Intervening to reduce workplace sitting time – how and when do changes to sitting time occur?

Author names and affiliations:

Mrs Samantha K. Stephens, The University of Queensland, School of Population Health, Brisbane, Australia.

Dr Elisabeth A. H. Winkler, The University of Queensland, School of Population Health, Brisbane, Australia.

Prof Stewart G. Trost, The University of Queensland, School of Human Movement Studies, Brisbane, Australia.

Prof David W. Dunstan, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Monash University, Epidemiology and Preventive Medicine, Melbourne, Australia.

Prof Elizabeth G. Eakin, The University of Queensland, School of Population Health, Brisbane, Australia; Baker IDI Heart and Diabetes Institute, Melbourne, Australia.

Dr Sebastien F. M. Chastin, Glasgow Caledonian University, School of Health and Life Science, Institute of Applied Health Research, Glasgow, Scotland, UK.

Dr Genevieve N. Healy, The University of Queensland, School of Population Health, Brisbane, Australia; Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Curtin University, School of Physiotherapy, Faculty of Health Sciences, Perth, Australia.

Corresponding Author:

Mrs Samantha Stephens

Cancer Prevention Research Centre

School of Population Health, Level 4, Public Health Building
The University of Queensland
Herston Road, Herston, QLD, 4006, Australia
Phone: +61 7 3365 5163
Fax: +61 7 3365 5540
Email: samantha.stephens@uq.edu.au

Keywords: workplace, office workers, sitting time, sedentary behaviour, intervention.

Word count: 2759
ABSTRACT

Objective: To investigate how and when changes in workplace sitting time occurred following a workplace intervention to inform evaluation of intervention success.

Method: The four-week Stand Up Comcare study (Melbourne, Australia; June-September 2011) aimed to reduce workplace sitting time via regularly interrupting and replacing sitting time throughout the day. Activity monitor (activPAL3) workplace data from control (n=22) and intervention participants (n=21) were analysed. Differences in number and usual duration of sitting bouts were used to evaluate how change occurred. When change occurred was examined by comparing intervention effects by hour since starting work and hour of the workday. Change in workplace activity (sitting, standing, stepping) was examined to further inform alignment with intervention messages. Individual variability was examined in both how and when the change occurred.

Results: Overall, behavioral changes aligned with intervention aims. All intervention participants reduced total workplace sitting time, though there was wide individual variability observed (range -29 minutes to -262 minutes per eight-hour workday). On average, intervention participants reduced both number of sitting bouts (-4.6 bouts [95% CI: -10.1, 1.0], p=0.106) and usual sitting bout duration (-5.6 minutes [95% CI: -9.8, -1.4, p=0.011]) relative to controls. Sitting time reductions were observed across the workday, though intervention effects varied by hour of the day (p=0.015). The intervention group successfully adopted the Stand Up and Sit Less intervention messages across the day.

Conclusion: These analyses confirmed that this workplace intervention successfully modified sitting behavior as intended (i.e. fewer and shorter sitting bouts, with changes occurring throughout the day).

Word count: 250
INTRODUCTION

Recognition of the detrimental health impacts of excessive sitting has led to the development and implementation of interventions specifically targeting this common health behaviour.[1-3] A key setting for interventions has been the office workplace,[4] with several interventions successfully reducing total workplace sitting time.[5-8] However, little is known about how the reduction is achieved (i.e. via reducing the number and/or duration of sitting bouts) or when the changes occur (i.e. across the whole day or at distinct times of the day). This is of particular importance in view of the detrimental cross-sectional associations of fewer breaks in sitting time (independent of total amount) with cardio-metabolic biomarkers;[9, 10] the acute detrimental effects of prolonged, unbroken sitting observed within experimental studies;[11, 12] and, the temporal variations that have been observed cross-sectionally in office workers’ sedentary time.[13, 14] The detailed examination of data from activity monitors – particularly those with direct postural measures and date and time stamped data [15] – can elucidate this information. More detailed reporting on these issues is crucial in evaluating the success of interventions (i.e. did the changes observed correspond with the intervention messages?) and informing further intervention refinement. To date, however, the findings from intervention trials to reduce sitting time have primarily been limited to the reporting of changes in total sitting time.[7, 16]

