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Preface 

Our understanding of the genetic basis of disease has evolved from descriptions of 

overall heritability or familiality to identifying large numbers of risk loci. One can quantify 

the impact of such loci on disease using a plethora of measures, which can guide 

decisions on new experiments, for example, whether to focus on the biology of identified 

variants or put more effort into discovering novel variants. However, different measures 

can attribute varying degrees of importance to a variant. We consider and contrast the 

most commonly used measures, specifically the heritability of disease liability, 

approximate heritability, sibling recurrence risk, overall genetic variance using a log 

relative risk scale, the area under the receiver-operating curve for risk prediction, and 

the population attributable fraction, and give guidelines for their use that should be 

explicitly considered when assessing the contribution of genetic variants to disease. 
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Introduction 

A rapidly growing number of genetic loci have been detected for disease and other 

traits. These include high-risk Mendelian loci from next-generation sequencing studies 

and many highly replicated low penetrance variants from genome-wide association 

studies (GWAS).1,2 Two important questions that follow are to what degree do such loci 

and variants impact the overall burden of disease, and how many variants remain to be 

discovered.3 This can be assessed using a number of measures, many of which have 

been developed with different goals and within traditionally disparate fields—such as 

quantitative genetics and epidemiology—whose boundaries are now blurring in the 

post-genomics era (Figure 1). The quantitative genetics approach calculates measures 

such as heritability of disease liability or sibling recurrence risk explained by genetic 

variants. A more epidemiologic or translational approach might assess their impact on 

the overall genetic variance (using a log relative risk (logRR) scale), the area under 

the receiver-operating curve (AUC) for risk prediction, or the population attributable 

fraction (PAF).4-6 

Each of these measures can be calculated as a proportion to quantify how much of the 

underlying genetic basis of disease is explained by known risk loci. The heritability 

explained is most commonly calculated as the proportion of variance in disease 

explained by risk loci relative to the overall heritability.5,7 The proportion of the sibling 

recurrence or the logRR genetic variance explained by the loci provides a similar 

measure of their impact on disease. The AUC indicates how well known risk loci classify 

diseased individuals; dividing this measure by the maximum attainable AUC for a 

genetic risk predictor calculated from the heritability quantifies the proportion of 

maximum AUC explained.4 Finally, the PAF approximates the proportion by which 

disease incidence or death would be reduced in a population in the absence of the 

identified genetic risk factors. 

While all these measures are valid and have the same bounds (ranging from 0 to 

100%), for a given dataset they may give different messages about the impact of risk 

variants on disease. This has resulted in contrasting and confusing use of these 

measures in the literature. For example, the same association results for the Crohn’s 
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disease variants in NOD2 are reported to explain between 1-2% of heritability8, 5.1% of 

genetic risk9 and 18.2% of the PAF.9 In other words, the apparent proportion of disease 

‘explained’ by risk variants can vary widely across measures, so which measure one 

uses can result in very different interpretations among geneticists and epidemiologists. 

Here, we compare six measures used to assess how much of the genetic basis of 

disease is explained by risk variants to understand their similarities and differences. We 

estimate the heritability of liability, approximate heritability, sibling recurrence risk, 

logRR genetic variance, AUC and PAF explained across a range of risk allele 

frequencies and relative risks via empirical calculations and application to data from 

studies of breast cancer, Crohn’s disease, rheumatoid arthritis and schizophrenia. We 

describe the interrelationships among these measures and give guidance for their 

appropriate calculation and interpretation when assessing the overall impact of genetic 

contributions to disease. Finally, we provide an online tool to calculate these measures 

from association study summary statistics: risk allele frequency and relative risks. 

 

Measures of genetic impact for individual risk loci 

 

Scale matters! A key difference between the measures considered here is the scale on 

which they are measured (Box 1, Table 1). Assessing the contribution of individual loci 

to disease risk on the observed (binary) scale is not very informative as the relationship 

between increasing burden of risk loci and probability of disease is highly non-linear.10,11 

Therefore, transformations are made to more informative scales, such as the liability of 

risk scale or the log-risk scale. Quantitative geneticists commonly use the liability scale 

to evaluate the genetic basis underlying disease variability in a population.12 By 

contrast, epidemiologists more often use log relative risk models for estimation of 

genetic effects on disease. As shown below, these different perspectives, ensuing 

model choices, and calculated measures can ultimately affect inferences and 

conclusions. That is, the measure of an apparent contribution made by a given locus 

can depend on the ruler.  

 

Proportion of heritability explained. Using the methods and notation in Table 1 and 
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Box 1, we can estimate the proportion of phenotypic variance on the liability scale 

explained by risk variant i as h2
L[i] =VAL[i] / VPL = VAL[i] / (VGL[i] + 1),13,14 where h2

L[i] is the 

heritability explained, V*L[i] is the additive (*=A), phenotype (*=P), genetic (*=G) 

variance. On this scale we only consider the additive contribution from the locus (VAL[i]), 

which allows for comparison with existing estimates of heritability of liability derived from 

family data (h2
L).

13,15,1613,15,16 Furthermore, under the assumption of a small relative risk 

(RR) for variant B (i.e., RRBb is close to 1) and a multiplicative model on the observed 

scale (i.e., RRBb
2 = RRBB), an approximate heritability is given by h2

L-approx[i] = 2p(1-

p)(RRBb-1)2/v2, where p is the frequency of risk allele B.18,21,22 Here v is the mean liability 

of diseased individuals, approximated as z/K where z is the height of the standard 

normal distribution at the threshold T that truncates the proportion K, T= Φ-1(1-K) (i.e., 

the overall disease risk; Box 1). Then h2
L[i] / h2

L (or h2
L-approx[i] / h2

L) estimates the 

proportion of total heritability explained by the ith risk variant. 

     

Sibling recurrence risk explained. The impact of a risk variant can also be quantified 

relative to the overall sibling recurrence risk (S)9. Siblings share VAO/2 + VDO/4 of risk17, 

where VAO and VDO are the additive and dominance genetic variance on the observed 

risk scale. Thus, the increased risk attributable to the ith risk variant is  

𝜆𝑆[𝑖] = 1 +
𝑉𝐴𝑂[𝑖]

2
⁄ +

𝑉𝐷𝑂[𝑖]
4
⁄

𝐾2
. From Table 1 we can estimate VAO[i] = k2

bb2*p(1-p)(p*(RRBB-

RRBb)+(1-p)*(RRBb-1))2, and VDO[i] = k2
bbp

2(1-p)2(RRBB+1-2*RRBb)
2. The ratio of s[i] to S 

indicates the impact of a variant on the sibling recurrence risk, where S is generally 

obtained from published estimates. However, s[i] / S can give nonsensical values 

under the null hypothesis. When s[i] =1 the ratio incorrectly suggests that the ith variant 

contributes to the genetic risk, and when S =1 the ratio equals 1. Instead, the ratio of 

logarithms (log(s[i]) / log(S)) has been proposed9. Here, when s[i]=1 the ratio of logs 

appropriately indicates no contribution of the ith genetic variant to risk. And the ratio of 

logs gives values more uniformly distributed across the range of (0,1). Of course, 

shifting scales results in a quantitatively different measure.  

