Accepted Manuscript

In vivo Sensitivity Estimation and Imaging Acceleration with a Rotating RF Coil Arrays at 7 Tesla

Mingyan Li, Jin Jin, Zhentao Zuo, Feng Liu, Adnan Trakic, Ewald Weber, Yan Zhuo, Rong Xue, Stuart Crozier

PII: S1090-7807(14)00350-4
DOI: http://dx.doi.org/10.1016/j.jmr.2014.12.004
Reference: YJMRE 5567

To appear in: *Journal of Magnetic Resonance*

Received Date: 8 July 2014
Revised Date: 11 December 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
In vivo Sensitivity Estimation and Imaging Acceleration with a Rotating RF Coil Arrays at 7 Tesla

Mingyan Li*(1)(2)*
Jin Jin*(1)
Zhentao Zuo*(2)(3)*
Feng Liu*(1)
Adnan Trakic*(1)
Ewald Weber*(1)
Yan Zhuo*(3)
Rong Xue*(3)
Stuart Crozier*(1)

* Co-corresponding authors

(1) School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

(2) All correspondence should be addressed to:
Mingyan Li
School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia
Phone: +61-(0)7-3365 8313
Email: mingyan@itee.uq.edu.au

Zhentao Zuo
State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
Tel: +86-15910659721
Email: ztzu@bcslab.ibp.ac.cn

(3) State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
Abstract

Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) is capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B_i) become distinct at various angular positions. Therefore, sensitivity at other angular positions cannot be obtained by numerically rotating the acquired sensitivity. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with in vivo human brain imaging. The method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both the magnitude and phase of the sensitivity maps at an arbitrary angular position, which enables us to employ the rotating-SENSE method to perform acceleration and image reconstruction. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct good quality images at a high reduction factor. It is hoped that the proposed sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.
Introduction

Reducing the scan time of magnetic resonance imaging (MRI) is important for both clinical diagnosis and scientific research. Clinically, acquiring high resolution images normally requires long scan duration, which may cause discomfort to the patient and generate motion-related artifact that affect diagnostic image quality. In research, especially in functional MRI (fMRI), shorter scan time facilitates improved quantification of the brain activity. The fast full k-space acquisition schemes have been developed for the modern MRI systems to shorten the scan time, such as echo planer imaging (EPI) [1], fast spin echo [2] and fast gradient echo imaging [3]. More recently, phased array coils (PACs) [4, 5] have facilitated partial k-space acquisition to further reduce the scan time. Images can then be reconstructed with different algorithms, such as simultaneous acquisition of spatial harmonics (SMASH) [6], sensitivity encoding (SENSE) [7, 8], generalized autocalibrating partially parallel acquisitions (GRAPPA) [9].

As an alternative method, we have introduced the rotating radiofrequency coil (RRFC) [10, 11] and the rotating radiofrequency coil array (RRFCA) [12-14] to reduce scan duration by using SENSE-like reconstruction methods. Both rotating RF systems are capable of encoding k-space data with varying sensitivity profiles (B_i^-), which benefit the signal encoding process and reconstruction algorithms. By adopting the time-division multiplexing sensitivity encoding (TDM-SENSE), the RRFC demonstrated a 2-fold scan time reduction for human brain imaging [11]. The RRFCA used a rotating-SENSE algorithm that featured time-varying sensitivity profiles for image reconstruction. A 4-element RRFCA was prototyped and tested with a homogeneous phantom at 7 Tesla, which exhibited improved g-maps [7] and uniform signal-to-noise ratio (SNR) distributions compared with a traditional 8-element coil array [12, 14].

In this work, the feasibility of using the RRFCA for human brain imaging was tested. Since the rotating-SENSE algorithm needs sensitivity information for image reconstruction, in our previous studies [11, 14], a small number of sensitivity maps acquired at several angular positions was numerically rotated to estimate sensitivity at other positions. This technique was used for human brain imaging at 2 Tesla [10, 11]
owing to the negligible coil-tissue interaction [15-19] (dielectric resonance [20-24]). This approach has been also used for imaging a homogeneous phantom at 7 Tesla, provided the phantom and the RRFCA system are both symmetrical [14]. However, this method is not applicable for in vivo sensitivity estimation at 7 Tesla, because the in vivo sensitivity maps at different angular positions vary significantly. Since measuring sensitivity at every angular position is impractical and compromises the fast imaging purpose, a practical and robust sensitivity estimation method is needed for in vivo applications of the RRFCA at ultra high fields.