The Stand Up Comcare trial, a non-randomised workplace intervention in office workers, achieved a reduction in total workplace sitting time of more than two hours per eight-hour workday in the intervention group relative to controls.[6] The key intervention messages were to Stand Up (i.e. reduce duration of sitting bouts; increase standing time), Sit Less (i.e. reduce total sitting time and the number of sitting bouts), and Move More (i.e. increase incidental physical activity), with changes made regularly throughout the day. In achieving
this reduction in total workplace sitting time, participants may have adopted one or all of the intervention messages, or components of each. For example, it is plausible that while reducing total workplace sitting time, participants may have reduced sitting time in the morning and continued to sit for prolonged periods in the afternoon; alternatively, they may have reduced the number of sitting bouts (i.e. they may have had a standing meeting), but not reduced the duration of the sitting bouts. In each of these scenarios, the participants may have adopted components of the Stand Up and Sit Less messages, but not incorporated these changes regularly across the day. Moreover, it is important to understand what sitting time was replaced with (i.e. standing or stepping) and – given the potential detrimental effects of prolonged, unbroken standing[17] – it is also important to understand the duration of standing or stepping that is replacing the sitting time. Such information is not possible to ascertain from examining total change in workplace sitting time alone. Therefore, the aims of this study were to investigate how (i.e. via reducing the number and/or duration of sitting bouts) and when (i.e. across the whole day or at distinct time points) changes in workplace sitting occurred, as well as the individual variability in these changes.

METHODS

Study Design, Intervention, Participants and Recruitment

Stand Up Comcare was conducted in a single workplace (Melbourne, Australia), with intervention participants (n=21) located on a separate floor from controls (n=22). Methods and intervention design have been reported in detail.[6] In brief, the multi-component intervention comprised organisational, environmental, and individual behaviour change strategies. These consisted of consultation with management, a workplace information session, installation of sit-to-stand workstations, and tailored support for individual behaviour change through goal setting and motivational interviewing.[6] The control group was
instructed to continue usual activities. The Alfred Health Human Ethics Committee (Melbourne, Australia) provided ethical approval; all participants provided written, informed consent.

Data Collection
Data were collected at baseline and immediately following the intervention (June-September 2011). At both assessments, participants wore activPAL3 activity monitors (PALTechnologies Limited, Glasgow, UK) continuously for seven consecutive days, recorded their wake/sleep and work times in a diary, and underwent morning anthropometric and fasting blood measurements. Data on socio-demographic (age, gender, ethnicity, educational attainment, employment history, smoking history, and medical history) and work characteristics (type of employment and job type) were collected at baseline only.

Instrumentation
The small, unobtrusive, valid and reliable [15, 18, 19] activPAL3 activity monitor (version 6.3.0; default settings used) was worn 24 hours/day. It was waterproofed and secured on the anterior mid-line of the right thigh. The monitor provides date and time-stamped data on sitting/lying, standing, and stepping (number of steps, stepping cadence).[20]

Statistical Analyses
Data were processed in SAS Version 9.3 (SAS Institute Inc., Cary NC, USA) using a customized program that combined participants’ diary and activPAL3 data. All statistical analyses were performed in SPSS Statistics Software, Version 20 (SPSS, Inc., Chicago IL, USA) or SAS Version 9.3 in 2013. Significance was set at $p<0.05$ (two-tailed). Most analyses
were limited to participants with valid baseline and follow-up monitor data (n=18 intervention; n=18 controls).

