrophy. It is important to note that pH3 only indicates cells undergoing the mitogenic phase, which is known to be transient in the whole cell cycle. The heart is one of the least regenerative organs in the body, so even if there is a regenerative response, it usually happens in a very small proportion of cells. Thus, the pH3 stained only a few cells in each section. It is still hard to predict how much of the heart can be regenerated with these proliferated cells. However, we believe with the accumulation effect over time, many new cardiomyocytes were generated in our ErbB4-cKO model and these might have contributed to the cardiac hypertrophy.

Another important discovery of our study is that we observed the up-regulation of NRG1 in our animals after ErbB4 deletion. To our knowledge, this is a new observation in ErbB4 deletion studies, but is concordant with the observation made by Robrbach et al. in heart failure where the ErbB4 expression was decreased and NRG1 increased (Rohrbach et al., 1999; Rohrbach et al., 2005). The link between the loss of ErbB4 and the compensatory up-regulation of its agonist NRG1 is indicative, but the mechanism is unknown. However, given that NRG1 is predominantly released by microvascular endothelial cells (Kuramochi et al., 2004; Lemmens et al., 2006) and targets the cardiomyocytes, we predict that there is a crosstalk between the cardiomyocytes and endothelial cells to regulate the expression of NRG1 after the ErbB4 deletion. The up-regulated NRG1 may function to compensate for the ErbB4 loss. NRG1 is a cardioprotective factor that enhances cardiac contraction and reduces the cardiomyocyte apoptosis caused by stress (Liu et al., 2006; Bian et al., 2009). I therefore propose that this NRG1 up-regulation explains why we haven’t observed a severe phenotype following ErbB4 deletion. If this assumption is true, the prevailing question will be how NRG1 can mediate a cardioprotective effect in the absence of its cognate receptor ErbB4. One possibility is that NRG1 is acting via a different receptor, possibly ErbB3.
Currently, it is unclear whether cardiac stem cells can respond to NRG1 stimulation to proliferate. However, NRG1 can promote cardiomyocyte proliferation in the adult heart (Zhao et al., 1998; Bersell et al., 2009). Another question from the present study is how NRG1 induced cardiac cell proliferation in the absence of its receptor ErbB4. One possibility is that ErbB4 was not completely deleted from 100% of cardiomyocytes, and that the proliferation happened in ErbB4-replete cells. They would then pass their intact genome to their progeny cells, which thus possess the unaffected ErbB4 gene and could in turn respond to NRG1. When the newly generated cardiac cells accumulate, the proliferation process is accelerated. However, NRG1 only induces a small proportion of cardiomyocytes to proliferate in wild type animals (Bersell et al., 2009). Accordingly, it can be inferred that in ErbB4 deleted animals, this cell population is even smaller and so it is very hard to imagine how a few cells proliferating at the initial stage (after deleting ErbB4 from the majority of cardiomyocytes) could promote such a robust increase in heart size in 3 months given the poor regenerative capacity of the adult heart. It is possible that the deletion of ErbB4 happens in cells expressing MHC but not in progenitor cells that do not express MHC. In this case, the proliferation rate of cardiac cells induced by NRG1 will be similar for wild type and ErbB4 deleted animals. Hence, when the NRG1 is up-regulated in ErbB4-cKO animals (but not wild type animals), the ErbB4-cKO animals will have more cardiomyocytes generated. A final possibility is that ErbB3 also plays a role in adult heart function and structural maintenance. ErbB3 is a receptor for NRG1 with a similar structure to ErbB4 but possessing additional PI3K binding domains, which contribute to cardiomyocyte survival. However, this possibility does not explain the recovery of the ErbB4 expression in the long-term after deletion. Whatever the merit of these speculations, we need to perform additional studies such as lineage tracing with immunofluorescence markers to tell if the proliferating cells are stem cells, cardiomyocytes with ErbB3 or ErbB4, or other cell types.

A final surprising discovery from this work was that the expression of ErbB4 in the ErbB4-cKO group gradually recovered to the level of the control group at 7 months after ErbB4 deletion. One trivial possibility is we didn't inject the tamoxifen properly. We cannot fully exclude this possibility because each set of animals was injected with tamoxifen independently, and the successful deletion of ErbB4 in one cohort does not mean the definite success of deletion in a later set of animals. However, the injections of tamoxifen were performed by the same person following the same procedures, and for ten consecutive days, so we consider that the possibility of technical failure is low. The only reasonable explanation is that ErbB4 was successfully deleted from the genome immediately after tamoxifen treatment, but that the expression of ErbB4 gradually recovered over 7-8 months via a process that likely involves the generation of new cardiomyocytes to replace the
cardiomyocytes with genomic deletion of ErbB4. The replacement of cardiomyocytes would presumably require apoptosis of the old cells in addition to new cell generation. We tried to detect cardiomyocyte apoptosis with TUNEL at 3 months after ErbB4 deletion, however, the results was not definitive due to the high levels of background staining in all groups. In summary, the cardiac specific deletion of ErbB4 in adult mice did not result in physiological hypertrophy without obvious cardiac dysfunction. The compensatory up-regulation of NRG1 in ErbB4-cKO mice heart might contribute to the cardiac function preservation and lead to cardiac hypertrophy via causing cardiomyocyte proliferation.
CHAPTER 6
GENERAL DISCUSSION
6. General Discussion

This thesis has explored the role of the epidermal growth factor receptors (particularly ErbB4) in mediating cardiomyocyte hypertrophy, the potential signalling differences among the ErbB4 isoforms, and the physiological function of ErbB4 in the adult mouse heart. While ErbB4 did not contribute to a classic model of cardiomyocyte hypertrophy (Ang II-induced hypertrophic signalling), this receptor was clearly involved in the hypertrophy caused by NRG1. ErbB4 has four isoforms due to alternative splicing, and the non-cleavable isoform JM-b was found to be predominant under both physiological and pathophysiological conditions. Interestingly, there was no significant difference in the ability of the four isoforms to mediate NRG1-induced hypertrophy. When ErbB4 was specifically deleted from the adult mouse heart using Cre-loxP technology, the mice developed physiological cardiac hypertrophy with up-regulation of NRG1 and no alterations in cardiac function and structure. Surprisingly, an increased proliferation of cardiac cells was observed following cardiac ErbB4 deletion, and I propose that the NRG1 up-regulation contributes to this cell proliferation, although the mechanisms remain unclear.