Here we investigate a novel sensitivity estimation method specially designed for in vivo applications of the RRFCA. Instead of simply rotating the acquired sensitivity to new angular positions, the in vivo sensitivity maps will be deformed in a non-linear fashion. These deformations can be calculated with image registration techniques by registering in vivo sensitivity to sensitivity in the library that acquired from scans of volunteers or numerical calculations. This approach is based on the observation that the B_1^- map is not particularly sensitive to small local changes, in terms of dielectric properties and structures of tissues. Instead, B_1^- maps are typically related to the global dielectric property distribution relative to the RF system [24-26], with lower spatial frequencies. This sensitivity deformation can be modelled numerically using image registration techniques [27-29], as these techniques are commonly used in finding the spatial correspondence between two images. Importantly, image registration has recently found application in modelling the magnetic field variations due to changes in dielectric distributions between different subjects [30].

In this work, the proposed numerical method will be applied to estimate the rotated sensitivity maps, which will then be used to optimise the rotating technique and reconstruct the images. The rotating scheme optimisation is based on minimising the maximum g-factor associated with the rotating coil array. The g-maps, reconstructed images and SNR maps of the RRFCA and stationary coil array will then be compared.
Methods and Materials

As described in previous work [14], the RRFCA moves to various angular positions during acquisition, so that different k-space phase-encoding lines are associated with distinct coil sensitivity profiles which improve encoding capability. In order to reduce the overall scan time, sensitivity maps at most angular positions are estimated from a small number of measured \textit{in vivo} sensitivity maps, by employing the proposed algorithm. The linear superposition of individual sensitivity maps with global coverage of the sample can benefit the registration algorithm [31] (details are discussed in later sections). However, four physical elements with 90° intervals of the RRFCA prototype are insufficient to provide a complete coverage. Consequently, two sets of sensitivity maps, with angular separation of 45° (e.g. position 1: 0°+45° in Fig.1), are used together to simulate a rotating array with 8 elements equidistantly distributed in the angular direction. Considering that the elements are identical, the range of angular displacement that the RRFCA need to travel is from -22.5° to +22.5°.

In order to test the robustness of the estimation algorithm at the maximum angular rotation, sensitivity with 22° displacement (position 3) from position 1 is estimated. In addition, the intermediate angular position displacement (10° at position 2) is also estimated. (as shown in Fig. 1, estimate B_1 at position 2 and 3 from acquired B_1 at position 1). To verify the robustness of the proposed algorithm, two volunteers of different genders and distinctly different head sizes were imaged.

(Fig. 1)

Registration based \textit{in vivo} sensitivity estimation

In this work, the new sensitivity estimation method uses the acquired sensitivity at the initial position to estimate the sensitivity at other positions by employing a sensitivity library and registration techniques. The library provides source images, which are made up of sensitivity maps at all angular positions acquired during scans of volunteers. The registration techniques are employed to find the spatial transformation that aligns the source image (library sensitivity) to the target image (actual acquired sensitivity) from its initial position, and this transformation is applied to the other angular positions for estimating the sensitivity maps. The rotational sensitivity at arbitrary angular positions is acquired by following four steps:
(1). Create a library by acquiring sensitivity maps at all angular positions from the scans of the volunteers. During the actual patient scanning, sensitivity maps at an initial position (i.e., position 1 in Fig.1) are acquired. Image processing is applied to both groups of sensitivity maps to smooth profiles and correct singular values.

(2). Instead of registering individual coil sensitivity maps, they are linearly combined first and then registered, to improve accuracy and efficiency. The combination coefficients are determined with a condition number of 1 to achieve the optimal sensitivity estimation when individual sensitivity profiles are later extracted (see Step (4)).

(3). As illustrated using a flow chart in Fig. 2, the source profile S_1^8 (combined 8 library B_1^r maps at position 1) is registered to the target profile T_1^8 (combined 8 in vivo B_1^r maps at position 1). The corresponding transformation Ψ_1^8 is extracted and applied to the combined library sensitivity map at arbitrary angular position (α^o) to obtain the estimated combined sensitivity map $E_{\alpha^o}^8$.

(4). Repeat step (3) 8 times for all the linear combinations to estimate all the combined sensitivity maps. The individual sensitivity map $E_{\alpha^o}^1$ at α^o angular position (i.e., position 2, 3 in Fig.1) is calculated by multiplying the inverse of the coefficient matrix. N in Fig.2 denotes the number of pixels.

(Fig.2)

In vivo sensitivity mapping and singular value correction

The most common sensitivity mapping method for a stationary coil array is to derive relative coil sensitivity by dividing the individual coil image using a predominantly uniform reference image. Both the coil image and the reference image can be obtained from either full k-space sampling [7, 32] or fully sampled central k-space [33, 34]. Without a uniform volume transmit coil, the reference image is typically approximated as the root sum of square (RSS) image:

$$RSS = \sqrt{\sum_{j=1}^{J} (I_j)^2}$$ \hspace{1cm} (1a)
\[\bar{S}_j = \frac{\bar{T}_j}{RSS} \]

where \(J \) is the total number of coil elements in an array; \(\bar{T}_j \) is the full-FOV image obtained with the \(j \)-th coil; \(\bar{S}_j \) is the sensitivity map of the individual coil.