How sitting time reductions occurred
Total workplace sitting time and the number of workplace sitting bouts were calculated for each participant across each day and averaged for valid workdays (days were considered valid if the monitor was worn ≥80% of workplace time). To account for variations in wear time and work hours, these variables were standardised to an eight-hour workday. Median sitting bout duration, and usual sitting bout duration (W_{50%})[21] were calculated for each participant based on all bouts on valid workdays. The value for W_{50%} indicates the bout duration at which 50% of total sitting time is accrued. That is, W_{50%} is the midpoint of the sedentary accumulation curve as described by Chastin and colleagues’ equation number seven.[21] Unlike median bout duration, this statistic takes into consideration that the longer the bout, the more it will contribute to total sitting time. Half of all sitting bouts are longer than the median, whereas half of all sitting time is accrued in bouts longer than the W_{50%}.
Each participant’s usual bout duration was calculated using non-linear regression (Levenberg-Marquadt algorithm), based on the following sigmoidal-shaped function that characterizes sedentary accumulation,[21] where the outcome (y, cumulative proportion of sedentary time accrued in bouts of duration ≤ t) is treated as a function of bout duration (t), usual bout duration (W_{50%}) and the free parameter (n) in the form of:

\[y = \frac{L \cdot e^{nt}}{e^{nt} + W_{50\%}^{n}} \]

Intervention effects on total workplace sitting time, number of bouts, median bout duration, and usual bout duration were examined by linear regression analyses adjusting for baseline values. No potential confounders (p<0.2 association with the outcome) were identified.[22] The associations of reductions in number of bouts, usual bout duration, and sitting time
reductions in the intervention group were then examined using linear regression, with results displayed graphically in a contour map.

Principles from Exposure Variation Analysis [23] were applied to describe changes in intensity, frequency, and duration simultaneously as they pertain to uptake of the Stand Up, Sit Less, Move More messages. Mean amount of time in minutes was plotted (z-axis) for each intensity (sitting, standing, stepping; y-axis) at each frequency (bout duration category; x-axis) for intervention and control groups at baseline and follow up. Categories of bout durations were chosen such that, overall at baseline, approximately 25% of each intensity occurred in each of the bout duration categories (accumulation quartiles). The cut offs for the bout duration categories were chosen to describe the change in activity from baseline to follow up, unlike the main outcomes paper,[6] which was examining clinical and meaningful outcomes.

When sitting time reductions occurred during the workday

Reductions in sitting time were examined for each participant on each workday. Sitting time (as a percentage) was summarized for each hourly time period during work hours. Hourly time periods were defined by hours since starting work (0 to <1, … ≥8) and by hours of the day (≤8:59am, 9:00-9:59am, … ≥5:00pm). Hours with ≥80% of workplace time monitored were considered valid.

Differences by hourly periods were tested using general linear mixed models, with a compound symmetry within subject covariance structure providing the best fit. These models accounted for repeated measures and included the effects of day, hour, group, and timepoint (pre-post), with two-and three-way interactions for group*timepoint*hour. Education was
associated with hourly sitting \((p<0.2)[22]\) and was adjusted as a confounder. To illustrate the individual variability in the temporal patterning within the intervention group, sitting time (as a percentage) was summarised and plotted for each hour of the day. Participants were stratified by least \((n=6)\), moderate \((n=6)\) and most \((n=6)\) reduction in total workplace sitting time.

RESULTS

Participant Characteristics

Participant characteristics are described in Supplemental Table 1. The mean age of participants was 43.2 (SD 10.3) years. In the control group, 67% were male, with 86% employed in a professional or managerial position. In the intervention group, 23% of participants were males, with 57% of participants being employed in clerical, service or sales positions.