 

Genetic variance on log relative risk scale. From a more epidemiological 
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perspective, one can calculate the contribution of a risk variant to overall genetic 

variation on the logRR scale. From Table 1, the genetic variance attributable to the ith 

risk variant on the logRR scale is 

𝑉𝐺𝑙𝑜𝑔[𝑖] = (1 − 𝑝)2M2 + 2𝑝(1 − 𝑝)(log(𝑅𝑅𝐵𝑏) − M)2 + 𝑝2(log(𝑅𝑅𝐵𝐵) − M)2 , where M is 

the mean value of log relative risk, M= 2p(1-p) log(RRBb) + p2 log(RRBB). Assuming a 

multiplicative model this simplifies to 𝑉𝐺𝑙𝑜𝑔[𝑖] = 2𝑝(1 − 𝑝)log(𝑅𝑅𝐵𝑏)
2 . For a polygenic 

disease with numerous risk alleles, the distribution of logRR in the population tends 

towards normal with variance VGlog. Thus, the fraction of the genetic risk explained by a 

single allele is given by VGlog[i] / VGlog. In practice VGlog is assumed to approximately 

equal 2log(𝜆𝑠).
18-20 Note that VGlog should not be estimated as log(𝜆𝑀𝑍)—the recurrence 

risk to monozygotic twins—because 𝜆𝑀𝑍 ≈ 𝜆𝑠
2 is an asymptotic result that only holds for 

diseases of high prevalence (e.g., K > 0.1) and low heritability,21 and otherwise can give 

nonsensical results. 

 

Proportion of area under the curve. We can also determine how much of the 

maximum possible AUC attainable with a risk prediction model based on all genetic 

information is explained by the ith risk variant. We can first estimate the AUC for the ith 

variant using the variance it explains the liability scale (h2
L[i])

4 

𝐴𝑈𝐶𝐿[𝑖] = Φ(
(𝑥−𝑣)ℎ𝐿[𝑖]

2

√ℎ𝐿[𝑖]
2 (1−ℎ𝐿[𝑖]

2 𝑥(𝑥−𝑇)+1−ℎ𝐿[𝑖]
2 𝑣(𝑣−𝑇))

) , where x = -z/K, T is the population 

threshold and v = -x * K(1-K) (as described above and in Box 1).13 Next, we determine 

the maximum attainable AUC by substituting into the above equation the overall 

heritability h2
L (for example, estimated from twin studies)4. While the AUC upper bound 

is 1.0, the AUC attainable with genetic factors will generally be lower. Then, we can 

estimate the proportion of the max AUC explained by the risk variants as the 

proportional AUC, pAUC = [(AUCL[i]-0.5) / (AUCMax-0.5)]2. We square this measure 

because it is related to the square root of heritability, allowing comparisons with other 

measures that are visually more intuitive to interpret. This measure will generally range 

from 0 (AUC=0.5) to 1 (AUC=1). 
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Population attributable fraction. The PAF assesses how much disease can be 

‘attributed’ to a genetic risk variant. This is commonly used to approximate the public 

health implications of modifying or removing an exposure. While we cannot currently 

intervene to remove or nullify risk variants, genetic PAFs are often used to estimate how 

much disease can be attributed to the risk variants. We can calculate this from the ratio 

of the disease due to a risk variant (that is, subtracting off the baseline risk) divided by 

the overall risk, 

𝑃𝐴𝐹 =
𝐾−𝑘𝑏𝑏

𝐾
= 1 −

𝑘𝑏𝑏

𝐾
. 

From Box 1, 𝑘𝑏𝑏 =
𝐾

((1−𝑝)2+2𝑝(1−𝑝)𝑅𝑅𝐵𝑏+𝑝
2𝑅𝑅𝐵𝐵)

, so 

𝑃𝐴𝐹 = 1 −
1

(1−𝑝)2+2𝑝(1−𝑝)𝑅𝑅𝐵𝑏+𝑝
2𝑅𝑅𝐵𝐵

=
2𝑝(1−𝑝)(𝑅𝑅𝐵𝑏−1)+𝑝

2(𝑅𝑅𝐵𝐵−1)

1+2𝑝(1−𝑝)(𝑅𝑅𝐵𝑏−1)+𝑝
2(𝑅𝑅𝐵𝐵−1)

. 

These equations highlight that the PAF is the effect of ‘removing’ the genetic risk variant 

on the overall risk of disease. Note that previous work gives an incorrect equation for 

the PAF19. 

 

Comparison of measures for single variants 

We first evaluated how the above measures assess the impact of a single genetic 

variant on disease. Specifically, we calculated the measures across a range of risk 

allele frequencies (RAFs) and genetic relative risks (RRs) for carrying one additional 

risk allele. We assume an overall disease risk in the population of 0.01 and a sibling 

recurrence risk of 5—which are consistent with an overall genetic heritability on the 

liability scale of 55%—and a multiplicative model of genotype RRs. Note that we 

present calculations for PAF separately because it generally gives estimates an order of 

magnitude larger than the other measures. The proportion of genetic risk explained by 

all measures is similar and quite limited for variants that are less common and/or have 

modest effects on disease (Figure 2). However, these measures diverge as the RAF 

increases—up to a point—and as the RRs increase. The conventional heritability 

estimate always suggests one of the smallest impacts of the genetic variants on 

disease, irrespective of RAF and RR (Figure 2, red line). Similar values are given by 

the approximate heritability when RR < 1.5, but this increasingly overestimates the 

heritability as the RR increases, as expected from its derivation. The sibling recurrence 
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risk explained suggests the largest contribution of the genetic variants to disease when 

RAF ≤ 0.25, but then a smaller amount for larger RAF (Figure 2, green line). An 

opposite trend is seen for the logRR genetic variance explained, which is lower than the 

sibling recurrence risk when RAF < 0.25 and then larger for more common risk variants. 

