Accepted Manuscript

Correspondence

Weight of the liver and the spleen supplements inspirational activity

Naveen S. Kotur, Sharath Burugina Nagaraja, Chris R. Luis, Sushil A. Luis, Ritesh G. Menezes

PII: S0306-9877(14)00257-6
DOI: http://dx.doi.org/10.1016/j.mehy.2014.07.002
Reference: YMEHY 7645

To appear in: Medical Hypotheses

Received Date: 6 February 2014
Accepted Date: 5 July 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Manuscript Title: Weight of the liver and the spleen supplements inspirational activity
Type of Manuscript: Correspondence

Authors (with Institutional Affiliation):

Naveen S. Kotura, MBBS, MD
Sharath Burugina Nagarajab, MBBS, MD
Chris R. Luisc, MBBS
Sushil A. Luisd,e, MBBS, FRACP
Ritesh G. Menezesf, MBBS, MD, DNB

a Department of Physiology, ESIC Medical College & PGIMSR, Bangalore, India
b Department of Community Medicine, ESIC Medical College & PGIMSR, Bangalore, India
c Department of Medicine, Caboolture Hospital, Caboolture, Queensland, Australia
d Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
e School of Medicine, University of Queensland, Herston, Queensland, Australia
f College of Medicine, University of Dammam, Dammam, Saudi Arabia (KSA)

*Corresponding author:
Prof. Dr. Ritesh G. Menezes

E-mail: mangalore971@yahoo.co.in
Phone: +966508160375
Fax: Not available
No source of support in the form of grants received
Dear Editor,

Respiration in humans is an involuntary, synchronized activity of many organs in the thoracic cavity. The diaphragm, which divides the thorax and abdomen, plays a pivotal role in balancing the difference between abdominal and pleural pressure. The descent of the diaphragm is proportional to the magnitude of respiratory effect. The diaphragm is sufficiently thin to consider it as a membrane and its shape is determined based on many assumptions like transmembrane pressure and the stress imposed or borne on the direction of muscle fibre [1]. During inspiration, the volume of thoracic cavity is increased and it is reduced during expiration. Most explanations for this activity of having negative pressure in the thoracic cavity relates to simultaneous activation of the diaphragm and intercostal muscles, and elastance of the rib cage [1]. The experiments conducted at different laboratories have shown that during spontaneous inspiratory efforts, the intercostal muscles are always activated and the diaphragm is never maximally activated [1]. Isolated maximal diaphragm activation is a non-physiological maneuver that distorts the rib cage and the abdomen [1].

We hypothesize that the increase in lung capacity during inspiration is not only because of the aforementioned factors but also due to the weight of the liver and the spleen situated underneath the diaphragm that exert the pull on the diaphragm by gravitational force. The standing posture of humans also supplements the force exerted by these organs. Further studies are needed to explore the validity of the hypothesized statements.
Clinically, patients suffering from ascites have dyspnoea because the liver which is surrounded by fluid floats and thus has reduced weight because of which the patient has to put more efforts for inspiration [2]. Here, the same analogy is applied as for brain, which is surrounded by cerebrospinal fluid and floats thus reducing its weight. Hence, the focus of clinical management of patients with liver disorders with ascites should be aimed at reducing the ascitic fluid to overcome dyspnea instead of aiming at increased bronchial ventilation.

References