How sitting time reductions occurred

On average, most (approximately 70%) workplace time at baseline was spent sitting. At baseline, participants’ median sitting bout duration averaged 6.2 (SD=3.0) minutes whereas usual bout duration showed that 50% of total workplace sitting time was accrued in bouts \(\geq 21.9\) (SD=7.7) minutes (Table 1). Following intervention, in addition to the significant changes observed for total workplace sitting time (-125.2 minutes in favour of intervention), significant intervention effects were also observed for usual bout duration (-5.6 minutes) and median bout duration (-2.8 minutes). Furthermore, there was a tendency (albeit non-significant: \(p=0.106\)) towards greater reductions in number of sitting bouts in intervention versus control participants (-4.6 bouts, 95% CI: -10.1, 1.0).
Table 1. Intervention effects for sitting time, bout number and bout duration in intervention (n=18) versus control (n=18) groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline (mean, SD)</th>
<th>Follow up (adjusted mean, SE)a</th>
<th>Intervention effects</th>
<th>Mean Difference (Intervention – Control)a
95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Intervention</td>
<td>Control</td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td>Total sitting timeb, minutes</td>
<td>333.4 (46.9)</td>
<td>338.5 (35.3)</td>
<td>334.7 (52.4)</td>
<td>215.4 (12.6)*</td>
<td>340.6 (12.6)</td>
</tr>
<tr>
<td>Number of bouts of sittingb (n)</td>
<td>32.5 (9.5)</td>
<td>31.5 (7.5)</td>
<td>33.0 (11.3)</td>
<td>26.2 (1.9)*</td>
<td>30.8 (1.9)</td>
</tr>
<tr>
<td>Median bout duration, minutes</td>
<td>6.2 (3.0)</td>
<td>5.7 (2.5)</td>
<td>6.5 (3.3)</td>
<td>3.8 (0.8)*</td>
<td>6.6 (0.7)</td>
</tr>
<tr>
<td>Usual bout duration (W50%), minutes</td>
<td>21.9 (7.7)</td>
<td>23.3 (7.3)</td>
<td>21.7 (8.4)</td>
<td>19.2 (1.5)*</td>
<td>24.8 (1.5)</td>
</tr>
</tbody>
</table>

*Adjusted mean difference (95% confidence interval) based on linear regression, adjusted for baseline values of the outcome: 336.6 (total sitting time), 32.3 (number of sitting bouts), 6.2 (median bout duration), 22.5 (usual bout duration). b minutes or n per eight-hour workday = variable in minutes or n *(8/worn hours). *p<0.05 for change from baseline (within groups) estimated by paired t-test. Note: Participants were employees of Comcare (Melbourne, Australia). The intervention was undertaken July–September 2011.
Following the intervention, all intervention participants reduced total workplace sitting time (range -29 to -262 minutes per eight-hour workday). Over half (56%) of intervention participants achieved some reduction (i.e., > 0 minutes or bouts) in both number of sitting bouts and usual bout duration; a third (33%) reduced bout number only; while 11% reduced usual bout duration only. The change in the number of bouts and usual bout duration were significantly and independently associated with change in total workplace sitting time in the intervention group. Specifically, a reduction of one sitting bout was associated with a -7.7 minute reduction in total workplace sitting time (95% CI: -9.7, -5.8, \(p < 0.001 \)), while each minute reduction in usual bout duration was associated with a -6.5 minute reduction in total workplace sitting time (95% CI: -8.9, -4.0, \(p < 0.001 \)). This relationship is illustrated in Figure 1. Here, the approximately 45-degree change in the shading shows a shift both vertically (number of sitting bouts) and horizontally (usual bout duration) along the axes, indicating that total workplace sitting time changed similarly with both changes in bout number and usual bout duration.

INSERT FIGURE 1 ABOUT HERE

To illustrate what sitting time was replaced with, Figure 2 depicts the shifts in intensity (sitting, standing, stepping) and bout duration from baseline to follow up. At baseline, the majority of work time was spent sitting, with the remainder primarily spent standing. Minimal changes occurred in the control group across any intensity or duration. For the intervention group, reductions across all sitting bout categories were observed (especially in the longest bouts); these
corresponded with increases in standing time (in longer standing bouts) but not changes in stepping time (of any bout duration).

INSERT FIGURE 2 ABOUT HERE

When sitting time reductions occurred during the workday

Figure 3 presents the intervention effects on sitting (as a percentage of monitored work time) by hour since starting work (a) and by hour of the workday (b). Intervention effects were significant at each hour since starting work. However, there were no significant (group*timepoint*hour since starting work) interactions. That is, there was no evidence that intervention effects varied by hour since starting work ($p=0.648$), and differences by hour were not observed for changes in the intervention (p for interaction $=0.539$) or control (p for interaction $=0.539$) groups.