Finally, the pAUC consistently indicates one of the highest estimates of genetic basis of 

disease explained (Figure 2, orange line). While these differences may seem slight, 

they are only so for individual variants. Aggregated across numerous risk variants, 

substantially larger differences in the measures become apparent, as shown in the 

following applications. 

 

Contribution of multiple risk loci to disease 

To determine the contribution of multiple risk loci to disease from summary statistics, 

the methods for individual loci can be aggregated if they are independent. Specifically, 

for heritability on the liability scale, approximate heritability, sibling relative risk, and 

logRR genetic variance, an aggregate score is calculated from the sum of the 

contributions calculated for each locus. Similarly, the aggregate heritability of liability is 

used to calculate AUC. To calculate the PAF due to multiple risk variants, one cannot 

simply add together the single variant PAFs because this ignores the fact that most 

individuals will carry multiple risk alleles. In fact, summing single variant PAFs can 

quickly give an overall PAF > 100%. Instead, we can calculate a joint PAF across 

multiple variants, which restricts the total PAF due to all risk variants ≤ 100%. 

Specifically, if we assume that the risk variants are independent of each other and that 

their combined effects on disease are multiplicative, a joint estimate of PAF is given by 

𝑃𝐴𝐹𝑇𝑜𝑡𝑎𝑙 = 1 −∏ (1 − 𝑃𝐴𝐹𝑖𝑖 ). 

 

Application to complex diseases 

To further explore how these measures can imply different impacts of genetic variants 

on disease, we calculate them across studies of breast cancer, Crohn’s disease, 

rheumatoid arthritis, and schizophrenia. We selected these diseases because they have 

been well studied to date and have a range of underlying genetic architectures. For 

each disease, we selected those loci previously reported in the literature as 
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independently associated with disease, and identified the reported risk allele, its 

frequency, and its relative risk—estimated by the odds ratio. More specifically, for breast 

cancer the loci were obtained from the NHGRI catalog 

(http://www.genome.gov/gwastudies), and for the other three diseases we used the 

SNPs that were reported and selected as independent by the corresponding 

publications. While the criteria for SNP selection varies depending on the publications 

and ongoing work continues to discover novel loci for these traits, the SNPs considered 

here provide a sufficient view of the differences in the measures and including additional 

SNPs should not materially affect our findings. 

 

Breast cancer 

GWAS have detected a relatively large number of low-risk, common variants for breast 

cancer (http://www.genome.gov/gwastudies). We evaluate here 65 SNPs that appear 

independently associated with breast cancer using a linkage disequilibrium filter of r2 

< 0.2 among Europeans within 100kb of the most associated SNP. Based on the 

literature we assume that the baseline disease risk = 12% and the sibling recurrence 

risk (S) = 2.022; these are consistent with heritability of liability = 60%. Benchmarked 

against these values, almost all of the risk variants individually explain less than 0.5% of 

the total variation in heritability, sibling recurrence risk, logRR genetic variance, and 

pAUC (Figure 3a, Table 2, Supplemental Table 1). As expected, the variants with 

larger effects on breast cancer (1.3 < RR ≤ 2) explain a larger proportion of these 

measures (Figure 3a, blue lines). The breast cancer approximate heritability and 

heritability explained are lower than the other measures, and the sibling recurrence risk 

is the largest—in agreement with our empirical calculations. All breast cancer variants 

combined are estimated to explain: 13% of the approximate heritability; 18% of 

heritability; 19% of the AUC; 21% of the logRR genetic variance; and 22% of the sibling 

recurrence risk (Figure 3a, Table 2). The similarity among the latter four measures 

reflects the uniformly low penetrance and high frequency across the risk variants. 

Moreover, the relatively high proportion of these measures explained reflects the high 

baseline risk but modest sibling relative risk for breast cancer in the population. 

 

http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies
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Crohn’s disease 

At least 140 modest—and three additional high-risk—variants have been reported as 

independently associated with Crohn’s disease.23 We assume that the baseline risk of 

Crohn’s = 0.5%, the sibling recurrence risk = 10.3, and the heritability of liability = 72% 

24. For the low risk, common variants similar patterns are observed as with breast 

cancer: heritability < logRR genetic variance < sibling recurrence risk (Figure 3b, Table 

2, Supplemental Table 2). For the high-risk variants (2<RR<15), however, there is 

more variation in these measures, reflecting different combinations of RRs and RAFs 

(Figure 3b, red lines). Specifically, the common allele of rs11209026—which is the wild-

type allele corresponding to the uncommon IL23R coding variant protective for 

Crohn’s—has a relatively large effect (RR=2.4) but is extremely common (RAF=0.93), a 

combination that explains the most individual heritability (1.4%) but lower sibling 

recurrence risk (0.97%) (Table 2). In contrast, rs5743293 has an even larger effect 

(RR=3.07) but is less common (RAF=0.02) so it explains slightly less heritability (1.1%) 

but substantially higher sibling recurrence risk (4.0%) (Table 2). Taken together, the 

143 Crohn’s risk variants account for approximately 16.4% of the heritability, but explain 

a larger proportion of the sibling recurrence risk (25%), and an even larger proportion of 

the AUC (34%) (Figure 3b, Table 2). The higher pAUC estimates across all of the risk 

variants reflect in part the low baseline risk of disease (0.5%). 

 

Rheumatoid arthritis (RA) 

Here we evaluate 36 risk variants reported as being independently associated with RA, 

and assume a disease risk = 1% and sibling recurrence risk = 6.0, which together are 

consistent with heritability of liability of 63%.16 Even with so few risk variants we observe 

a similar proportion of disease explained as for Crohn’s (Figure 3c, Supplemental 

Table 3). This is due to the substantial impact of a single variant on all of the measures: 

rs6910071 at the HLA-DRB1E locus (Figure 3c, red line). This variant has a large effect 

on RA (RR=2.88) and is common (RAF=0.22), so it accounts for an estimated 8% of the 

heritability, 16% of sibling recurrence risk, 11% of logRR genetic variance, and 14% of 

the AUC (Table 2). The two-fold range between heritability and sibling recurrence risk 

leads to a substantial difference in the overall measures of genetic variation explained: 
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15% of heritability but 25% of sibling recurrence risk. Thus, single common variants of 

large effect can result in different estimates across these measures. We note that the 

latest GWAS for RA reports 101 associated loci25. 