Crosstalk between ErbB receptors and GPCRs in cardiomyocyte hypertrophy

Cardiomyocytes are continuously exposed to diverse stimuli, such as soluble endocrine and paracrine factors from blood or neighboring cells. It is important that these signals are integrated to achieve an appropriate cellular response. Tyrosine kinase receptors (for factors including the EGF ligands, insulin-like growth factor-1, insulin, etc.) and GPCRs (for ligands such as angiotensin II, endothelin 1, adrenaline, etc.) play pivotal roles in interpreting such signals (Sugden et al., 1998; Clerk et al., 1999; Heineke et al., 2006). These receptor systems do not work in isolation and there is irrefutable evidence for crosstalk between GPCRs and the growth factor receptors. An accumulating literature supports the idea that the type 1 angiotensin receptor (AT₁R) is able to transactivate the ErbB receptors (principally ErbB1) and thereby mediate cellular growth in a variety of tissues and organs (Eguchi et al., 1998; Shah et al., 2003b; Chen et al., 2006). In this setting, and based on previous work from my host laboratory that showed the ErbB4 selective agonist NRG1 was a more potent inducer of cardiomyocyte hypertrophy than ErbB1 ligands, my first aim was to investigate whether the classic AT₁R-ErbB1 transactivation by extended to other ErbB receptors, explicitly ErbB4. To accomplish this aim, I used an approach that involved
knockdown of ErbB receptors using RNAi as well as pharmacological inhibition with the small molecule EGFR kinase antagonist, AG1478, which has been widely used in the field to discern EGFR function (Eguchi et al., 1998; Asakura et al., 2002; Thomas et al., 2002; Shah et al., 2003b; Chen et al., 2006). I was able to unambiguously demonstrate knockdown of each ErbB receptor, and tested the effect of this knockdown on the capacity of Ang II (and NRG1) to promote cardiomyocyte hypertrophic signalling. As expected, knockdown of ErbB4, but not ErbB1 or ErbB2, was able to prevent NRG1 mediated cardiomyocyte hypertrophy. However, despite careful experimentation, I found no evidence that Ang II-mediated cardiomyocyte hypertrophic signalling was dependent on ErbB4. Much to my initial disappointment, I was also unable to prevent AT1R-mediated cardiomyocyte hypertrophy with RNAi targeting ErbB1 or ErbB2. Based on extensive, compelling, previous literature in the heart, but also in many other cellular systems (Shah et al., 2003a; Mendez et al., 2005; Liebmann, 2011), our observation was unsettling but repeatable.

Given the importance (and potential controversy) of my data questioning the role of ErbB receptors in AT1R hypertrophy, I undertook with my supervisors a systemic review of my approach and observations. We retested the specificity of my RNAi constructs - they were shown to be effective and specific - notably, the knockdown of individual ErbB receptors was confirmed by Western blotting and qPCR, showing there is up to 90% reduction of ErbB1 or ErbB4 by RNAi. In addition to my initial data, using luciferase-based hypertrophic gene promoter reporter assays, I went on to confirm that there was also minimal effect of ErbB knockdown on the activation of AT1R-mediated MAPK signalling and hypertrophic growth (measured as protein:DNA ratios and sacromeric reorganisation). We performed power calculations for luciferase assay data and determined that my experimental repeats (n = 7-8) were more than sufficient to allow valid conclusions. My grouped data for all experiments clearly showed no differences between knockdown and control groups with Ang II treatment. In contrast, under parallel experimental conditions (i.e., same cells, same days, same experimenter, same analyses), I was able to consistently and unequivocally observe that ErbB4 RNAi (but not ErbB1/2 RNAi) reduced cardiomyocyte hypertrophic signalling in response to the ErbB4 selective agonist, NRG1. The only interpretation for these results is that NRG1 requires the ErbB4 to mediate hypertrophy, whereas ErbB1, ErbB2 and ErbB4 are not individually required for AT1R mediated cardiomyocyte hypertrophy.

So, how do I explain these results? It is difficult to answer this, as the experiments included appropriate controls, yet yielded different results from previous studies, where the majority of the literature indicates that GPCRs, like the AT1R, use EGFRs to mediate growth signalling (Porcile et
al., 2005; Ohtsu et al., 2006a; Ohtsu et al., 2006b; Luppi et al., 2007; Schlange et al., 2007). A number of possibilities might be considered: 1) the most trivial of explanations could be that despite overt knockdown of the ErbB mRNA/protein, the residual receptors were sufficient to mediate growth pathway signalling. This idea is consistent with the pharmacological concept of “spare receptors” (where in many cases only a portion of cell surface receptors are required for full efficacy) (Strickland et al., 1981). Obviously, my control experiment, detailing the loss of NRG1 efficacy with ErbB4 RNAi knockdown, refutes such reasoning; 2) Primary cultures of neonatal cardiomyocytes vary tremendously in terms of cellular composition (i.e., % contamination by fibroblasts, endothelial cells etc) and sensitivity to hypertrophic stimuli, between laboratories and even within laboratories over time. This might reflect subtle changes in protocols and purity (or otherwise) of the cultures; 3) Many laboratories have evoked the contribution of EGFR transactivation based, almost exclusively, on experiments using pharmacological blockade with the small molecule inhibitor, AG1478. Certainly, the use of AG1478 alone (without confirmation with another technique like RNAi) can be problematic and is open to misinterpretation (detailed below); and 4) My RNAi experiments tested the hypothesis that individual ErbB receptors were involved in cardiomyocyte hypertrophy and it remains possible that some redundancy exists between the ErbB receptors (given that multiple receptors can bind multiple ligands) such that knockdown of a single receptor might be compensated by another. So, whatever the merits of these possibilities, it certainly raises some uncertainties and potentially some reevaluation of the some of the literature in this broad field.