The direct division in Eq. (1b) can easily generate singular values. The different singular value distributions of each coil can cause inaccurate reconstructions which, particularly in this work, can misinform the registration process.

Singular values are commonly seen at the interfaces (i.e. skin and skull, skin and air) for both magnitude and phase of the sensitivity maps. In addition, the phase of sensitivity is often unpredictably wrapped for the ultra high field MRI. To prepare sensitivity profiles for registration, a multi-level singular value removal algorithm was developed. Similar to methods employed in [35], the map was first divided into reliable and unreliable regions. The unreliable regions consist of singular values of the magnitude map, sensitivity voids and phase discontinuities [36]. An interpolation/extrapolation procedure [35], based on polynomial fitting, was then performed to correct the sensitivity profiles in the unreliable regions.

Optimal sensitivity combination

Due to the complex coil-tissue interactions at the ultra high fields, after loading a heterogeneous subject like the human brain, the sensitivity of each coil becomes distinct [25]. For this reason, single coil sensitivity based estimation is compromised by insufficient coil-tissue information. In addition, the registration algorithm works less efficiently with signal voids that are commonly seen in single-channel sensitivity maps. For better estimation, sensitivity profiles are linearly combined before applying registration. A similar method has been reported for optimal \(B_1 \) mapping [31]. This process is expressed as:

\[C_{\text{coef}} S_{\text{single}} = S_{\text{combined}} \]

where \(C_{\text{coef}} \) denotes an 8×8 coefficient matrix; \(S_{\text{single}} \) is the sensitivity matrix resized to 8×N^2 (resolution is N×N) and each row is a single coil sensitivity. \(S_{\text{combined}} \) contains the linearly combined sensitivity maps.
During rotation, the coil-tissue interaction is fully transformed from one angular position to another and Eq. 2 is applied accordingly. To decompose the estimated individual coil sensitivity S_{single} from combined sensitivity maps S_{combined}, the inversion of C_{coef} is multiplied to both sides of equation. With the method described in [31], the matrix C_{coef} is determined with condition number 1 to minimise error.

The registration technique for sensitivity estimation

The goal of registration is to find the spatial correspondence between the source and target images. Registration techniques are widely used in medical imaging [27, 28, 37, 38], such as when information from multiple modalities are combined (computed tomography (CT), MRI, positron emission tomography (PET)), intra-subject motion correction, distortion correction, dynamic imaging reconstruction and high-field MRI safety assessment [30]. A typical registration algorithm includes two components: a similarity metric and geometric deformation. The registration algorithm employed here followed, in part, previously published works [29, 39], while various components were adapted to suit the current application. For example, a similarity metric was modified to cope with complex-valued sensitivity maps.

A. Similarity metric

The similarity metric measures how well the source image aligns to the target image. Various metrics have been developed for image registration, such as squared difference (SD), mutual information (MI) [40, 41] and pattern intensity (PI) [42].

Sensitivity maps are complex images. Both magnitude and phase of B_1^+ and B_1^- exhibit a rotational property [25] which offers opportunities to apply image registration techniques for estimating sensitivity maps. Magnitude images are relatively easy to be registered because the features are clear; however, registering phase images is problematic due to phase-wrapping. Even when the phase images are unwrapped, the unwrapping quality and phase ranges are difficult to control which can undermine the registration performance. To avoid this problem, the registration process in this work was not solely performed on phase images, but on the complex sensitivity maps. The PI metric was modified to cope with complex numbers. The SD metric was chosen for registering magnitude images due to its fast processing speed.
Two registration processes were set to different convergence parameters for optimal performance.

For a source image \(I_s(x, y) \) and a target image \(I_t(x, y) \), a two-dimensional SD and PI are defined as:

\[
SD = \frac{\sum_{x=1}^{X} \sum_{y=1}^{Y} (I_t(x, y) - I_s(x, y))^2}{XY}
\]

\[
(3a)
\]

\[
P_{I,\sigma} = \sum_{x,y} \sum_{(x-u)^2+(y-v)^2<r^2} \frac{\sigma^2}{\sigma^2 + (I_{diff}(x,y) - I_{diff}(u,v))^2}
\]

\[
I_{diff} = I_t - I_s
\]

(3b)

where \(x \) and \(y \) are the voxel coordinates in the image, \(X \) and \(Y \) are the numbers of the voxels along each dimension. In Eq. (3b), \(I_{diff} \) is the difference image. The parameter \(r \) defines the size of the neighbourhood, in which the variations are taken into account. The parameter \(\sigma \) is a sensitivity controller to decide whether the variation is a structure or not.