 

Schizophrenia 

Here we consider 24 GWAS risk variants reported for schizophrenia.26,27. We also 

consider eight rare copy number variants (CNV) that substantially increase risk of this 

disease (Figure 3d, Supplemental Table 4).28-30 Here we benchmark using baseline 

disease risk = 1%, sibling recurrence risk = 8.8, together consistent with heritability of 

liability of 81%.31 As above, the common low risk variants explain a small percentage of 

the measures evaluated here (Figure 3d—green lines). By contrast, the CNVs give 

extremely different results across these measures (Figure 3d, red and black lines). This 

is especially apparent for the CNVs at 16p11.2 and 22q11, which both are rare 

(RAF=0.0003) and have very large effects on schizophrenia (RRs>25). Due to their 

rarity these explain a modest proportion of heritability, genetic variance, and AUC 

(<0.5%); but their large impact on disease results in much higher proportions of 

approximate heritability (>5%) and sibling recurrence risk (>7.5%) (Figure 3d, Table 2). 

Thus, when looking at all 32 schizophrenia variants (24 GWAS and 8 CNVs), estimates 

of the heritability, sibling recurrence risk, logRR genetic variance, and AUC explained 

give very different messages about the variants’ impact on this disease. While the 

variants explain only 2.5-3% of heritability or logRR genetic variance, and 5% of AUC, 

they are estimated to account for up to five times as much of the approximate heritability 

and ten times as much of the sibling recurrence risk (Figure 2d, Table 2). The large 

increase for the approximate heritability was expected as this measure departs from 

heritability for large RRs. But it was somewhat surprising to see such a large departure 

between the sibling recurrence risk and logRR genetic variance explained. Although the 

sibling recurrence risk is generally always larger than the logRR genetic variance, the 

rarity and extremely large effects for the CNVs results in these two seemingly similar 

measures giving drastically different results. 

 

Population attributable fraction: a problematic measure 
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The PAF can also be used to assess the impact of genetic factors on disease, but this 

measure has a number of limitations.32 The PAF estimates how much disease might be 

reduced if a risk factor was removed from a population. In our empirical comparisons, 

the PAF generally gave estimates an order of magnitude larger than the other measures 

even when the RAF=0.01 and the RR is low. As the RAF increases beyond 0.50, the 

PAF is the one measure that continues to increase since it directly depends on the RAF. 

Even for a single variant, as the RAF and RR increase, the PAF can approach the 

upper bound of 100%. For example, in our breast cancer application a variant 

(rs10771399) with a large RAF (0.90) but a modest impact on disease (RR=1.20) has a 

very large PAF (28%) (Table 2). Similarly, if a rare genetic variant is protective for 

disease, the other (extremely common) allele can give a very large PAF. For example, 

the protective IL23R coding variant (rs11209026) for Crohn’s (minor allele 

frequency=0.07%, RR=0.42)23 yields a PAF of an astonishing 81% (i.e., for the risk 

allele, RAF = 0.93, RR=1/0.42=2.37) (Table 2). By contrast, our schizophrenia 

application shows how a rare variant (CNV at 16p11.2, RAF = 0.0003) with an 

enormous effect size (RR=26.0) can have a relatively small PAF (=1.4%) (Table 2). 

Looking at all of the risk variants combined, the PAF for the four diseases are all > 90% 

(and 100% with just half of the Crohn’s disease risk variants) (Table 2, Supplemental 

Tables 1-4). 

The combined PAF also exhibits a computational anomaly: the apparent impact of each 

additional risk variant depends on which variants have already been incorporated into 

this measure. For example, assume that there are two genetic variants for a disease, 

and each has an individual PAF of 0.50, and a corresponding combined PAF of 0.75 

(=1-(1-0.5)2). An intervention that eliminates the effect of a risk variant at any one of 

these risk loci would decrease the incidence of disease in the population by half. An 

intervention at the second locus would further reduce the disease incidence by half in 

the remaining population, or by a quarter in the original population. The order in which 

the exposure is removed will impact the magnitude of its apparent effect on the 

combined PAF. In other words, the apparent impact of a given risk variant on the 

combined PAF depends on what has already been discovered. Novel variants from less 

versus more well studied traits will appear to have a larger effect, even if the risk 
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variants have the same magnitude of association and risk allele frequency. Moreover, 

the combined PAF for multiple low penetrance risk SNPs is not analogous to that 

obtained by removing a single high-risk environmental exposure from a population, such 

as reducing smoking to lower rates of lung cancer. The difference here depends not 

only on the number of risk factors, but also on their penetrance and prevalence, as well 

as their potential for modification or therapeutic intervention. As the number of known 

risk loci continues to increase—many of which are quite common—essentially everyone 

in the population will carry a number of risk alleles. Then any preventative treatment 

directed at countering the risk loci would have to be applied to almost the entire 

population.  

 

Measures depend on the baseline disease risk 

Of the measures evaluated here, heritability depends on the baseline disease risk (K). 

In practice, pAUC may be directly estimated, but here it is calculated from the heritability 

of liability, which is calculated from the reported risk allele frequency and RR and hence 

also depends on K. For a given RR, these both increase with increasing K as the RR is 

expressed relative to the risk in the wild type homozygote, which depends on K. The 

proportion of heritability and pAUC explained is actually lower with increasing K, and so 

these depend on the value assumed for K. By contrast, the sibling recurrence risk, 

logRR genetic variance, and PAF do not depend upon K, which is an advantage of 

these measures since defining K is not always straightforward. Nevertheless, the 

possible range in K—which can be determined from the literature—will generally be 

quite small for most diseases. For example, for breast cancer K ranges from 10-15%, 

for Crohn’s Disease 0.3-0.5%, for RA 1% to 3.6%, and for schizophrenia 0.5-1%. Such 

ranges may have limited impact on the proportion of heritability and AUC explained, 

which would thus be relatively robust to misspecification of K. We note that, although 

sibling recurrence risk, logRR genetic variance, and PAF do not appear to depend on K, 

there is a built-in assumption that the baseline disease risk is the same in the family 

data used to calculate sibling risk as in the population used to calculate the contribution 

to risk from an individual variant, since any relative risk is expressed relative to a 

baseline. Violation of this assumption may generate misleading results. 
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To complicate matters further, there is some confusion in the literature about the 

definition of the baseline risk, reflecting in part the merging of disciplines. Falconer 

defines K as the incidence of a binary trait12 “or, in the context of human disease, the 

prevalence”13. Both incidence (i.e., the rate at which new cases occur in a time period) 

and prevalence (i.e., the proportion of the population that is affected by a disease at any 

one time) have very precise meanings in epidemiology. In fact, the relevant benchmark 

for calculation of heritability of liability is the lifetime morbid risk (LMR), the lifetime 

probability of being affected or lifetime incidence. Most likely the confusion arises 

because in the context of idealized populations germane to logical thinking in 

quantitative genetics theory, the parameters prevalence and LMR would be the same. 