Indeed, as mentioned above, the reliance on data using AG1478 needs careful reexamination. There is no doubt that in controlled assays, under ideal conditions, AG1478 at nanomolar concentrations is a selective and specific inhibitor of the EGFR kinase (Anastassiadis et al., 2011). However, in cell-based assays, where often conditions can widely vary and concentrations of the inhibitor range up to tens of micromolar, that specificity/selectivity is not assured. In regard to the EGFRs, the current consensus is that AG1478 is reasonably selective for ErbB1 (the EGFR) at concentrations <0.5 µM, but can inhibit the other ErbBs (and probably other tyrosine kinases) at higher concentrations (>5 µM). My data on MAPK signalling in cardiomyocytes (where EGF activation of ErbB1 was blocked by 0.5 µM, but where NRG1 mediated MAPK via ErbB4 was only inhibited by 5 µM AG1478) are entirely consistent with this consensus view. Previous studies, including some from my own laboratory, have used high µM levels of AG1478 and therefore cannot exclude the contribution of tyrosine kinases other than EGFR kinase. Indeed, other receptor tyrosine kinases, as well as soluble tyrosine kinases, have been associated with Ang II/AT1R signalling and growth (Yin
et al., 2003), including, as an example, the platelet-derived growth factor receptors (Linseman et al., 1995; Kelly et al., 2004). Finally, I am certainly not criticizing all previous studies using AG1478 - some have used this inhibitor in the appropriate range (100-250 nM) - in, for example, hepatic C9 cells (Shah et al., 2002), renal epithelial cells (Chen et al., 2006), and vascular smooth muscles cells (Eguchi et al., 1998). Some have also combined this with RNAi, and my experience would concur that it is important for future studies to use a combination of RNAi and pharmacological approaches together with well considered controls.

Another limitation of the EGFR transactivation field has been the strong focus on the entire triple membrane-passing signalling (TMPS) pathway occurring in a single cell - whereby the GPCR, ADAM, shed EGF ligand, and EGFR are all co-expressed and activated as a single unit. Of course, the possibility exists that shed ligands could work in a paracrine manner, perhaps even between different cell types as might occur in the heart. Indeed, the primary source of neuregulin in the heart is presumed to be the endothelial cells of the vasculature (Kuramochi et al., 2004; Lemmens et al., 2006) but the primary target in terms of hypertrophy is ErbB4 on the cardiomyocytes. So, while there can be no argument that all the components (i.e., AT1R, ADAM12/15/17, ErbB receptors (ErbB1, ErbB2 and ErbB4) and multiple EGF-like factors) are present in cardiac tissue whether they necessarily need to occur in an individual cell type could be questioned, especially as I did not observe EGFR transactivation in the highly purified cardiomyocyte cultures. So when considering these mechanisms in an intact organism (or tissue), I would argue we need to consider that the ErbB receptor system does not have to be completed via transactivation in one cell type, like the cardiomyocyte, but it may happen via interaction of the many types of cells in response to neurohumoral factors/stimuli.

The functional relevance of ErbB4 isoforms in cardiomyocytes

In the initial stages of my candidature, we were strongly considering that the experiments detailed above would likely show, not only transactivation of ErbB1, but as I hypothesized, an additional ability to transactivate ErbB4. While ultimately this did not occur, in parallel I was initially interested in considering the possibility that this putative ErbB4 transactivation might result from one or more of the ErbB4 isoforms. As introduced earlier, ErbB4 has four isoforms due to alternative splicing, and these can be differentially processed in cells (Junttila et al., 2000). Moreover, there is evidence in the literature that GPCR activation (Higa - Nakamine et al., 2012) and stimulation with NRG1 (Zhou et al., 2000) induce cleavage of the JM-a isoform, releasing a
functional intracellular domain (ICD) into the nucleus to regulate cell activity as first shown by Graham Carpenter’s group (Vecchi et al., 1996). So, even though I did not observe transactivation of ErbB4 by Ang II in purified cardiomyocytes, I was still interested in investigating whether the specific ErbB4 isoforms could be cleaved to release the ICD in cardiomyocytes and whether this might contribute to the NRG1-induced cardiomyocyte hypertrophic signalling. Because previous, unpublished work in our laboratory had detected all of the four ErbB4 isoforms in primary neonatal rat cardiomyocytes, my prediction was that the cleavable JM-a isoform would be present and that I would be able to demonstrate that it could be processed to release the intracellular domain (80 kD ICD), which might interact with transcriptional factors to regulate cellular activity. Secondly, based on a study in the brain, where a specific ErbB4 isoform was cleaved and shown to regulate the time of astrogenesis in the mouse (Sardi et al., 2006), I was intrigued by the idea that the four isoforms might make differing contributions to cardiomyocyte hypertrophy.

As part of investigating the cleavage of ErbB4 and any isoform-specific differences, I first sought to establish whether these isoforms are indeed expressed in whole mouse heart. In addition, I wondered whether the isoforms were expressed differently in various stages of cardiac development, or during pathology. There is strong evidence that ErbB4 is required for normal mouse cardiac development (Gassmann et al., 1995; Tidcombe et al., 2003) but the relevance of a specific ErbB4 isoform in normal growth or disease has not been reported. I performed an expression profile in the heart of all four isoforms from embryonic day 10.5 to postnatal day 28. All isoforms declined throughout cardiac development - the expression of total ErbB4 at the earlier embryonic stage (E10.5) is 250 times higher than at postnatal day 28. Interestingly, the expression levels of JM-a and JM-b isoforms are similar in the earlier embryonic stages. However, by the postnatal stage in mice, JM-b is the overwhelmingly predominant isoform. Why this might be is currently unclear, but it could relate to the proliferative (i.e., embryonic) or hypertrophic (i.e., postnatal) growth that occurs in the heart. It is tempting to speculate that perhaps JM-a is required for cardiac proliferation in the embryo and JM-b is required for hypertrophy in the adult. It would be interesting to isolate the embryonic cardiomyocytes and investigate whether the JM-a isoform mediates proliferation, especially given that JM-a is capable of regulating the timing of astrogenesis by suppressing astrocyte progenitor cell differentiation (Sardi et al., 2006). Moreover, the release of the ICD (from JM-a) allows interaction with YAP to facilitate the translocation of the ICD into the nucleus (Komuro, Nagai et al. 2003; Omerovic, Puggioni et al. 2004). Given that YAP activation is sufficient to stimulate both embryonic and postnatal cardiomyocyte proliferation (von Gise et al.,
2012), it would seem reasonable to hypothesise that release of the ICD from JM-a could associate with YAP to promote cardiomyocyte proliferation.

