Molecular Epidemiology of NDM-1-Producing Enterobacteriaceae and Acinetobacter baumannii Isolates from Pakistan

Anna L. Sartor, Muhammad W. Raza, Shahid A. Abbasi, Kathryn M. Day, John D. Perry, David L. Paterson, Hanna E. Sidjabat

University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia; Department of Microbiology, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Microbiology Department, Armed Forces Institute of Pathology, Rawalpindi, Pakistan

The molecular epidemiology of 66 NDM-producing isolates from 2 Pakistani hospitals was investigated, with their genetic relatedness determined using repetitive sequence-based PCR (Rep-PCR). PCR-based replicon typing and screening for antibiotic resistance genes encoding carbapenemases, other β-lactamases, and 16S methylases were also performed. Rep-PCR suggested a clonal spread of Enterobacter cloaceae and Escherichia coli. A number of plasmid replicon types were identified, with the incompatibility A/C group (IncA/C) being the most common (78%). 16S methylase-encoding genes were coharbored in 81% of NDM-producing Enterobacteriaceae.

With the worldwide spread of the NDM-1 gene and its variants (NDM-2 to NDM-8) (1, 2), molecular epidemiological studies of global isolates using various genotyping techniques are essential for gaining a better understanding of how this spread is occurring. India, Pakistan, and Bangladesh are clearly major reservoir countries for blaNDM, with numerous factors, such as antibiotic selection pressure, contributing to this current situation (3, 4). This study examines a group of 66 NDM-1-producing isolates from Pakistan for their genetic relatedness, phylotype, plasmid replicon type, and plasmid transferability.

All isolates were acquired from stool samples from 37 distinct patients at two military hospitals in Rawalpindi, Pakistan (5). The samples were collected from inpatients (35%) and outpatients (65%). The isolates were tested for susceptibility to 17 antimicrobials using the Vitek 2 system. The MICs for meropenem, doripenem, fosfomycin, and amdinocillin were determined using a multiplex (PCR)-based method (10).

The isolates were reconfirmed for the presence of the carbapenem resistance gene blaNDM-1 by PCR, as previously described (6). PCR was also performed to detect blaOXA-48, blaOXA-23, blaVIM, blaIMP, blaKPC, blaCTX-M-15, blaSHV, blaTEM, and blaGXA-1, group, AmpC β-lactamases, blaCMY-2, and the 16S rRNA methylase genes armA, rmtB, rmtC, and rmtF (6–9). The phylogenetic groups of Escherichia coli were determined using a multiplex (PCR)-based method (10).

Replicative sequenced-based PCR (Rep-PCR)-based typing by the DiversiLab system (bioMérieux, Oakleigh, Australia) was used for assessing clonal relatedness. A cluster of closely related isolates was defined as isolates sharing >95% similarity and indistinguishable isolates of >97% (11, 12). PCR-based replicon typing analysis (PBRT) was performed to determine the plasmid incompatibility (Inc) groups for all Enterobacteriaceae isolates (13).

Ten genetically diverse E. coli isolates, based on different Rep-PCR profiles and phylgroup, were selected for transformation studies and typing by multilocus sequence typing (MLST). MLST

TABLE 1 Resistance genes and plasmid replicon types of NDM-1-producing isolates

<table>
<thead>
<tr>
<th>NDM-producing isolates (no.)</th>
<th>β-Lactamases*</th>
<th>16S rRNA methylases</th>
<th>Plasmid replicon type(s) (no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>blaOXA-48, blaOXA-23, blaVIM, blaIMP, blaKPC, blaCTX-M-15, blaSHV, blaTEM, blaGXA-1 group, AmpC β-lactamases, blaCMY-2</td>
<td>rmtB, rmtC, and rmtF</td>
<td>InhH1 (10), IncI1 (2), IncI/M (2), IncN (4), IncFIA (5), IncFIB (6), IncY (2), IncA/C (25), IncFII (9)</td>
</tr>
<tr>
<td>Escherichia coli (30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 (87)</td>
<td>8 (27)</td>
<td>InhH1 (10), IncI1 (2), IncI/M (2), IncN (4), IncFIA (5), IncFIB (6), IncY (2), IncA/C (25), IncFII (9)</td>
</tr>
<tr>
<td></td>
<td>16 (53)</td>
<td>20 (67)</td>
<td>InhH1 (10), IncI1 (2), IncI/M (2), IncN (4), IncFIA (5), IncFIB (6), IncY (2), IncA/C (25), IncFII (9)</td>
</tr>
<tr>
<td></td>
<td>0, 19 (63)</td>
<td>0</td>
<td>IncA/C (19), untypeable (2)</td>
</tr>
<tr>
<td></td>
<td>9 (30)</td>
<td>15 (50)</td>
<td>IncA/C (19), untypeable (2)</td>
</tr>
<tr>
<td>Enterobacter cloaceae (21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 (76)</td>
<td>0</td>
<td>IncA/C (2), IncFII (1), untypeable (1)</td>
</tr>
<tr>
<td></td>
<td>21 (100)</td>
<td>15 (71)</td>
<td>IncA/C (2), IncFII (1), untypeable (1)</td>
</tr>
<tr>
<td>Citrobacter freundii (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus rettgeri (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrobacter braakii (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total no. of isolates</td>
<td>49 (78)</td>
<td>37 (59)</td>
<td>IncA/C (49)</td>
</tr>
</tbody>
</table>

*All isolates were negative for blaOXA-48, blaIMP, blaVIM, and blaKPC.

ND, not determined.

* A. baumannii excluded from this total.
included seven conserved housekeeping genes and was performed according to the E. coli MLST Database (see http://mlst.warwick.ac.uk/mlst/dbs/Ecoli).