In practice they can be very different. For example, schizophrenia is a disorder with a 

relatively early age of onset and long average mean life expectancy after diagnosis 

(although reduced compared to the general population) and so annual incidence, 

prevalence, and lifetime morbid risk differ considerably at 2.5, 46, and 72 per 10,000, 

respectively33. As another example, consider motor neuron disease, for which the 

median age at onset is ~60 years and life expectancy is only 2-5 years. Here, estimates 

of incidence, prevalence, and lifetime morbid risk of are 0.3, 0.6, and 25 per 10,000, 

respectively34. For less common disorders, the assessment of LMR (or prevalence or 

incidence) and risk to relatives are associated with considerable sampling variance, and 

estimates of heritability of liability and sibling relative risk can vary substantially between 

studies. Finally, in addition to the baseline disease risk, study design and time-

dependent effects could also affect the measures considered here. 

 

Focus on the mean or variance? 

Another important point to consider when contrasting the different measures is whether 

emphasis should be placed on assessing the effect of variants on the mean risk in a 

population or the genetic variation. Under a simple additive model, the effect on the 

mean and variance are 2pa and 2p(1-p)a2, respectively (see Table 1, assuming d=0). 

So a variant at or near fixation (p close to one) can have a relatively large effect on the 

mean and no effect on variation. Thus, for a given effect size, ‘intervening’ on more 

common variants may help reduce disease regardless of how much variance is 
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explained. Nevertheless, if there are many risk variants for disease it will be effectively 

impossible to remove or affect all of them to decrease risk. In this case it does not make 

sense to use measures (e.g., PAF) that focus on the mean. Instead, we recommend 

using measures that help understand and explain variation around the mean, which is a 

key component of genetic risk prediction. 

 

Extensions and additional measures 

Our focus is on measures for a limited number of variants, in which we extend the one-

locus methods to multiple loci under the assumption of independence among risk 

variants. Hence, usually the most associated locus from a region is used. Necessarily, 

this requires some arbitrary threshold on linkage disequilibrium which becomes 

increasingly unsatisfactory as more associated loci are identified. To overcome this, 

associated loci can be fit together in a regression analysis and the variance explained 

accounting for the interdependence between loci can be estimated. If the sample for 

discovery of the associated loci is used, then there may be some inflation of variance 

explained compared to if the contribution was estimated from an independent sample 

drawn from the same population. Genomic risk profile scoring15,35 is one strategy used 

to test the efficacy of associated SNPs identified in one sample for the contribution to 

variance in another sample. Briefly, risk alleles and their effect sizes identified by a 

GWAS conducted in a discovery sample are used to generate genomic profile risk 

scores (GPRSs) in an independent target sample, using SNPs whose p-values in the 

discovery sample are below some user-defined threshold of statistical significance. A 

GPRS is calculated for each individual in the target sample as the sum of the count of 

risk alleles weighted by the effect size in the discovery sample. The profile score is 

evaluated through regression of the target phenotype on the GPRS after accounting for 

other known covariates. The efficacy statistic is frequently Nagelkerke’s R2 or AUC, 

although expression on the liability scale may be more interpretable36. 

To account for the correlational structure among loci and estimate the overall proportion 

of variance attributable to variants genome-wide, one can use more complex mixed 

models that jointly fit all variants5,37. Such methods estimate the variance attributable to 

all variants together, the so-called chip-heritability (or SNP-heritability). One can also 
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partition this variance based on annotation of variants, for example those in loci 

identified as associated with disease versus all remaining variants. Here, one fits the 

genetic contribution from known loci as one random effect and the genetic contribution 

from all other loci as another. Then the ratio of these will provide an estimate of how 

much known risk variants explain the overall chip-heritability. These different 

components of heritability explained by genetic variants are illustrated in Figure 4. 

Note that genetic variation as evaluated here is not the only measuring stick for the 

utility of identified risk variants. A set of variants may have good clinical utility in a 

particular context (i.e. for some patients) while not explaining much variation in the 

population and vice-versa. Moreover, a number of measures besides the AUC have 

been proposed to assess the risk prediction properties of known variants.38 However, 

since many of these measures do not yield a single, bounded summary value and are 

context dependent they are not useful for assessing genetic variation per se. 

 

Conclusions and future perspectives 

In genetic studies it is a common and useful practice to quantify the contribution to risk 

of disease of each associated variant, the total for all associated variants, and the 

additional contribution compared to previous studies. Quantifying such successes 

across research projects can be hampered if different studies use different measures. 

Here we present the different measures side-by-side and compare the similarity and 

differences of these commonly used measures. We provide an online tool to calculate 

these measures from association study summary statistics. 

Although geneticists and epidemiologists often interpret different measures of the 

impact of risk variants on disease as providing similar information, as shown here they 

are not interchangeable and can give quite different messages. For common, low risk 

variants the measures are fairly uniform. But for risk variants with a range of allele 

frequencies and relative risks, heritability explained is often substantially lower than 

sibling recurrence risk and logRR genetic variance. For rare, high-penetrance variants, 

the approximate heritability16 and sibling recurrence risk can be an order of magnitude 

larger than other measures. The pAUC may be larger or smaller than the other 

measures depending on the nature of the risk alleles, and the PAF gives much larger 
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estimates than all other measures and has philosophical and computational limitations. 

As we move into the era of discovering both common and rare variants with varying 

penetrance for disease, we recommend that investigators focus primarily on the 

heritability of liability or logRR genetic variance explained since these appear to give 

estimates that are less sensitive to rare, high risk variants than the other measures 

considered here. 

While the measures of the contribution to risk considered here may have similar 

underlying intentions, they can be on different scales and include different types and 

amounts of information. Depending on the measure, the apparent impact of genetic 

variants can hinge on the assumed overall risks of disease, which despite their apparent 

simplicity are often difficult to pin down. All measures considered here except the PAF 

can be expressed relative to a maximum specified by parameters measured in twin or 

family studies, the “denominator” (for example, total heritability, sibling recurrence risk, 

max AUC). The denominator measures are themselves difficult to estimate, may be 

contaminated by non-genetic factors, and for less common diseases are subject to 

considerable sampling variance39. Moreover, these denominator estimates can be study 

context dependent due to real differences reflecting environmental factors such as 

country, age, year and many other complexities of real-life data. Valid comparison of the 

numerator and denominators requires that samples have been drawn from the same 

population. Thus, we recommend that investigators undertake sensitivity analyses that 

explore how their results vary when using a range of assumed underlying risks. The 

important take home message is that given such uncertainty, the concept of individual 

loci “explaining” disease is less straightforward than it may appear at first sight and 

hence all quantifications should be considered in terms of benchmarking rather than as 

precise measures. In addition, calculating multiple different measures may provide 

valuable information about how sensitive results are to the underlying assumptions. 