Experiments aimed at examining whether the JM-a isoform can be cleaved in cardiomyocytes were critical in attempting to make this link between ErbB4 isoform expression and cardiac cell growth. It is important to note two things: 1) that I performed these experiments prior to the isoform characterisation mentioned above (which showed predominance of JM-b in postnatal mouse heart) and 2) that a previous student has some preliminary PCR data to suggest that JM-a was expressed in rat neonatal cardiomyocytes (Hsiu-wen Chan, PhD thesis). Based on previous studies showing that cleavage of JM-a to yield the ICD is sensitive to cell activation with the phorbol ester PMA, and also to NRG1 (Vecchi et al., 1996; Zhou et al., 2000), I initially attempted to demonstrate shedding of the 85KDa ICD using Western blotting as previously described (Vecchi et al., 1996; Zhou et al., 2000). Disappointingly (but with hindsight not unexpectedly), no band corresponding to the ICD could be detected either basally or following stimulation of rat neonatal cardiomyocytes with PMA or NRG1. We went on to confirm that the primary isoform of ErbB4 in the rat heart is the JM-b isoform (Hengbo Shi, visiting scholar, unpublished data), as it is in mouse. So, the inability to detect generation of the ICD likely reflects the low expression level of the endogenous JM-a isoform in these cells.

To examine the potential for JM-a cleavage in these cells (which, while difficult to examine on the endogenous lowly-expressed receptor, might be functionally important), I developed a series of C-terminal GFP-tagged ErbB4 isoform constructs. These vectors were transfected into postnatal cardiomyocytes, allowing us to observe the potential cleavage and translocation of the ICD-GFP into the nucleus using confocal microscopy. If the cellular machinery for this process was present, I hypothesised that the ICD would be generated after stimulation and enter into nucleus. No obvious evidence for this was seen and no nuclear translocation of green fluorescence was observed following stimulation with PMA or NRG1 for up to 15 min. The lack of ICD generation is consistent with the low expression of JM-a, and indicates the shedding processes involved may also be postnatally down-regulated. Finally, I did not observe remarkable changes in ErbB4 isoform expression with cardiac disease (i.e., a model of myocardial infarction) and I therefore surmise that isoform-specific ErbB4 cleavage is unlikely to be a major driver of the effects of ErbB4 in heart.

This then leads to the important question as to why the cardiomyocytes might express multiple isoforms of the ErbB4, and are there any functional differences among these isoforms in
An initial focus of my thesis was the role of ErbB4 in NRG1-mediated cardiomyocyte hypertrophy, so I examined whether the four ErbB4 isoforms could all equally mediate this effect. For this purpose, I knocked down the endogenous ErbB4 receptor and then replaced it with individual knockdown-resistant version of the ErbB4 isoforms. Hypertrophy was induced with the ErbB4 agonist NRG1 and hypertrophic signalling measured with luciferase reporter assays. I observed that all four isoforms can rescue NRG1-induced hypertrophy, indicating that the most likely scenario is that the hypertrophic signalling is reliant on the common tyrosine kinase activity of the ErbB4 receptor isoforms, and does not seem to involve either shedding to release ICD or a particular docking event mediated by CYT1/2.

The function of ErbB4 in the adult mice heart

My thesis then moved away from the focus on transactivation to a broader investigation of the role of ErbB4 in adult heart *in vivo*. For this purpose, I adopted the tamoxifen inducible MHC-MerCreMer/loxP system (Garcia-Rivello *et al.*, 2005) to specifically delete the ErbB4 from cardiomyocytes in adult mice. As described in Chapter 5, tamoxifen treatment specifically decreased ErbB4 expression in the adult heart by ~ 90%. My prediction was that the mice would develop cardiac dysfunction or structural abnormalities in the weeks/months following ErbB4 deletion. To my surprise, the knockout mice were active and healthy following ErbB4 deletion and no obvious pathology was observed, which suggested a potential lack of a cardiac phenotype in these mice. At 3 months after ErbB4 deletion, I measured cardiac contractility and heart weight, and analysed cardiac structure, including the cardiomyocyte size and cardiac fibrosis. Surprisingly, the cardiac function was not affected in the ErbB4 deleted mice. There were no structural changes (cardiomyocyte hypertrophy or cardiac fibrosis) observed in knockout animals, although these mice did develop cardiac hypertrophy (increased heart weight:tibia length ratio). This result is opposite to my original hypothesis that ErbB4 is essential in adult heart. This suggests a few possibilities. Firstly, there might be up-regulation of the EGFR family or their ligands to compensate for the reduced ErbB4 function. Secondly, maybe 3-4 months is not long enough to observe a phenotype. In addition to these questions, the mechanism by which the knockout mice developed cardiac hypertrophy without cardiomyocyte hypertrophy needs to be elucidated.