INSERT FIGURE 3 ABOUT HERE

However, intervention effects differed significantly by hour of the day ($p=0.015$), with changes in percentage of workplace sitting time differing significantly by hour within both intervention (p for interaction $=0.014$) and control (p for interaction $=0.015$) groups. Specifically, the intervention group significantly reduced their workplace sitting time at all hours of the workday compared to controls, except for the 12-12:59pm period. The large differences ($\geq30\%$ reduction in workplace time spent sitting) were only evident before 9am, from 9-9:59am and from 11-11:59am (Supplemental Table 2).
While the size of the intervention effects varied by hour of the day, 78% of intervention participants achieved some sitting time reduction (> 0 minutes) across most (≥80%) monitored work hours. Individual change in percentage sitting time per hour is plotted in Supplemental Figure 1 for most (n=6), moderate (n=6), and least (n=6) reduction in total workplace sitting time. The amount of change in each hour and the temporal patterning across the day was most variable among participants with the most and least reduction in workplace sitting time, and least variable among participants with moderate change.

DISCUSSION

The Stand Up Comcare workplace intervention achieved an average reduction in total workplace sitting time of over two hours per workday.[6] This study, by examining how and when these changes occurred, has provided important insights into the success of the intervention messages, as well as suggestions for intervention refinement. Overall, behavioral changes aligned with intervention aims – particularly the *Stand Up* and *Sit Less* messages. Specifically, all intervention participants reduced their total workplace sitting time; most reduced both the number and the duration of their sitting bouts; and, these changes occurred across the workday, though there was wide individual variability in these changes. However, as previously noted,[6] there was minimal uptake of the *Move More* message. Further, consistent with the use of sit-stand workstations, sitting time reductions appeared to primarily be achieved by replacing sitting bouts (especially long sitting bouts), with standing bouts. Notably, the increase in time spent standing tended towards longer standing bouts, which may have detrimental health impacts.[17] Thus, future intervention messages could be refined to further identify strategies to encourage and support
incidental physical activity, and reiterate regular changes in posture (transitioning to/from sitting and standing).

The temporal variations observed both at an individual and group level were suggestive of key considerations for sitting-reduction interventions. Specifically, effects by time since starting work were not observed (suggesting fatigue was not a primary driver of the changes), whereas effects of time of day were observed (suggesting that issues around how workers structure their day and their breaks may be important). Here, morning was a particularly important period of change, with the least change occurring between 12 and 1pm (a common lunch period in the office environment). The correlates of these changes, including the influence of workplace, social norms and peer support, should be investigated in future research.

The accumulation of sedentary time [3, 9, 10, 21, 23] and temporal patterns [13, 14] have been described cross-sectionally, however, this is one of the first studies to examine these changes in an intervention context. Additional strengths of the study include analysis of activity outcomes directly relevant to the intervention messages given and the novel application of methods and measures used in other disciplines to this context. The future use of these methods within intervention and observational physical activity and sedentary behaviour research will provide a more comprehensive understanding of time spent in these behaviours and their potential impacts on health.

Limitations of the study include the non-random allocation of participants and the study not being powered a priori on these secondary analyses. Inadequate sample size may have
contributed to the non-significant intervention effects for bout number and interactions by hour of the day. Further, in this study, the roles of the participants in the intervention group (predominantly administrative) differed from those in the control group (predominantly managerial), which may have impacted upon the type of work tasks undertaken. Finally, qualitative data was collected to determine feasibility and acceptability of the intervention as well as the participants most favoured intervention component (reported in the main outcomes paper [6]). However, data was not collected to qualitatively describe the context of the change to extricate the effects of the environmental strategies (i.e. the sit-stand workstations) from the organisational level support and individual behavior change strategies. Such information may have helped to explain the wide individual variability observed.

In conclusion, the concepts presented in this deconstruction of the effects of a workplace sedentary behaviour intervention have important implications for strengthening understanding of behaviour and behaviour change, with the findings provides important insights into the success of the intervention messages in achieving the desired behaviour change. The findings suggest that interventions which address both sitting bout duration and the number of sitting bouts (i.e. fewer and shorter bouts) can be effective in reducing total workplace sitting time. Furthermore, focusing on time of day rather than time since starting work may be more beneficial for adopting change across the workday.
ACKNOWLEDGEMENTS