B. Geometric deformation

Two types of geometric deformation, affine transformation and non-rigid transformation, were employed in this work. Affine transformation includes translations and rotations, making it best suited for global transformations. A non-rigid transformation was applied to compensate the inefficiency of the affine transformation in local areas. In a non-rigid transformation, a deformation field records all displacement vectors at each voxel from an aligned source image to the target image. In this work, a free-from deformation (FFD) based on B-splines [43] was adopted for non-rigid transformations. FFD works by deforming a source image by manipulating a mesh of control grids [44]. To improve its efficiency, a coarse-to-fine multilevel B-spline approximation was adopted to generate a series of B-spline functions incorporating bicubic interpolation functions for calculation of the deformed pixel values.
Image reconstruction and encoding optimisation

The rotating coil array emulates a large amount of coils with only four physical RF elements, thereby improving the condition of the encoding matrix to facilitate a higher reduction factor. However, the encoding ability of RRFCA can be further improved by strategically choosing the rotating degree for each stepping, which is determined by the g-map based optimisation algorithm [14].

Image reconstruction with rotating-SENSE

The number of sensitivity profiles limits the sensitivity encoding ability of a stationary coil array; therefore, the sensitivity profiles in the encoding matrix remain unchanged from row to row for each coil. However, the encoding matrix \((A_R) \) has more variations in its rows by taking rotational sensitivity into account:

\[
A_R = \begin{bmatrix}
ES_1 \\
ES_2 \\
\vdots \\
ES_4
\end{bmatrix}
\]

(4)

where \(E = e^{ikr_{\rho}} \) and \(S_j = S_{j}(r_{\rho}, t) \).

\(\kappa \in [1, N / R], t \in [1, N / M / R] \), \(M \) is the length of a \(k \)-space line, \(N \) is the number of full \(k \)-space samples and \(R \) is the reduction factor. \(E \) and \(S_j \) denote the Fourier encoding and sensitivity encoding matrices, respectively. \(K_{\kappa} \) denotes the \(\kappa \)-th \(k \)-space sampling position; \(r_{\rho} \) and \(t \) in \(S_j \) denote the sensitivity at the position of \(\rho \)-th voxel of the step \(t \).

The Fourier encoding kernel is consistent between the stationary and rotating array; however, sensitivity maps for individual coils \(j \) at each step \(t \) are different as the coil rotates. This variation improves the condition of encoding matrix and can be exploited for further scan time reduction [14].

The noise behaviour analysis of the Rotating-SENSE is similar to that of the traditional stationary array. However, to employ g-maps [7] for noise analysis, the sensitivity matrix \(S \) needs to be delineated from encoding matrix \(A_R \):

\[
A_R = FS
\]

(5)
where F and S represent the Fourier encoding matrix and sensitivity matrix, respectively. The sensitivity matrix S consists of the acquired sensitivity and estimated sensitivity profiles. See [14] for the process of separating F and S.

Sensitivity encoding optimisation

The proposed method of estimating *in vivo* sensitivity maps enables us to investigate the optimal rotating scheme using numerical simulations. By optimally choosing the sampling position of each step, the sensitivity encoding capability can be maximised. At each angular position, the coil sampled one phase-encoding line. The angular displacement θ between adjacent acquisitions was determined by achieving the best imaging acceleration performance as follows:

$$
\arg \min_{\theta} \left\{ \frac{\sum_{x=1}^{N} \sum_{y=1}^{N} (g_{x,y}(\theta) - 1)^2}{N} \right\}
$$

(6)

where θ denotes the angular displacement between two k-space lines, $g_{x,y}(\theta)$ is the g-factor calculation [7] at voxel (x, y) in an image with N pixels.

Experimental validation

The 4-channel RRFCA was used to scan two subjects, A and B, at 6 angular positions (0°, 10°, 22°, 45°, 55°, and 67° in Fig. 1). These data were firstly combined to simulate an 8-channel RRFCA (for reasons described previously). To test the proposed algorithm in an intra-subject case, images of subject A were acquired at two slices with 12 mm spacing. Sensitivity maps of one slice were used as the library. In the inter-subject case, sensitivity maps of subject A were used as the library to estimate sensitivity maps of subject B. The image registration techniques were then applied to both datasets for the estimation of the rotational sensitivity profiles at desired positions.

To study the rotating coil array in the reception mode independently without the complication from changing transmission profiles, a 4-element RRFCA was used as a receive-only coil array [14]. An additional transmit coil array was built to provide an unchanged and relatively uniform transmission. The experimental setup is shown in Fig. 3 (b) with one healthy volunteer on a whole-body 7T MRI scanner (Magnetom...
7T MRI, Siemens Medical Solutions, Erlangen, Germany). All imaging protocols were approved by institutional review board of Institute of Biophysics of Chinese Academy of Sciences (Beijing), and signed consent forms were collected. Small-flip-angle (FA = 30°) GRE images of two slices were acquired with TE/TR = 4/1000 ms (in plane voxel size = 2mm × 2mm).