To answer the first question, I investigated the expression of the other members of the ErbB family (ErbB1, ErbB2 and ErbB3) and their selective agonists (the EGF-like factors) after ErbB4 deletion, and found that only the ErbB4 selective agonist NRG1 was significantly up-regulated (4-5 fold
increase). Accumulated evidence suggests that NRG1 is a beneficial factor that can preserve cardiac function in various cardiac pathological models (Liu et al., 2006). NRG1 could protect the cardiomyocytes from apoptosis (Zhao et al., 1998) and regulate the contraction of the cardiomyocytes by regulating the sarcomere reorganization (Muraoka-Cook et al., 2006a; Bian et al., 2009) and Ca\(^{2+}\) intake (Mery et al., 1991; Brero et al., 2010). In our model, it is possible that ErbB4 deletion causes a cardiac phenotype, but this is concealed by the protective effect of NRG1. How NRG1 functions in the absence of ErbB4 remains a question. It has been accepted in the field in the past 15 years that ErbB4 is the only receptor for NRG1 in cardiomyocytes, as the other NRG1 receptor, ErbB3, is not expressed. However, a recent publication found that the ErbB3 is also detected in cardiomyocytes, where it can be activated by NRG1 (Campreciós et al., 2011). Whether the ErbB3 is activated by up-regulated NRG1 in our ErbB4-cKO mice to compensate for the lost ErbB4 function is unknown and needs further investigation.

There is evidence in the literature that NRG1 induces cardiomyocyte proliferation in adult mice (Bersell et al., 2009). Thus, I investigated whether there is proliferation of cardiac cells in our ErbB4-cKO mice. For this purpose, I used the mitosis marker pH3 to label the proliferating cells by immunofluorescence, and found the number of pH3 positive cardiac cells was significantly increased in ErbB4-cKO heart. Whilst we did not perform lineage-tracing studies in this thesis, I hypothesize that these new cells were generated from existing cardiomyocytes or a subpopulation of stem/progenitor cells, which contributes to the cardiac hypertrophy in ErbB4-cKO mice in the absence of cardiomyocyte hypertrophy.

If the existing cardiomyocytes do proliferate in ErbB4-cKO mice to contribute to cardiac hypertrophy, the results will be very interesting. In chapter 3, I have shown that NRG1 induced cardiomyocyte hypertrophy in vitro. However, in chapter 5 the up-regulation of NRG did not result in cardiomyocyte hypertrophy in vivo but may have caused myocyte proliferation. Since 1998, the ability of NRG1 to promote the hypertrophic growth and proliferation of isolated cardiomyocytes has been documented (Zhao et al., 1998). However, few studies have reported NRG1 induced cardiomyocyte hypertrophy in vivo. One recent study showed that NRG1 infusion in adult mice induced the proliferation, but not hypertrophy of cardiomyocytes (Bersell et al., 2009). The reasons underlying the different observations in vitro and in vivo are unknown. However, differences in the local cardiomyocyte environment may provide one explanation. In vitro, the cardiomyocytes are purified and maintained at a subconfluent density. In contrast, in vivo cardiomyocytes are connected
with each other via junctions, and surrounded by many other cells (e.g. fibroblasts, endothelial cells) that may potentially influence cardiomyocyte function.

In addition to the proliferation of existing cardiomyocytes, another potential resource for new cardiomyocytes is cardiac progenitor cells or stem cells. This has been discussed in Chapter 5. If this does happen in our ErbB4-cKO mice, it remains to be seen whether these new cells have the same predominant isoforms of ErbB4 as the mature cardiomyocytes. In Chapter 4, I found that expression of the JM-a isoform is much higher in embryonic hearts than adult hearts. It is possible that the JM-a expressing cells are the stem cells or cardiac progenitor cells. Currently, there have been no reports on the ErbB4 isoform expression in these cells. If the cardiac stem cells express the JM-a isoforms, it will be very important to know whether the JM-a isoforms can be cleaved in these cells to release the ICD. It is known that the coactivator of the ErbB4 ICD (Komuro et al., 2003), YAP, is essential for the proliferation of stem cells (Zhao et al., 2011). It will be interesting to know whether the cleavage of the JM-a isoform and release of the ICD are involved in the YAP controlled proliferation.

To investigate whether ErbB4 deletion leads to cardiac dysfunction or structural changes in the longer term, I measured the cardiac phenotype at 7-8 months post deletion in a separate cohort of animals. Again, cardiac function was preserved in knockout animals. Interestingly, these animals have milder cardiac hypertrophy than that seen at 3 months after ErbB4 deletion. Similar to the results from the study at 3 months, we observed neither cardiomyocyte hypertrophy nor cardiac fibrosis. Astonishingly, at 8 months the expression of ErbB4 in knockout animals was no longer different from the control animals, whereas it was reduced by ~67% at 3-4 months post-tamoxifen and ~90% at 10 days after tamoxifen treatment. To my knowledge, there have been no reports of this type of deleted gene recovery. Cardiomyocytes (consisting of the two thirds volume of the whole heart) are the main source of ErbB4 in cardiac tissues whilst other cells either don’t express the ErbB4 (fibroblasts, taking one third volume of the heart), or express smaller amounts (endothelial cells). The only explanation I could propose is that new cardiomyocytes with an intact ErbB4 gene (that are thus able to express ErbB4) have been generated and replaced the cardiomyocytes lacking ErbB4. If this hypothesis is true, two processes would be required. First, new cardiomyocytes with an intact ErbB4 gene need to be generated. Second, the death of cardiomyocytes lacking ErbB4 would be needed for ErbB4 regeneration. I tried to detect cardiomyocyte apoptosis using TUNEL staining 3 months after ErbB4 deletion. However, we observed extensive positive staining in sections from both knockout and control animals. We
suspect that this staining may be an artifact of the fixation procedure (immersion in 4% PFA for 48 hours). To conquer this, in a future set of experiments we will perfusion fix the hearts using a Langendorff setup to immediately fix the cardiomyocytes after heart collection.