This study was a pilot study for the larger NHMRC [APP1002706: 2011-2014] and Victorian Health Promotion funded project titled ‘Reducing prolonged workplace sitting time in office workers: A cluster-randomised controlled trial’. We wish to acknowledge the chief investigators of the project: A/Prof. David Dunstan, Dr Genevieve Healy, Prof Neville Owen, Prof Elizabeth Eakin, A/Prof Anthony LaMontagne, and A/Prof Marj Moodie. We also wish to acknowledge the additional co-authors of the Comcare main outcomes paper: A/Prof Anthony LaMontagne, Prof Neville Owen, Dr Glen Wiesner, Ms Lynn Gunning, Ms Maike Neuhaus, Dr Sheleigh Lawler, and Dr Brianna Fjeldsoe.

COMPETING INTERESTS AND FUNDING SOURCES

Stephens was supported by an Australian Postgraduate Award Scholarship. Winkler was supported by a Queensland Health Core Infrastructure Grant. Dunstan was supported by an Australian Research Council Future Fellowship [#FT100100918]. Eakin was supported by a National Health and Medical Research Council (NHMRC) Senior Research Fellowship [#511001]. Healy was supported by a National Health and Medical Research Council (NHMRC) [# 569861] and Heart Foundation [PH 12B 7054] Fellowship. The Stand Up Comcare study was funded by an NHMRC project grant [#1002706], with additional financial support from the Victorian Health Promotion Foundation. Height-adjustable workstations were provided by Ergotron (www.ergotron.com). Dunstan presented at the 'Juststand Wellness Summit', a conference organised by Ergotron, in 2012 and Healy presented at the same summit in 2013. Ergotron covered travel and accommodation expenses for both Dunstan and Healy. No further honoraria or imbursements were received. The funding bodies had no influence on the conduct
or the findings of the study.
REFERENCES

12 Duvivier BM, Schaper NC, Bremers MA, et al. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS One 2013;8:e55542.

TITLES OF FIGURES

Figure 1. A shaded contour map illustrating the relationship between change in total workplace sitting time (z-axis; dark grey – the greatest reductions, through to light grey – the greatest increases) with change in number of sitting bouts (y-axis) and change in usual bout duration (x-axis) within the intervention group (Comcare, Melbourne, Australia, 2011).

Figure 2. Modified Exposure Variation Analysis17 graph of the mean duration of time spent across each intensity (sitting, standing, stepping) at each bout duration category (accumulation quartiles), for control and intervention groups (a, b) at baseline, and control and intervention groups (c, d) at follow up. Overall at baseline, approximately 25% of each intensity occurred in each of the bout duration categories (Comcare, Melbourne, Australia, 2011).

Figure 3. Intervention effects (intervention change minus control change) on percentage of workplace time spent sitting by (a) hour since starting work and (b) hour of the day (Comcare, Melbourne, Australia, 2011).
Figure 1.
Figure 3.

(a) Hours since started work

(b) Hour of the day

Net difference in sitting time, %

\(\rho \) for interaction = 0.015
Supplemental Table 1. Participant characteristics at baseline for intervention and control groupsa.

<table>
<thead>
<tr>
<th></th>
<th>Control (n=22)</th>
<th>Intervention (n=21)</th>
<th>All (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>42.9 (10.3)</td>
<td>42.2 (10.6)</td>
<td>43.2 (10.3)</td>
</tr>
<tr>
<td>Men</td>
<td>67% (14)</td>
<td>23% (5)</td>
<td>44% (19)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>100% (21)</td>
<td>77% (17)</td>
<td>88% (38)</td>
</tr>
<tr>
<td>Married/Living Together</td>
<td>76% (16)</td>
<td>68% (15)</td>
<td>72% (31)</td>
</tr>
<tr>
<td>Tertiary Education</td>
<td>52% (11)</td>
<td>68% (15)</td>
<td>61% (26)</td>
</tr>
<tr>
<td>Job Categoryb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managers/Professionals</td>
<td>86% (18)</td>
<td>43% (9)</td>
<td>64% (27)</td>
</tr>
<tr>
<td>Clerical/Service/Sales</td>
<td>14% (3)</td>
<td>57% (12)</td>
<td>36% (15)</td>
</tr>
<tr>
<td>Never Smoker</td>
<td>86% (18)</td>
<td>86% (19)</td>
<td>86% (37)</td>
</tr>
<tr>
<td>Body Mass Index, kg/m²</td>
<td>26.2 (4.6)</td>
<td>27.5 (6.1)</td>
<td>26.8 (5.4)</td>
</tr>
<tr>
<td>Waist Circumference, cm</td>
<td>90.9 (14.9)</td>
<td>90.7 (11.8)</td>
<td>90.8 (13.2)</td>
</tr>
<tr>
<td>History of high cholesterol</td>
<td>24% (5)</td>
<td>14% (3)</td>
<td>19% (8)</td>
</tr>
<tr>
<td>History of diabetes</td>
<td>0% (0)</td>
<td>0% (0)</td>
<td>0% (0)</td>
</tr>
<tr>
<td>Loss to follow up</td>
<td>18.2% (4)</td>
<td>14.3% (3)</td>
<td>16.3% (7)</td>
</tr>
</tbody>
</table>