The transferability of blaNDM-1-carrying plasmids was investigated by electroporation. Plasmid DNA was prepared and electroporated into the recipient TOP10 E. coli (Invitrogen, Melbourne, Victoria, Australia), as previously described (6). Successful electrotransformants carrying blaNDM-1 were confirmed by PCR. The plasmid replicon type of the transformants acquiring blaNDM-1-carrying plasmids was confirmed by PBRT. Plasmid size was determined by performing S1 endonuclease (Promega; Madison, WI, USA) restriction digestion using pulsed-field gel electrophoresis (PFGE) (14). PCR-amplified DNA probes of blaNDM-1 were labeled with digoxigenin nucleic acid (Roche, Mannheim, Germany).

Widespread dissemination of NDM-1 in Pakistan was first described in 2010 (15). In this study, we investigated the molecular epidemiology of a group of NDM-1-producing isolates from Pakistan, and we report here on the clonal relatedness of these isolates, providing an insight into the molecular characterization of blaNDM-1-carrying plasmids.

The majority of the NDM-1-producing Enterobacteriaceae isolates coharbored an extended-spectrum β-lactamase (ESBL) gene,

FIG 1 Southern blot hybridization of the PFGE gel with a specific blaNDM-1 probe. The black arrows indicate positive signals with the NDM-1 probe in each E. coli clinical isolate and its corresponding transformant. Lanes 1 to 8, PN1, PN1 TF1, PN7, PN7 TF1, PN14, PN14 TF1, PN18, and PN18 TF1, respectively.

FIG 2 Dendrogram analysis of DiversiLab Rep-PCR fingerprint of NDM-1-producing E. cloacae isolates.
bla_{CTX-M-15} (70%), bla_{CMY-2} and the cooccurrence of 16S rRNA methylase genes encoding broad-spectrum aminoglycoside resistance, rmtB, rmtC, or armA, was detected in 47 (75%) isolates (Table 1). AmpC β-lactamase production coexisting with an ESBL was also high (n = 36 [73%]). The novel 16S rRNA methylase \textit{rmtF} (16) was not detected; however, \textit{rmtB} was found in 8 \textit{E. coli} strains. A strong association between NDM-producing isolates harboring a 16S rRNA methylase-encoding gene has been well documented, particularly with \textit{rmtC}. More recent studies in India, the United Kingdom, South Africa, and Nepal have reported the carriage of \textit{rmtF} among NDM-harboring isolates (9, 17–19).

Of the 10 \textit{E. coli} isolates subjected to electroporation, the \textit{bla}_{NDM-1} plasmids in 4 isolates were successfully electroporated. Plasmid replicon typing of these transformants confirmed that \textit{bla}_{NDM-1} resides on IncA/C-, IncN-, IncFIB-, and IncFII-type plasmids. These replicon types have been reported in \textit{Enterobacteriaceae} in many regions of the world (4).

Southern hybridization (Fig. 1) of the \textit{E. coli} donors and their transformants revealed \textit{bla}_{NDM-1} plasmid sizes ranging from ~50 kb to ~350 kb. The majority of the \textit{bla}_{NDM-1} plasmids were ~140 kb in size. Among the 30 \textit{E. coli} isolates, there was a predominance of the phylogenetic group B1 (57%), followed by phylotypes A (40%) and D (3%). It has been suggested that the distribution of \textit{E. coli} phylotypes may be geographically dependent (22).

Rep-PCR revealed two dominant clones among \textit{Enterobacter cloacae}, one large cluster (n = 17), designated ECLI, and one small cluster of three isolates (ECLII) (see Fig. 2). Three clonal types were observed among 17 \textit{E. coli} isolates, and the remaining \textit{E. coli}
isolates were diverse (Fig. 3). The three *Klebsiella pneumoniae* isolates were genetically diverse, while the three *Acinetobacter baumannii* isolates were considered identical (>99% similarity) (data not shown). Figure 4 shows the dendrogram for *Citrobacter* spp. and *Pseudocitrobacter faecalis* isolates (>99% similarity).

MLST differentiated the 10 representative *E. coli* strains into seven sequence types and one unknown sequence type (ST) (un-typeable). The sequence types included ST10 (n = 2), ST101 (n = 2), and single isolates representing STs 211, 226, 1431, 2598, and 3032. MLST studies on NDM-1-producing *E. coli* in the literature provide an incomplete and heterogeneous global distribution, suggesting a nonclonal pattern of spread for *bla*NDM-1 (24). In this study, the clinical isolates of *E. coli* representing STs 211, 226, 1431, 2598, and 3032 to our knowledge have not been reported in NDM-1-producing *E. coli*.

There were a number of limitations in our study, including the lack of clinical patient data and using fecal samples from 2 hospitals at a single point in time. It is difficult in this respect to obtain a clear epidemiological picture of NDM-producing isolates more widely in Pakistan.

The spread of *bla*NDM-1 is frequently associated with common and highly promiscuous plasmids resulting in a diverse range of species and clones harboring *bla*NDM-1. However, the molecular epidemiology of our study may indicate that *bla*NDM-1 additionally disseminates via dominant clones. The potential role of such dominant clones as a factor of *bla*NDM-1 spread may be underrepresented due to the lack of large-scale surveillance and molecular epidemiological studies monitoring *bla*NDM-1 dissemination. In this scenario, we can see a situation in which a single clone of NDM-1 may become epidemic or pandemic.

REFERENCES

1. Göttig S, Hamprecht AG, Christ S, Kempf VA, Wielchelhaus TA. 2013. Detection of NDM-7 in Germany, a new variant of the New Delhi metallo-

12. Pitout JDD, Campbell L, Church DL, Wang PW, Guttmann DS, Gregson DB. 2009. Using a commercial DiversiLab semiautomated repetitive se-

Sartor et al.