When taking my in vivo study along with those in the literature, it seems that the phenotype observed is closely related to the developmental stage where ErbB4 is deleted. Deletion of ErbB4 in the germline leads to embryonic death due to impaired cardiac development (Gassmann et al., 1995). Targeted knockout of ErbB4 from cardiomyocytes using the MLC-2V promoter does not cause embryonic lethality, but does lead to dilated cardiomyopathy in the adult (Garcia-Rivello et al., 2005). The deletion of ErbB4 from the adult mouse heart in my study led to the development of physiological cardiac hypertrophy without cardiac dysfunction or structure abnormalities. This might indicate the primary function of ErbB4 under physiological conditions is to promote cardiomyocyte growth. As long as the cardiac development has been completed, the reduction in ErbB4 does not affect the heart function. This hypothesis is consistent with data in Chapter 4 showing the relatively higher expression of ErbB4 in the embryonic stage (which probably reflects high demand for cardiomyocyte growth) compared to the adult (where there is a low requirement for cardiac growth in physiological conditions). However, it has been suggested that NRG1 is a beneficial cardiac factor that may protect the cardiomyocytes in various pathological conditions. Given that ErbB4 is the primary receptor for NRG1 in cardiomyocytes, these observations might suggest that ErbB4 may also be cardioprotective in pathological conditions. Thus, in a future study we plan to use our cardiac ErbB4 deletion model to investigate the function of ErbB4 in a model of pathological cardiac hypertrophy.

Limitations and future directions

In this thesis, the transactivation of ErbB receptors has been carefully studied with RNAi. Down-regulation of individual ErbB receptors did not affect the Ang II signalling in cardiomyocytes, and we have excluded the possibility that other ErbB subtypes were up-regulation after knockdown. However, although the expression level was not changed, these ErbBs may have been activated via alternative mechanisms to compensate for the deleted subtypes. To exclude this possibility, in the future down regulation of all of the ErbB receptors should be employed. In addition, all of the transactivation studies in my thesis were performed in purified cardiomyocytes. However, the transactivation might require the involvement of multiple cardiac cell types such as fibroblasts, endothelial cells and cardiomyocytes. It is important to know how these cells interact in any
potential transactivation process (for instance, the “triple membrane signalling pathway” mechanism as discussed earlier), and the role of each cell type in this mechanism. Regarding the ErbB4 isoforms, the JM-a was abundantly expressed in the embryonic heart. Whilst cardiac ErbB4 is predominantly localized to cardiomyocytes in the adult (Zhao et al., 1999), this has not been shown in the embryo. I propose that in the embryo ErbB4 is also mainly expressed in cardiomyocytes or cardiomyocyte precursor cells, however this will require experimental confirmation. Furthermore, the exact cell types (mature cardiomyocytes, progenitor cells, or others) that express the JM-a have yet to be identified. An intriguing possibility is that the JM-a expressing cells are mainly cardiac stem cells or progenitor cells. It will be interesting to investigate whether the JM-a isoform can be cleaved in these cells to regulate cardiomyocyte generation.

In vivo, the physiological role of ErbB4 in the adult heart has been investigated using a conditional knockout model. The obtained data suggests that ErbB4 deletion leads to cardiac hypertrophy without affecting the cardiac function or structure, whereas the up-regulation of NRG1 in ErbB4-cKO mice might promote cardiac cell proliferation. It is important to confirm these results with further studies. Whilst this study showed no change in cardiomyocyte size, the cross sectional area measured in my study only reflects the cardiomyocyte size in the short axis, yet cardiomyocyte enlargement during hypertrophy can occur in both the longitudinal and short axis. To measure longitudinal changes, we plan to isolate single cell cardiomyocytes and use microscopy to quantify cell size. To further confirm the proliferation results, alternative proliferation markers such as Ki67 or measurement methods such as BrdU incorporation should be used to detect proliferation. It is critical to identify which cells are proliferating, which will require co-staining using cell-type specific and proliferation markers. In addition to these experiments, we are eager to explore the mechanism behind the observed phenomenon. The ErbB4 deficiency occurs in cardiomyocytes in our models, whilst NRG1 is abundant in endothelial cells (Kuramochi et al., 2004; Lemmens et al., 2006). It will be interesting to examine how the ErbB4 deficiency caused the up-regulation of NRG1, and to then determine whether the cardiac cell proliferation in knockout animals was driven by the up-regulated NRG1. More importantly, we plan to elucidate the mechanism by which ErbB4 expression recovers in the months following recombination of the floxed gene. There is the possibility that the ErbB4 deficient cells are undergoing apoptosis and are being replaced by newly generated cardiomyocytes, however, this needs to be experimentally confirmed. One potential, but very important proposal, from my study is that another ErbB receptor (ErbB3) might be activated by the up-regulated NRG1 in cardiac tissues to compensate for the ErbB4 deficiency, and thus preserve cardiac function (as discussed in Chapter 5). The cardioprotective effect of NRG1 has been
demonstrated in various pathological animal models whilst phase II clinical trials demonstrated that NRG1 could improve the cardiac function of patients with chronic heart failure (Gao et al., 2010). Currently, ErbB4 is considered to be the only receptor for NRGI in cardiomyocytes. If ErbB3 can be activated by NRGI in the heart, the proposed molecular mechanism (where NRGI’s beneficial effect occurs via ErbB4) needs to be re-evaluated and this new potential pathway via ErbB3 requires further exploration. Indeed, whether ErbB4 deficiency will affect the ability of NRGI to protect the heart is yet to be determined. More fundamentally, the phenotype of the ErbB4-cKO mice under pathological conditions has not been elucidated. For this purpose, as a next step we are going to investigate how cardiac deletion of ErbB4 affects the response of the heart to a hypertrophic stimulus using an Ang II infusion model of hypertension and hypertrophy. This work will provide important information regarding the role of ErbB4 in cardiac function and structure under pathological conditions.