Genetic and epidemiologic study designs and analytic methods have nicely coalesced 

to help investigators detect large numbers of risk variants for complex diseases. 

However, the different views of these disciplines can shade the interpretation and 

apparent implications of such findings. By presenting side-by-side the different models 

and measures used to assess the impact of genetic variants on disease, we highlight 
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their strengths and weaknesses and make a number of recommendations for their use. 

With this information—and with software provided as an online tool to calculate the 

measures considered here—one can judge what is truly meant when a study concludes 

that genetic variants explain or account for a particular proportion of disease. 

 

 

Further Information 

Companion website for calculating measures considered here to quantify the 

contribution of disease risk variants, INDI-V online tool: 

cnsgenomics.com/software/INDI-V 

 

Glossary  

 

Area under the receiver operating characteristic curve (AUC).  

The receiver operating characteristic curve for a predictor (for example, a genetic test) 

plots the proportion of cases correctly identified by the test versus the proportion of 

controls incorrectly classified as cases. The AUC indicates the probability that a factor 

(for example, a genetic risk score) will predict a higher risk of disease in a randomly 

selected case than in a control. 

 

Genetic architecture 

The number of risk alleles underlying disease, their allele frequency spectrum, effect 

sizes and mode of interaction. 

 

Genetic variance 

The variance of trait values that can be ascribed to genetic differences among 

individuals. The total genetic variance of a trait can be dissected into additive, 

dominance and other components. 

 

Genomic risk profile 
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A predicted measure of genetic risk for individuals constructed from a set of loci whose 

risk alleles and their effect sizes have been estimated in an independent sample.  

 

Heritability 

The proportion of phenotypic variation in a population that is attributable to genetic 

variation among individuals. 

 

Liability of disease 

An underlying or latent continuous variable such that those with a liability above a 

threshold are considered diseased. The quantitative trait of liability reflects both genetic 

and environmental factors.  

 

Linkage disequilibrium 

A measure of whether alleles at two loci coexist in a population in a non-random 

fashion. Alleles that are in linkage disequilibrium are found together on the same 

haplotype more often than would be expected by chance. 

 

Mendelian locus  

A genetic locus the alleles of which have discrete effects on the phenotype, which 

obeys Mendel's laws of segregation and independent assortment.  

 

Overall disease risk 

The lifetime probability that an individual is affected by disease. 

 

Population attributable fraction 

Also called the population attributable risk. For a given disease, risk factor and 

population, the population attributable risk is the fraction by which the incidence rate of 

the disease in the population would be reduced if the risk factor was eliminated. 

 

Sibling recurrence risk 
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The ratio of the probability that a sibling of an individual affected by a disease will also 

be affected compared to the risk of disease in the general population. 
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Box 1. A matter of scale. 

The contribution of genetic loci to disease can hinge on the scale used to assess risk 

(e.g., observed, log, or liability scales). On the observed scale, the risk of disease (D) 

for individuals carrying zero, one, or two copies of risk variant B are Pr(D|bb) = kbb, 

Pr(D|Bb) = kbbRRBb, and Pr(D|BB) = kbbRRBB. Here, kbb is the baseline risk among non-

carriers and RRG is the relative risk for carrying genotype G(Bb, BB) in comparison to 

the bb genotype. Then the probability of disease given genotype from a multiplicative 

model on the observed risk scale is 

𝑃𝑟(𝐷|𝐺) = 𝑘𝑏𝑏𝑅𝑅𝐵𝑏
𝑥𝐵𝑏𝑅𝑅𝐵𝐵

𝑥𝐵𝐵 , where XG is a (0,1) indicator of which genotypes one caries. 

The overall risk of disease (K) is 

 𝐾 = 𝐸[𝑃𝑟(𝐷)] = ∑ 𝑃𝑟(𝐷|𝐺)𝑃𝑟(𝐺) = 𝑘𝑏𝑏((1 − 𝑝)2 + 2𝑝(1 − 𝑝)𝑅𝑅𝐵𝑏 +𝑝
2𝑅𝑅𝐵𝐵)𝐺 , where 

p is the risk variant (B) frequency. When RRBb, RRBB, and K are known this can be 

rearranged to estimate kbb. The overall relative risk due to multiple independent variants 

can be modeled by extension in which kbb is replaced by the probability of disease in 

individuals carrying no risk variants. This model is appealing because it is 

mathematically tractable, but it is not constrained so some combinations of parameters 

can generate a probability of disease greater than 1.11,21 For this reason, it is not the 

model of choice when considering multiple risk loci. Instead it can be converted to an 

additive model on the log risk scale. 

𝑙𝑜𝑔(Pr(𝐷|𝐺)) = log(𝑘𝑏𝑏) + log(𝑅𝑅𝐵𝑏) 𝑥𝐵𝑏 +log(𝑅𝑅𝐵𝐵) 𝑥𝐵𝐵.     

 

Another possibility is to use the liability risk scale, which assumes that individuals have 

a latent continuous liability of risk for disease reflecting both genetic and non-genetic 

risk factors12. Disease occurs when the total phenotypic liability exceeds a threshold 

(i.e., a sufficient number of risk factors are present). For complex diseases, numerous 

risk factors each of modest effect are expected. The residual variation in liability 

between individuals of each genotype class at any given risk locus is assumed to have 

a standard normal distribution about different mean liabilities wbb, wBb, and wBB for the 

genotype classes bb, Bb, and BB. The observed disease risks for each genotype class 

are converted into thresholds on the liability scale. The difference between the genotype 

thresholds equals the differences between the mean distributions with a common 



 21 

threshold for disease. The liability risk model is mathematically tractable, easily 

generalizes to multiple risk loci, and is constrained so that the probability of disease 

does not exceed 1. Moreover, the contribution of individual risk loci can be 

parameterized in terms of the variance they explain, which provides a general 

framework since many different combinations of allele frequency and effect size can 

generate the same contribution to variance. For these reasons, the liability risk model is 

usually the model of choice when considering multiple risk loci21,40-44. 

 

Figure 1. Different measures of genetic effects on disease. A number of different 

measures can be used to assess how much known genetic factors contribute to the 

overall genetic variation in disease. These include: a. heritability, b. sibling relative risk, 

c. log relative risk genetic variance, d. area under the receiver operating curve (AUC), 

and e. population attributable fraction. These measures have their bases in traditionally 

distinct disciplines such as quantitative genetics and epidemiology, which have recently 

begun to coalesce. While the latter were originally developed to address different 

questions, they are presently being repurposed to assess how much genetic variation 

cab be explained. We compare these measures via simulation and applications. 