The RRFCA system consisted of three layers. The stationary inner layer was isolated from the rotating coils and provided support to a patient’s head. The receive coils were attached to a rotatable middle layer and the transmit coils were attached to a stationary outer layer. The radius of the inner layer was set to 125 mm to comfortably accommodate the human head. As shown in Fig. 3 (a) and (c), the transmit coil array consisted of eight loop coils, each of which was 160 mm in length and 130 mm in width. They were attached equidistantly to a coil former. A capacitance decoupling method was used to keep the coupling at a reasonably low level of -12dB ~ -14dB when loaded. To reduce the interaction and parasitic capacitance between the transmit and receive coils, besides employing active detuning circuits, a transmit coil former with a large radius should be used. However, in order to minimise the signal drop caused by the increased distance and to guarantee consistent rotation, the radius of the middle layer was set to 140 mm to provide a 15 mm separation from the inner layer. (Fig. 3 (a), \(\phi_{\text{transmit}} \): 400mm, \(\phi_{\text{receive}} \): 280mm).

An extended shaft [14] was used to adjust the rotation angle outside of the MRI tunnel without repositioning the coil-subject set for acquisition at each angular (stepping) position. However, unlike the experiment setup using phantoms [14], the rotation indicator and the extended shaft were installed at the rear of the magnet bore (Fig. 3(b)) to allow enough space for the patient.

(Fig. 3)

RESULTS

Figs. 4 (a) and (b) show the gradient recalled echo (GRE) images of two slices from subject A. The GRE image of subject B (same slice location as Fig. 4(b)) is shown in Fig. 4 (c). Their corresponding sensitivity maps are shown in (d), (e) and (f). Since there is a large difference in head size and thus in global dielectric properties
between subjects, large sensitivity variations are found even at the same slice location. As seen from Figs. 4(a) and (b), the anatomical structure and dielectric property of the two slices (subject A) from one subject are very different, but their sensitivity maps have minor changes shown in Figs. 4(d) and (e). This correlates with the observation that the sensitivity is more related to global dielectric changes rather than local changes.

(Fig.4)

The raw magnitude and phase maps of sensitivity derived from Eq. (1) are shown in Figs.5 (a) and (c), respectively. As predicted, coil sensitivity maps should be smooth with a small local gradient. However, in Figs.5 (b) and (d), we can see that the coil sensitivity maps had abrupt changes which were associated with high gradients (marked as red dots). Magnified regions in the red boxes show the singular values. In addition, the phase map in Fig. 5 (c) also exhibits the phase wrapping at the skin/air and the skull/tissue interface.

(Fig. 5)

With the developed multi-level fitting algorithm, both the magnitude and phase images were smooth with the singular values corrected. In Fig.6 (a), the signal voids were also extrapolated for image registration purposes. Compared to Figs. 5 (b) and (d), the high gradient and undulating errors were corrected. Both the magnitude and phase plots of sensitivity were smooth and natural.

(Fig.6)

The experimentally acquired and numerically estimated sensitivity maps for the intra-subject case are compared in Fig.7. With a 10° angular displacement (p2 in Fig.7 (a)), the estimated magnitude maps in the second row of Fig.7 (a) were very similar to the measured sensitivity maps in the first row. Both the global features and the local details were estimated accurately. Estimated phase maps in the fourth row only showed small local variations compared to the acquired maps. Combining the magnitude and phase plots into a complex-numbered sensitivity, the root-mean-square error (RMSE) of the estimated sensitivity is 0.048. In Fig. 7(b), the angular
displacement increased to 22° (position 3), which was also the largest displacement for the rotational sensitivity estimation under the current configuration. From the comparisons between the estimated and measured sensitivity maps in Fig. 7(b), we note that the minor local discrepancies started to present, although the global features of sensitivity maps were well captured by the registration based algorithm. The RMSE increased to 0.068 at p3, which suggested a slightly decreased accuracy of estimating sensitivity with a larger angular displacement.

(Fig. 8)

For the inter-subject case, the experimentally acquired and numerically estimated sensitivity maps at position 2 (p2 in Fig. 8 (a)) and position 3 (p3 in Fig. 8 (b)) are compared in Fig. 8. The female subject had a noticeably smaller head than that of the male subject, therefore the sensitivity maps of two subjects have more differences compared to the intra-subject case. However, as shown in Fig. 8 (a), the registration based algorithm was able to estimate the magnitude and phase maps of sensitivity accurately, both globally and locally. The RMSE was 0.054, which is slightly higher than that of the same position in the intra-subject case (RMSE = 0.048). Different from the intra-subject case, the RMSE reduced to 0.045 when the angle was then increased to 22° for position 3.