Conclusion

During my candidature, I have fully investigated the transactivation of ErbB family by Ang II in cardiomyocytes and provided evidence that the Ang II signalling in cardiomyocyte hypertrophy is independent of ErbB receptors. This is very important for elucidating the molecular pathway of the pathological cardiac hypertrophy related to the activation of local RAS system. My studies confirmed the requirement for ErbB4 in NRGI induced hypertrophic signalling. The discovery that all four ErbB4 isoforms could mediate NRGI signalling in postnatal cardiomyocytes suggested that NRGI induced hypertrophic signalling is dependent on a fundamental common feature of the four isoforms. The decline in expression of the cleavable isoforms (JM-a) throughout development, and the lack of a cleavage mechanism in postnatal cardiomyocytes suggests that the postnatal heart does not require the ICD function. In contrast, the relative higher level of JM-a in embryonic stages suggests that the ICD might be released and required by the embryonic heart. This study indicates that further investigation on the biological function of JM-a isoform in the embryonic heart is required, particularly with respect to cardiomyocyte generation. The in vivo study established a new conditional knockout model in our lab, where the gene deletion is both tissue specific and temporally controlled. Using this model, we investigated the function of ErbB4 in adult mice heart. The cardiac specific deletion of ErbB4 in adult mice did not result in a severe cardiac phenotype (cardiac dysfunction and structural abnormality) but a series of compensatory responses (up-regulation of NRGI and physiological cardiac hypertrophy). This proposes that, in contrast to the embryonic heart, the intact adult heart adopts alternative mechanisms to satisfy cardiac physiological requirements when ErbB4 is absent. More importantly, the lack of an obvious
phenotype may indicate that the primary function of the ErbB4 in the adult heart is different from the embryonic heart. The former might be mediating the NRG1 signalling to preserve cardiac function and structure under pathological conditions, whereas the latter promotes growth. Thus, deletion of ErbB4 in embryonic heart leads to pre-birth death due to the cessation of cardiac growth. In contrast, the phenotype of ErbB4 deletion in adult heart may only be observed under pathological conditions. In a future study we plan to use our conditional knockout model to investigate the function of ErbB4 in a model of pathological cardiac hypertrophy.
REFERENCES

Devereux RB, Palmieri V, Sharpe N, De Quattro V, Bella JN, de Simone G, et al. (2001). Effects of Once-Daily Angiotensin-Converting Enzyme Inhibition and Calcium Channel Blockade-Based...

ErbB3, or specific ErbB4 isoforms real-time reverse transcription-PCR analysis in estimation of ErbB receptor status from cancer patients. *Clinical cancer research* 9: 5346-5357.

Misfeldt AM Endocardial cells are a distinct endothelial lineage derived from multipotent cardiovascular progenitors, Vanderbilt University, 2008.

Without an Additional Benefit of the Combination of Both Drugs. *Journal of Cardiovascular Pharmacology and Therapeutics*.

Pentassuglia L, Sawyer DB (2009a). The role of Neuregulin-1β/ErbB signaling in the heart. Experimental cell research 315: 627-637.

Proud CG (2004). Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovascular research 63: 403-413.

APPENDICES
Appendix A: Solutions and buffers

DMEM + 10% FBS: DMEM powder (#12100-038, Invitrogen), NaHCO3 (3.75 g/L), penicillin (1×10^5 U/L), streptomycin (100 mg/L), FBS (10%, v/v), pH7.2.

DMEM CCTSS2: DMEM powder (#12100-038, Invitrogen), NaHCO3 (3.75g/L), 1×vitamins solution (#11120-052, Invitrogen), 1×essential amino acid solution (#11130-051, Invitrogen), 1×non-essential amino acids solution (#11140-050, Invitrogen), sodium pyruvate (1 mM), insulin (5 mg/L), BrdU(0.1 mM), antibiotic antimyocotic (#15240-062, Invitrogen), potassium chloride (50mM), pH7.2.

MEM + 10% NBCS: MEM powder (#11900-016, Invitrogen), NaHCO3 (3.75 g/L), 1×vitamins solution (#11120-052, Invitrogen), 1×essential amino acid solution (#11130-051, Invitrogen), 1×non-essential amino acids solution (#11140-050, Invitrogen), antibiotic antimyocotic (#15240-062, Invitrogen), NBCS (10%, v/v), pH7.2.

ADS buffer: NaCl (6.8 g/L), HEPES (4.76 g/L), NaH₂PO₄ (0.12 g/L), glucose (1 g/L), KCl (0.4 g/L), MgSO₄ (0.1 g/L), pH7.3-7.4.

Myocyte enzyme solution: Collagenase II (1.15×10^5 U/L, Worthington Biochemical Corporation), Pancreatin (0.8 g/L, Gibco) in ADS buffer.

Cell line enzyme solution: 0.5% trypsin in PBS

PBS: NaCl (80 g/L), KCl (2 g/L), Na₂HPO₄·12H₂O (15.4 g/L), KH₂PO₄ (2 g/L), pH7.2.

LB agar: tryptone (10 mg/ml), yeast extract (5 mg/ml), agar (15 mg/ml), NaCl (10 mg/ml), pH7.3.

LB media: tryptone (10 mg/ml), yeast extract (5 mg/ml), NaCl (10 mg/ml), pH7.3.

RIPA lysis buffer: Tris (50 mM, pH 7.4), NaCl (100 mM), EDTA (2 mM), sodium fluoride (50 mM), TritonX-100 (1%, v/v), sodium deoxycholate (0.5%, w/v), sodium dodecyl sulfate (SDS) (0.1%, w/v), sodium pyrophosphate (10 mM), aprotinin (1 μg/ml), leupeptin (5 μg/ml), pepstatin (1μg/ml).

5× SDS loading buffer: Tris-HCl (250 mM, pH 6.8), SDS (10%, w/v), bromophenol blue (0.5%, w/v), β-mercaptoethanol (20%, v/v), and glycerol (50%, v/v).

Western blot running Buffer: Tris (25 mM), glycine (192 mM), SDS (0.1%, w/v).
Appendix

Western blot wash Buffer: NaCl (80 g/L), KCl (2 g/L), Na$_2$HPO$_4$·12H$_2$O (15.4 g/L), KH$_2$PO$_4$ (2 g/L), Tween-20 (0.1%, v/v), pH7.3.