 

Figure 2. Empirical evaluation of measures of genetic effects. Comparison of 

heritability, approximate heritability, sibling relative risk, log relative risk genetic 

variance, and area under the curve (AUC) explained across a range of complex disease 

architectures. The measures are calculated for a single causal variant with risk allele 

frequency (RAF) = 0.01, 0.10, 0.25, 0.50, 0.75, and 0.99 and genetic relative risk (RR) 

ranging from 1.0 to 3.0 (assuming multiplicative model). The overall disease risk is 

assumed = 0.01, and the total sibling relative risk = 5, which gives an overall genetic 

heritability on the liability scale = 0.55 and a maximum AUC = 0.95. The percentage of 

heritability, sibling risk, and logRR genetic variance explained is quite modest for low 

RRs and small RAF, but as these increase the measures start to materially differ. 

Heritability is always one of the smallest measures, and is overestimated by the 

approximate heritability as the RR increases. The sibling relative risk and AUC are 

generally the largest measures for lower RAFs. 
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Figure 3. Application of measures to four diseases. Comparison of commonly used 

measures for assessing the impact of known risk variants on four diseases: a. breast 

cancer (65 variants), b. Crohn’s disease (143 variants), c. rheumatoid arthritis (36 

variants), and d. schizophrenia (32 variants). The measures are: heritability explained; 

approximation of heritability explained; sibling recurrence risk explained; logRR genetic 

variance explained; and the proportion of area under the curve (pAUC). Each line 

corresponds to an individual risk variant, indicating the percentage of each measure 

(e.g., total variability) it explains. Lines are different colors depending on the relative risk 

(estimated by the odds ratio, OR) for each variant. The percentage axes are on a 

squared scale. 

 

Figure 4. Aspects of disease heritability: known, hiding, and missing. A growing 

proportion of the total heritability estimated from family studies can be explained by 

known variants detected in existing genome-wide association studies (bottom). This is 

one of the key measures considered here. The remaining heritability can be broken into 

that which is ‘hiding’ versus ‘still missing’. The hiding heritability can be estimated from 

genome-wide arrays using the Genetic Relatedness Estimation through Maximum 

Likelihood (GREML) model. The still-missing heritability is that which may remain even 

after genome-wide association studies, reflecting for example genetic different 

architectures (e.g., rare variants). Note that the total heritability may be biased upward 

due to confounding by non-additive genetic or non-genetic factors. 

 

Supplemental Tables 1-4. Measures of overall impact of risk variants for: (1) breast 

cancer, (2) Crohn’s disease, (3) rheumatoid arthritis, and (4) schizophrenia. Each row 

corresponds to a risk variant, and gives for that (ith) variant the following: the risk allele 

frequency (RAF); relative risk for one additional allele (RR); Proportion of variance in 

disease explained on the liability scale (h2
L[i]); proportion of heritability explained (h2

L[i] / 

h2
L); approximate proportion explained (h2

L[i]apprx / h2
L); sibling relative risk (S[i]); 

proportion of sibling recurrence risk explained (log(S[i] S)); logRR genetic 
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variance explained (VGlog(RR[i])/ 2log(S)); area under the curve (AUC); proportion of AUC 

explained ([(AUC[i] -.5) / (AUCM-.5)]); and population attributable fraction (PAF). 
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Table 1. Unified approach showing how measures of a genetic variant’s impact on disease are grounded in different 

scales of risk. For each scale, the genotype risk values can be used to calculate the corresponding means and variances. 

 

 
 

Genotype
a

 
 

Measures

 
bb Bb BB 

General notation    

 Population frequency
b

 

(1-p)
2

 

2p(1-p)

 

p
2

  Genotype risk
c 

wbb wBb wBB 

 Mean genotype risk (M)
d 

(1-p)
2
 wbb   2p(1-p) wBb  p

2 
wBB 

 Variance of genotype risk (V)
d 

(1-p)
2 
(wbb - M)

2 
  2p(1-p) (wBb - M)

2
   p

2 
(wBB -M)

2
 

 

Scale-specific genotype risks  

 Observed risk
e

 

kbb

 

kbb RRBb

 

kbb RRBB

  Relative risk 1 RRBb RRBB 

 Log relative risk

 

0

 

log(RRBb)

 

log(RRBB)

  Liability threshold
f

 

-Φ
-1

(1- kbb)

 

-Φ
-1

 (1- kbb RRBb)

 

-Φ
-1

 (1- kbb RRBB)

  

Quantitative genetics notation 

 Genotype risk

 

-a

 

d = wBb-(wbb+wBB)/2

 

a = wBB - (wbb+wBB)/2 

 Deviations from the mean
g 

 Total 
 

-a-M = -2p(a+(1-p)d) d-M = a((1-p)-p)+d(1-2p(1-p)) a-M = 2(1-p)(a-pd) 

 Additive
h
 -2pα ((1-p)-p)α 2(1-p)α 

 Dominance -2p
2
d 2p(1-p)d 2(1-p)

2
d 

a
 Known risk variant denoted by B. 

b
 Under Hardy-Weinberg equilibrium. 

c
 General notation: to estimate the scale-specific mean and variance the genotype risks are substituted for w (e.g., log relative risk or liability). 
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d
 The mean (M) and variance (V) of genotype risk is the sum of the three genotype-specific components. 

e
 kbb is the baseline risk for individuals carrying the homozygous non-risk genotype (bb). RRG is the relative risk of disease for carriers of the risk 

genotype G (Bb or BB) compared with non-carriers (bb). 
f
 Φ is the standard normal cumulative distribution function. 
g
 Using notation of Falconer and Mackay

14
 with the quantitative genetics notation values assigned such that in the absence of dominance the 

value of the heterozygote is zero and midway between the values of the two homozygotes. 
h
 α =a+d((1-p)-p) is the average effect of substituting b with B. Total genetic deviations = Additive deviations + Dominance deviations with M the 

mean genotypic value expressed in the quantitative genetics notation M = (1-p)
2
 (-a) + 2p(1-p)d + p

2
a. 
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Table 2. Measures of overall impact of risk variants on different diseases with a range of underlying genetic 

architectures.a 

Disease Risk Variant 

[i] 