(Fig. 9)

To illustrate the imaging acceleration and reconstruction ability of the RRFCA, the g-maps, image reconstruction and the SNR maps are shown in Fig. 9 when the reduction factor was four (R = 4). The measurements with 4-element RRFCA sampled at two angular positions (position 1: 0°+45°) were used together to emulate an 8-element stationary coil array. In the first and second rows, results reconstructed from the experimental data for 4- and 8-element stationary arrays are shown, respectively. However, the coil elements of the RRFCA are naturally decoupled (-18dB S_{xy}), which would be more difficult to realise with an 8-element coil array in the same size. Therefore the max g-factor in the second row may be higher than 1.7 and the averaged relative-SNR may be lower than 2.35 in practice.

Since the SNR is hard to calculate accurately for ultra high field MRI, the SNR maps in this work were calculated relative to that of a single rotating coil
without undersampling ($R = 1$). As we can see in Fig. 9, with a high reduction factor ($R = 4$), the 4-element stationary coil array has a very high g-factor ($\text{max-}g = 3.7$) and a 0.95 averaged relative-SNR, which correspond to a very noisy image with strong aliasing artifact. In contrast, under the rotating scheme of visiting 32 positions, the max g-factor (the fourth row) of 4-element RRFCA decreased to 1.6, which is comparable to the stationary coil array with twice as many elements (max $g = 1.7$) in the second row. The reconstructed image was better with lower RMSE and artifact power [45] ($\text{RMSE} = 0.023$, $\text{AP} = 0.0082$) compared to the 4-element stationary array ($\text{RMSE} = 0.039$, artifact power = 0.0231). However, fewer sensitivity profiles are available when visiting fewer angular positions, leading to higher g-factors and less capability in imaging acceleration. As shown in the third row, the maximum g-factor increased to 2.5 by only visiting six positions, and aliasing artifacts started to emerge in the reconstructed image. It is well known that the SNR is proportional to the square root of the number of channels [4, 46]. To provide a fair comparison, an 8-channel RRFCA was simulated by combining two sets of sensitivity profiles of the 4-channel RRFCA with a 45° rotation. The g-map, reconstructed images and the SNR maps were shown in the fifth row for such a coil array. Compared to the second row, we can see that with the same number of coils, not only is the relative-SNR of RRFCA (relative-SNR = 2.83) higher than that of the stationary array (relative-SNR = 2.35), but also the global SNR map is more uniform.

DISCUSSION

The library data

The library data was used to provide sensitivity maps at all angular degrees, and the registration algorithm was used to bridge the discrepancy between the library and actual sensitivity maps. Theoretically, the library data can be either experimentally measured or numerically calculated. The experimentally acquired sensitivity maps may be more realistic, but 3-dimensional maps can be time-consuming to obtain at multiple positions. Acquisition speed may be further restricted due to the potential heating problems for ultra high field MRI.

Commercially available electromagnetic (EM) software can be employed to calculate the sensitivity maps and avoid such problems. With different algorithms,
EM field distributions and related coil sensitivity can be calculated by solving Maxwell’s equations. The Method of Moments (MOM) [13, 18, 47-50], used for calculating the EM field, is efficient for homogeneous loads, but it is not feasible to calculate the heterogeneous dielectric loads due to the complexity of calculating the Green function [51]. The Finite Element Method (FEM) [52], discretising heterogeneous subjects into tetrahedral or hexahedral elements, is capable of representing complex heterogeneous subjects smoothly and providing a more accurate solution. However, the FEM requires very large computational resources for discretising the subjects and would have taken substantial amount of time to accurately evaluate B_1. The Finite-Difference Time-Domain (FDTD) method [53-59] has advantages over the FEM as it simplifies the discretisation into regular boxes, and the iterative solution saves on computational resources. Working in conjunction with a graphical processing unit (GPU), the calculation time can be dramatically reduced [60].

Transmit B_1^+

A signal intensity image is determined by both transmit profile B_1^+ and receive sensitivity B_1^- as illustrated in Eq. 7. At low field, the $|B_1^+|\sin(V \gamma \tau |B_1^+|)$ is uniform and thus can be excluded from the sensitivity encoding matrix in the SENSE reconstruction. However, to avoid the $|B_1^+|$ influence in the SENSE reconstruction at ultra high fields, the actual sensitivity map in the encoding matrix should be in the form of Eq. 8 [61].

$$SI = M_0 |B_1^-| \sin(V \gamma \tau |B_1^+|)$$

$$sensitivity_{actual} = \sin(V \gamma \tau |B_1^+|_{\text{slim}}) B_1^-$$

where γ is the gyromagnetic ratio and M_0 is proportional to the proton density distribution. τ and V denotes the RF pulse duration and coil driving voltage. The asterisk denotes the complex conjugate operation.