aThis table presents mean (SD) or percentage (number) of group. bOne intervention participant did not complete this question.
Supplemental Table 2. Intervention effects (intervention changes – control changes) on percentage workplace time spent sitting by hour since starting work and by hour of the day.

<table>
<thead>
<tr>
<th>Hour since starting work</th>
<th>Hour of the day</th>
<th>Intervention Effect (95% Confidence Interval)</th>
<th>Intervention Effect (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to <1</td>
<td>< 9am</td>
<td>-32.36 (-42.41, -22.31)***</td>
<td>-37.10 (-50.71, -23.49)***</td>
</tr>
<tr>
<td>1 to <2</td>
<td>9 to <10am</td>
<td>-26.33 (-36.39, -16.28)***</td>
<td>-33.02 (-44.03, -21.99)***</td>
</tr>
<tr>
<td>2 to <3</td>
<td>10 to <11am</td>
<td>-26.42 (-36.48, -16.37)***</td>
<td>-23.61 (-34.50, -12.72)***</td>
</tr>
<tr>
<td>3 to <4</td>
<td>11 to <12am</td>
<td>-27.23 (-37.29, -17.16)***</td>
<td>-37.61 (-48.48, -26.75)***</td>
</tr>
<tr>
<td>4 to <5</td>
<td>12 to <1pm</td>
<td>-20.82 (-31.00, -10.65)**</td>
<td>-10.77 (-21.63, 0.09)</td>
</tr>
<tr>
<td>5 to <6</td>
<td>1 to <2pm</td>
<td>-17.05 (-27.29, -6.80)*</td>
<td>-21.94 (-32.84, -11.04)**</td>
</tr>
<tr>
<td>6 to <7</td>
<td>2 to <3pm</td>
<td>-22.74 (-33.08, -12.40)***</td>
<td>-20.60 (-31.50, -9.70)**</td>
</tr>
<tr>
<td>7 to <8</td>
<td>3 to <4pm</td>
<td>-24.61 (-35.26, -13.96)***</td>
<td>-18.57 (-29.58, -7.57)**</td>
</tr>
<tr>
<td>≥8</td>
<td>4 to <5pm</td>
<td>-24.35 (-35.74, -12.96)***</td>
<td>-21.40 (-32.89, -9.92)**</td>
</tr>
<tr>
<td></td>
<td>≥ 5pm</td>
<td>-25.77 (-40.76, -10.78)**</td>
<td></td>
</tr>
</tbody>
</table>

Overall p for interaction (8df)\(^b\) \(p = 0.648\) Overall p for interaction (8df)\(^b\) \(p = 0.015\)

\(^{**}p < 0.001, ^{*}p < 0.01, ^{*}p < 0.05. ^aAdjusted for level of education. ^bOverall p for interaction group by time point (pre/post) by hour.
Supplemental Figure 1.

a) Most improvement in total workplace sitting time

(≈149.6 mins)

b) Moderate improvement in total workplace sitting time

(range -69.3 to -149.5 mins)

c) Least improvement in total workplace sitting time

(≈89.2 mins)