citate these morphologic events with the rapid release of histamine.7,8 Although the precise triggering mechanism, among the many possible ones, cannot be determined by morphologic analysis alone, the identification of these morphologic events suggests a role for mast cells and their release reactions in the pathogenesis of otherwise unexplained cardiac disorders.

Boston, MA 02215
Beth Israel Hospital

From the NEJM Archive. Copyright © 2009 Massachusetts Medical Society. All rights reserved.

ENTERIC HYPEROXALURIA AND UROLITHIASIS

To the Editor: Patients with small intestinal disease, jejunoileal bypass, or ileal resection may have hyperoxaluria and calcium oxalate urolithiasis as a complication.1-5 The cause of the hyperoxaluria in these conditions, collectively known as enteric hyperoxaluria, has now been shown to be hyperabsorption of oxalate from the bowel due to complexing of calcium by the malabsorbed fatty acids in the gut6 and increased colonic permeability to oxalate caused by both bile and fatty acids.2

Recently we showed that patients with recurrent calcium-stone formation had malabsorption of ascorbate from the gut, which in turn resulted in increased conversion of ascorbate to oxalate at the site and subsequently in hyperoxaluria. In addition, we showed that the intravenous administration of ascorbate to these patients and normal subjects did not increase urinary oxalate output in either group.6 We investigated ascorbate metabolism in three patients with enteric hyperoxaluria: Patient 1, a 57-year-old man in whom 82 cm of ileum was resected and right hemicolectomy performed; Patient 2, a 52-year-old woman in whom 30 cm of jejunum and 50 cm of terminal ileum remained after resection; and Patient 3, a 30-year-old man in whom 68 cm of jejunum was anastomosed to the left colon during bowel resection. All patients had a 5- to 10-fold increase in fecal fat excretion and multiple episodes of relapsing colic, with an average of three attacks per year, and required renal surgery two to four years after bowel resection.

The 24-hour urinary ascorbate concentrations of these patients, though low, were within the reference range (>0.2 mmol per day).

Each was given 2 g of oral ascorbate as a loading dose, and 24-hour urinary ascorbate and oxalate excretion was monitored as described previously.5 The patients had significant (P = 0.05, Mann-Whitney nonparametric statistics) hyperexcretion of ascorbate (excretion expressed as a percentage of the loading dose: 6.4 percent in Patient 1, 6.1 percent in Patient 2, 0.4 percent in Patient 3; 19.7 to 29.3 percent in four normal subjects) and hyperexcretion of oxalate (2.35 percent, 0.74 percent, 1.35 percent, and 0.37 to 0.5 percent, respectively).

The New England Journal of Medicine
Downloaded from nejm.org at UQ Library on April 2, 2017. For personal use only. No other uses without permission.
From the NEJM Archive. Copyright © 2009 Massachusetts Medical Society. All rights reserved.
The ascorbate-induced hyperoxaluria in our patients may partly explain why renal oxalate excretion in such patients is not stabilized by a low-oxalate diet.1,4 Treatment with high-dose calcium (3 g per day) and a low-fat diet normalized renal oxalate excretion in all three of our patients (<0.50 mmol per day; range before treatment, 0.92 to 1.07). Urinary calcium excretion after several days of high-dose calcium loading was less than 5 mmol per day (normal, <7.5). The biochemical changes have been paralleled by a marked reduction in stone formation in all three patients. Although oxalate excretion was controlled by high-dose calcium supplements, it is recommended that patients with hyperoxaluria, like those with recurrent calcium-stone formation, not receive high-dose ascorbate supplements.5,6

Jennifer M. Brown, M.B.Ch.B.
Ainsley H. Chalmers, Ph.D.
David M. Cowley, M.B.Ch.B.
South Brisbane 4101, Australia
Mater Misericordiae Public Hospitals

OCCASIONAL NOTES

MARKETING A NUTRITIONAL "REVOLUTIONARY BREAKTHROUGH"

Trading on Names

The fact that they have M.D.'s backing up the product is the biggest plus they have. ... For decades the multilevel field [of marketing] has been the province of snake-oil salesmen, so the credibility provided by top-name medical people is invaluable.

These quotes are from "Big Plans," published in February 1986 in Inc., the "magazine for growing companies." Who are "they," what is the product, who are the M.D.s, and are they really top-name medical people?

"They" are United Sciences of America, Inc. (USA, Inc.), of Carrollton (Dallas), Texas. The "product" is a nutritional supplement — in fact, four supplements. The M.D.s backing the product are members of the Scientific Advisory Board of USA, Inc.; most of them are highly recognized in their fields of expertise, but not in nutrition.

What intrigued me about USA, Inc., was a statement from its "Company Overview" of its corporate mission: "To provide all Americans with the potential of optimum health and vital energy through state-of-the-art nutrition." To accomplish this, "United Sciences of America, Inc. has drawn together into a single corporate entity the brilliant talents of world-renowned scientists, medical researchers and business experts to achieve a new national goal." The statement continued,

United Sciences of America, Inc.'s revolutionary program was born out of necessity: a dedicated response to the soaring dangers to our health from toxic pollution, stressful lifestyles and the loss of vital nutrients in food from "modern" farming techniques, mass processing and improper cooking.