In this work, an 8-element coil array was manufactured and actively detuned to provide an unchanged B_1^+ in the course of rotation. However, the $|B_1^+|$ inevitably changed as the array rotated, which may have introduced a small bias into the
reconstruction when this changing field was not considered in the encoding matrix. To further improve the sensitivity encoding ability of the RRFCA and faithfully reconstruct the image, it may be advantageous to adopt a composite sensitivity concept [14]. Our future work will involve the development of the sensitivity estimation algorithm for the RRFCA working in transceive mode.

SNR calculation

As an important metric to quantitatively evaluate image quality, the SNR calculation for MRI has been extensively studied [4, 62-65]. At ultra high field (>3T), the SNR can be expressed as [62, 66]:

\[
SNR = \frac{V_{\text{signal}}}{V_{\text{noise}}} \propto \frac{B_0^2}{\text{Vol}} \int W \sin(\gamma r) |B_r| |B_z| \, dv
\]

(9)

where the integration is performed over the volume of interest (VOI) and W is a weighting factor related to tissue and sequence. The \(P_{\text{sample}}\) is the power dissipated in the sample, which is too complex to be efficiently calculated for rotating array coils at ultra high fields. Thus the relative SNR was reported. In this work, to simplify the comparison, the \(P_{\text{sample}}\) for different arrays were considered the same [67], since transmission power remained approximately the same for different arrays.

In parallel imaging, the reduced \(k\)-space data are recovered by employing the coil sensitivity profiles. However, the noise is inevitably amplified in the reconstruction process, especially with a high reduction factor. The SNR calculation when employing parallel imaging algorithms, such as SENSE, can be calculated as below [7], provided that the channel number does not change:

\[
\frac{SNR_{\text{pl}}}{SNR_{\text{full}}} = \frac{1}{g \sqrt{R}}
\]

(10)

where \(g\) and \(R\) denotes the \(g\)-map and reduction factor, respectively. The SNR is also proportional to the square root of the number of channels [4, 68]. In order to provide a fair SNR comparison, we simulated the 8-channel RRFCA by combining data obtained with a 45° separation.
RRFCA structure and data sampling

Coil geometry

Using a large number of RF coils can increase the SNR and significantly accelerate the imaging process [69-72]. However, placing a large number of coils in a constrained space will decrease the coil size, leading to a shallower B_1 penetration. Namely, the smaller coils receive less signal from the centre compared to larger coils. In addition, a coil array with higher density can increase the difficulty of decoupling. Coil coupling undermines the parallel imaging performance and reduces the SNR. By employing the rotating scheme, the RRFCA not only provides a large number of sensitivity profiles without additional RF channels, but also allows bigger coils to be used with less decoupling complexity.

Data sampling

The RRFCA is designed to sample one k-space line at each stepping position, and then move to the next angular position for the following sampling. In this preliminary in vivo study, the stepping angle was manually adjusted and a full k-space matrix was sampled at each angular position. The accelerated acquisition was numerically modelled by extracting and combining the corresponding k-space lines.

Rotating speed and acoustic noise

In this proof-of-concept work, the RRFCA was manually rotated to sample data at several angular positions in order to validate the proposed in vivo sensitivity estimation algorithm. In our previous works [10, 11], the rotating coil was pneumatically driven to achieve up to 870 rpm for human head imaging with negligible acoustic noise, compared with noise generated by the gradient system. For animal imaging, the rotating speed can easily exceed 10,000 rpm. Our recent experiments on a 9.4 T animal system have shown that the rotating coil can faithfully reconstruct the images at speeds of, or exceeding, 5500 rpm.

CONCLUSIONS

In this paper, an in vivo rotational sensitivity estimation algorithm for the RRFCA was proposed and verified using human head imaging. By taking advantage of registration and library data, the algorithm was able to estimate sensitivity maps
with arbitrary angular displacement. The estimated sensitivity maps were then fed into the rotating-SENSE algorithm to improve the imaging acceleration ability of the 4-element RRFCA. The 4-channel RRFCA outperformed the 4-element stationary array and was comparable to 8-element stationary PACs in terms of g-map and reconstruction quality. The 8-element RRFCA has been shown to significantly improve image quality compared to a stationary 8-element coil array. In the future, a sensitivity estimation algorithm for transceive RRFCA with “composite sensitivity” will be developed. By taking B_1^+ into account in sensitivity encoding, the imaging acceleration ability of the RRFCA can be further improved. Additionally, an automatic rotation control system for the RRFCA will be developed by means of, for example, a non-magnetic piezo-electric or ceramic motor.