Western blot transfer Buffer: Tris (48 mM), glycine (39 mM), methanol (0.2%, v/v).
Appendix B: PCR primers

Normal PCR primers:

1. Genotyping

ErbB4

Primer1 CAAATGCTCTCTCTGTTCTTTGTGTCTG
Primer2 TATTGTGTTTCATCTATCATTGGCAACCCAG
Primer3 TTTTGCCAAGTTCTAATTCCATCAGAAGC

Cre

Forward AGGTGGACCTGATCATGGAG
Reverse ATACCGGAGATCATGCAAGC

2. Cloning

pEGFP-N1-ErbB4 vector

Forward CCACTGTGACCTCCACTGCTTTACTGGCTTATCG
Reverse CCTAACCGGTAACCACCACAGTATTCGAGGTGTC

Note: The Nhe I and Age I restriction sites are underlined in the above forward and reverse primers, respectively.

Real-time PCR primers (SYBR)

α-MHC

forward CTTCCATCCATGGCACAATTCT
reverse GCGCATTGAGTTCAAGAAG

β-MHC

forward GTGAAGGGCATGAGGAAGTAGT
reverse AGGCCTTCACCTCAGCTGC

BNP

forward CTT TAT CTG TCA CCG CTG GGA G
reverse TTT GGG TGT TCT TTT GTG AGG C

Col1A1

forward GCTCCTCTTATGCGCAGCACT
reverse CCACGTTCACCTCATTGGGG
<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward DNA Sequence</th>
<th>Reverse DNA Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col3A1</td>
<td>CACCCTTCTTCATCCCACTC</td>
<td>TGGTTCTGGCTTCCAGACAT</td>
</tr>
<tr>
<td>PAL</td>
<td>TTCAGCCCTTGCTTGCCCTC</td>
<td>ACACCTTTTACTCCGAAGTGGT</td>
</tr>
<tr>
<td>ErbB1</td>
<td>CAGATGGATGTCAACCCTGAAG</td>
<td>TGGAGAGTGTGTCTTTAAATTCAACC</td>
</tr>
<tr>
<td>ErbB2</td>
<td>GCAAGCACTGTCTGCCATGC</td>
<td>GGGCACAAGCCTCACACTGG</td>
</tr>
<tr>
<td>ErbB3</td>
<td>CGAGATGGGCAACTTCAGGC</td>
<td>AGGTTACCCATGACCACCTCACAC</td>
</tr>
<tr>
<td>HB-EGF</td>
<td>CAGGGAGTGCACTCTCACAGC</td>
<td>TTCTCCACTGGTAGAGTCAGC</td>
</tr>
<tr>
<td>TGFα</td>
<td>GCCCAGATCCCACACTCAG</td>
<td>CACGGCACCACCTCACAGT</td>
</tr>
<tr>
<td>EREG</td>
<td>CTGCCTCTTGGGTCTTGGACG</td>
<td>GCGGTACAGTTATTACTCCTGGATTC</td>
</tr>
<tr>
<td>BTC</td>
<td>AATTCTCCACTGTGTGGTAGCA</td>
<td>GGTGGTACTTCTGTCTAGGG</td>
</tr>
<tr>
<td>NRG3</td>
<td>CCAGCCTATCAAGCACCACA</td>
<td></td>
</tr>
</tbody>
</table>
Reverse GGTGGTGCCCTTCTGAAAGT

NRG1α
Forward GTGCGGAGAAGGAGAAAACTTTC
Reverse TTGCTCCAGTGAATCCAGGTTG

NRG1β
Forward GTGCGGAGAAGGAGAAAACTTTC
Reverse AACGATCACCAGTAAACTCATTTGG

m18s
Forward TCGAGGCCCTGTAATTGGAA
Reverse CCCTCAATGGATCCTCGTT

Cre1
Forward TTTCCCGCAAAACCTGAAGATG
Reverse ATCCGCCCGATAACCAGTG

Cre2
Forward AACATGCTTCATCGTCGGTCC
Reverse CCGCCCGATAACCAGTGAA

TaqMan probe and primers set

JM isoform:
JM-a probe [6FAM]ATGGACGGGCCATTCCACTTTACCA[BHQ1]
JM-b probe [6FAM]TTAAGGCAGACTCGCATCGGCCT[BHQ1]
JM-a/JM-b forward TTGCCATCCAAACTGACC
JM-a/JM-b reverse TCCAATGACTCCGGCTGC

CYT isoform
CYT-1 probe [6FAM]TGAATTTGGACACAGCCCTCCTCCTCTG[BHQ1]
CYT-2 probe [6FAM]AAGAATTGACTCCAATAGGAATCAGTTGACCTCCTTTACCA[BHQ1]
CYT-1/CYT-2 forward TCCTCCATCTACACATCAGGAA
CYT-1/CYT-2 reverse GGCATTCCGTGTTGTGTAGCAA

18S
18S probe [6FAM]CAGCAGCGCGCAAATTACCAC[BHQ1]
Appendix

18S forward CCGCTACCACATCCAAGGAA
18S reverse GGGCCTCGAAAGAGTCCTGT

The TaqMan probe and primer set used for amplifying following genes are predesigned and premixed by company:

NRG2: Mm01158087_m1 (Applied Biosystem)

NRG4: Mm00446254_m1 (Applied Biosystem)

AGEG: Mm00437583_m1 (Applied Biosystem)
Appendix C: pEGFP-N1-ErbB4 vector cloning strategy

Individual isoforms of ErbB4 was PCR cloned from pIRESpuro-ErbB4 vector into pEGFP-N1 vector. Two restriction sites (NheI and AgeI) were incorporated into primers to facilitate the cloning.
Appendix D: pCR®-TOPO-ErbB4-JM/CYT vector cloning strategy

JM or CYT domains of ErbB4 were PCR cloned from mouse cDNA into pCR®-TOPO vector using the overhanging T-A sites.