RAF
b
 RR 

b
 Heritability  Sibling 

Recurrence 

LogRR  Area Under the 

Curve 

 PAF 
g 

  
  

h
2

L[i] 
c
 h

2
L[i] / 

h
2

L 
d 

h
2

L[i]apprx 

/ h
2

L 
d
 

S[i] log(S[i]) 

/log(S) 
e 

VGlog(RR[i])

/2log(S) 

e
 

AUC[i] pAUC[i] 
f 

 

Breast Cancer              

 rs2943559
 

0.07 1.13 0.07% 0.12% 0.08% 1.001 0.16% 0.14% 0.51 0.13% 1.80%  

 rs10771399
 

0.90 1.20 0.22% 0.36% 0.27% 1.003 0.39% 0.45% 0.52 0.39% 28.1%  

 rs2180341 0.21 1.41 1.49% 2.47% 2.00% 1.02 3.39% 2.83% 0.57 2.65% 15.2%  

 All variants - - 10.70% 17.74% 12.62% 1.17 22.39% 20.78% 0.65 18.98% 95.2% 

 (m=65)             

             

Crohn’s             

 rs12103 0.18 1.09 0.03% 0.04% 0.03% 1.001 0.05% 0.05% 0.51 0.07% 3.1% 

 rs11209026 0.93 2.37 1.02% 1.40% 2.73% 1.023 0.96% 2.00% 0.58 2.88% 80.8% 

 rs5743293 0.02 3.10 0.82% 1.13% 2.45% 1.10 3.99% 1.31% 0.57 2.32% 9.5% 

 All variants 

(m=143) 

- - 11.85% 16.38% 17.84% 1.78 24.73% 21.16% 0.77 33.8% 100% 

             

Rheumatoid Arthritis              

 rs5029937 0.04 1.40 0.13% 0.20% 0.17% 1.01 0.33% 0.24% 0.53 0.34% 3.1%  

 rs2476601 0.10 1.94 1.17% 1.85% 2.19% 1.07 3.65% 2.21% 0.58 3.09% 16.4%  

 rs6910071
h 

0.22 2.88 5.30% 8.38% 14.59% 1.33 15.77% 10.72% 0.67 13.6% 50.0%  

 All variants - - 9.34% 14.76% 20.10% 1.57 25.25% 18.60% 0.72 24.3% 99.3% 

 (m=36)             
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Table 2 (continued).             

Disease Risk Variant 

[i] 

RAF
b
 RR 

b
 Heritability  Sibling 

Recurrence 

LogRR  Area Under the 

Curve 

 PAF 
g 

  
  

h
2

L[i] 
c
 h

2
L[i] / 

h
2

L 
d 

h
2

L[i]apprx 

/ h
2

L 
d
 

S[i] log(S[i]) 

/log(S) 
e 

VGlog(RR[i])

/2log(S) 

e
 

AUC[i] pAUC[i] 
f 

 

             

Schizophrenia             

 rs171748 0.47 1.08 0.04% 0.05% 0.04% 1.001 0.06% 0.06% 0.52 0.10% 7.0% 

 rs17504622 0.05 1.24 0.06% 0.08% 0.08% 1.003 0.12% 0.10% 0.52 0.15% 2.3% 

 16p11.2 CNV 

(duplication) 

0.0003 26.0 0.16% 0.20% 4.85% 1.18 7.45% 0.14% 0.53 0.40% 1.4% 

 All variants - - 2.02% 2.50% 15.92% 1.69 24.26% 2.87% 0.61 4.93% 90.9% 

 (m=32)            

 

a Two sets of results are presented for each disease: selected individual variants and all significant variants combined. 

Results for all individual variants are given in the supplemental tables. 

b RAF=Risk allele frequency. RR=Genetic relative risk for disease due to carrying a copy of risk variant versus none. 

Estimated by odds ratios (ORs). Assume multiplicative (log-additive) model so the relative risk for carrying two risk 

variants = RR2. 

c Proportion of variance in disease explained by risk variant(s) i, on the liability scale. 

 Base population risks of disease assumed: 12% (Breast Cancer); 0.5% (Crohn’s); 1% (Rheumatoid Arthritis); 1% 

(Schizophrenia). 

d Proportion of heritability explained by risk variant(s), or approximate proportion of the overall h2
L, which take from the 

literature; 
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 these are h2
L = 60% (Breast Cancer); 72% (Crohn’s); 63% (Rheumatoid Arthritis); 81% (Schizophrenia). 

e Proportion of sibling recurrence risk explained by risk variants; proportion of logRR genetic variance explained. 

 Assume S = 2.0 (Breast Cancer); 10.3 (Crohn’s); 6.0 (Rheumatoid Arthritis); 8.8 (Schizophrenia). 

f Proportion of AUC (pAUC) explained by risk variants compared to the maximum AUC expected from a genetic predictor. 

 Estimated maximum AUC (AUCM) = 90% (Breast Cancer); 0.98 (Crohn’s); 0.97 (Rheumatoid Arthritis); 0.99 (Schizophrenia). 

g Population attributable fraction. 

h HLA-DRB1E locus. 
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Online summary 

 While the historically different fields of quantitative genetics and epidemiology are 

converging to answer fundamental questions about genetic variation in risk 

underlying human diseases, the plethora of measures to quantify the contribution of 

variants to disease risk have differing terminology and assumptions, which obfuscate 

their use and interpretation. 

 

 We consider and contrast the most commonly used measures that assess disease 

risk contributed to the population by individual variants: the heritability explained, the 

sibling recurrence risk explained, the proportion of genetic variance explained on a 
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log relative risk scale, the area under the receiver-operating curve (AUC) and the 

population attributable fraction (PAF), and give numerical examples in breast cancer, 

Crohn’s disease, rheumatoid arthritis and schizophrenia. 

 

 We discuss the properties of these measures, show how they are connected to each 

other, discuss for what situations they are best suited, and provide an online tool for 

their calculation. 

 

 The most appropriate measure to use depends on the importance given to the 

frequency of a risk variant relative to its effect size on disease, and the baseline to 

which importance is expressed; these factors should be explicitly considered when 

assessing the contribution of genetic variants to disease. 

 

 We recommend that investigators focus primarily on the heritability of liability or 

genetic variance on the log relative risk scale explained since these give estimates 

that are less sensitive to rare, high risk variants than the other measures considered 

here; we caution against using the PAF for genetic risk variants because it has a 

number of undesirable properties. 

 

 The concept of individual loci “explaining” disease is less straightforward than it may 

appear at first sight, and we recommend that investigators undertake sensitivity 

analyses that explore how measures of the contribution of genetic variants to risk 

vary across a range of underlying assumptions. 