Acknowledgements

This work was supported by Australian Research Council, the Ministry of Science and Technology of China Grant (2012CB825500), the Chinese National Major Scientific Equipment R&D Project (Grant No. ZDYZ2010-2), the National Nature Science Foundation of China grant (91132302) and the Chinese Academy of Sciences grants (XDB02010001, XDB02050001).

REFERENCES

Figure Captions

Figure 1 - The sensitivity profiles of the 4-element RRFCA were acquired at angular positions at 0°, 10°, 22°, 45°, 55° and 67°, denoted using red, yellow, green, dashed red, dashed yellow and dashed green. Sensitivity maps acquired at these positions were recombined as three positions for better registration performance: position 1 (0° + 45°), position 2 (10° + 55°), position 3 (22° + 67°).

Figure 2 - Flow chart of the registration based rotational sensitivity estimation.

Figure 3 - (a). Top view of the RRFCA setup. The outside layer is the stationary 8-element transmit coil array with 400 mm diameter, inner layer is the 4-element RRFCA with 280 mm diameter. (b). RRFCA system loaded with patient. [A] RRFCA system. [B] Patient. [C] Extended shaft pointing to rear of MRI. (c). Close-up of the RRFCA system. [D] Transmit coils made of copper patches attached to outside stationary former. [E] Receive coil attached to the internal rotatable former. [F] Detuning circuits on both transmit and receive coils.

Figure 4 - (a) and (b) are GRE images of two slices (12 mm separation) from subject A at position 1 (0°). (c) Image from subject B of the same slice position in (b) at position 1 (0°). Their corresponding sensitivity maps are shown in (d), (e) and (f) respectively.

Figure 5 - (a) and (c) are raw magnitude and phase plots of sensitivity. The areas in the red box are enlarged to show singular values. In (b) and (d), the red dots denote the singular values. Compared to adjacent areas, these spikes have higher gradients and are mostly seen at the interfaces. Besides singular values, undulating errors across the raw sensitivity profiles also need to be corrected for better registration efficiency.
Figure 6 - (a) magnitude (top row) and phase (bottom row) plots of refined sensitivity map at 0°. (b) 3D magnitude (top row) and phase (bottom row) plots of refined sensitivity map for single coil.

Figure 7 – Intra-subject case: comparisons between experimentally measured and numerically estimated sensitivity maps at position 2 (p2 in (a)) and position 3 (p3 in (b)). First row, experimentally acquired magnitude maps at p2; second row, numerically estimated magnitude maps at p2; third row: experimentally acquired phase maps at p3; fourth row, numerically estimated phase maps at p3.

Figure 8 - Inter-subject case: comparisons between experimentally measured and numerically estimated sensitivity maps at position 2 (p2 in (a)) and position 3 (p3 in (b)). First row, experimentally acquired magnitude maps at p2; second row, numerically estimated magnitude maps at p2; third row: experimentally acquired phase maps at p3; fourth row, numerically estimated phase maps at p3.

Figure 9 - g-map, image reconstruction and relative-SNR map comparisons between 4- and 8-element stationary coil array (first and second rows), RRFCA visiting 6 positions (third rows), 4- and 8-element RRFCA visiting 32 positions (fourth and fifth rows). Left column, g-map comparisons; middle column, image reconstruction comparisons; right column, relative-SNR map comparisons. All SNR calculations were relative to that of a single rotating coil without undersampling (SNR = 1).
position 1 = 0° + 45°
position 2 = 10° + 55°
position 3 = 22° + 67°
0 degree

magnitude of sensitivity

phase of sensitivity
Imaging performance comparisons at reduction factor 4 (R = 4)

<table>
<thead>
<tr>
<th>Coils</th>
<th>g-map</th>
<th>Reconstruction</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-coil stationary</td>
<td>max g = 3.7</td>
<td>relative-SNR = 0.95</td>
<td></td>
</tr>
<tr>
<td>8-coil stationary</td>
<td>max g = 1.7</td>
<td>relative-SNR = 2.35</td>
<td></td>
</tr>
<tr>
<td>RRFCA 6 positions</td>
<td>max g = 2.5</td>
<td>relative-SNR = 1.02</td>
<td></td>
</tr>
<tr>
<td>4-element RRFCA 32 positions</td>
<td>max g = 1.6</td>
<td>relative-SNR = 1.30</td>
<td></td>
</tr>
<tr>
<td>8-element RRFCA 32 positions</td>
<td>max g = 1.35</td>
<td>relative-SNR = 2.83</td>
<td></td>
</tr>
</tbody>
</table>
Graphical abstract
Highlights

The in vivo imaging feasibility of rotating RF coil array (RRFCA) was investigated.

A registration based sensitivity estimation algorithm was developed.

The in vivo sensitivity maps at other angular positions can be well estimated.

The RRFCA had better imaging acceleration performance compared to stationary coils.

The RRFCA exhibits a higher SNR and fewer artefacts than that of stationary coils.