Growth Hormone Secretion Is Correlated With Neuromuscular Innervation Rather Than Motor Neuron Number in Early-Symptomatic Male Amyotrophic Lateral Sclerosis Mice

School of Biomedical Sciences (F.J.S., K.L., M.C.B., S.T.N., C.C.), University of Queensland, St Lucia, Queensland, Australia, 4072; Centre of Advanced Light Microscopy (M.J.F.), School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia, 4072; Department of Medicine (J.D.V.), Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, Minnesota 55905; Department of Neurology (P.A.M.), Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia; and University of Queensland Centre for Clinical Research (P.A.M., S.T.N.), University of Queensland, Herston, Queensland, Australia, 4006

GH deficiency is thought to be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, therapy with GH and/or IGF-I has not shown benefit. To gain a better understanding of the role of GH secretion in ALS pathogenesis, we assessed endogenous GH secretion in wild-type and hSOD1G93A mice throughout the course of ALS disease. Male wild-type and hSOD1G93A mice were studied at the presymptomatic, onset, and end stages of disease. To assess the pathological features of disease, we measured motor neuron number and neuromuscular innervation. We report that GH secretion profile varies at different stages of disease progression in hSOD1G93A mice; compared with age-matched controls, GH secretion is unchanged prior to the onset of disease symptoms, elevated at the onset of disease symptoms, and reduced at the end stage of disease. In hSOD1G93A mice at the onset of disease, GH secretion is positively correlated with the percentage of neuromuscular innervation but not with motor neuron number. Moreover, this occurs in parallel with an elevation in the expression of muscle IGF-I relative to controls. Our data imply that increased GH secretion at symptom onset may be an endogenous endocrine response to increase the local production of muscle IGF-I to stimulate reinnervation of muscle, but that in the latter stages of disease this response no longer occurs.

(Endocrinology 154: 4695–4706, 2013)
of disease, hSOD1G93A mice show significant reductions in GHRH-stimulated GH release, decreased pulsatile GH secretion, diminished levels of circulating IGF-I, and lower expression of IGF-I receptor (IGF-IR) in skeletal muscle and spinal cord (22). Collectively, observations in humans and mice suggest that altered endocrine function, at least at the level of the GH/IGF-I axis, coexist with pathological changes in ALS. Although GH/IGF-I directed therapies have been trialed in ALS, the outcomes of these studies were far from promising (21, 23–26). Consequently, there is a need to better understand how, or if, altered GH/IGF-I function contributes to ALS pathogenesis.

To provide insight into the role of GH/IGF-I dysfunction on the onset and progression of ALS, we assessed pulsatile GH secretion and muscle-specific GH receptor (GH-R) expression in hSOD1G93A mice, relative to disease progression. In addition, we measured circulating levels of IGF-I, and muscle-specific IGF-I and IGF-IR expression. When compared with age-matched wild-type (WT) controls, hSOD1G93A mice have higher GH secretion at an age that corresponds to the onset of disease symptoms, when there is loss of motor neurons from the spinal cord. Loss of motor neurons leads to loss of innervation of skeletal muscle neuromuscular junctions (NMJs), which is compensated by reinnervation from other surviving motor neurons (27). GH secretion at this stage of disease was positively correlated with the percentage of NMJs that were innervated, whereas we observed no association between the pulsatile release of GH and crural flexor motor neuron numbers. This suggests that GH plays a role in reinervation of muscle fibers, as compensation for denervation. We also observed higher levels of muscle-specific IGF-I expression in hSOD1G93A mice at the onset of disease, which is indicative of muscle-specific anabolic actions of GH. Secretion of IGF-I by muscle fibers could assist in stimulating sprouting of axon terminals to form new NMJs. This study is the first to document changes in the GH/IGF-I axis relative to disease severity. Our observations suggest that alterations to the GH/IGF-I axis in hSOD1G93A mice may occur as a consequence of the disease process and represents an endogenous response to counteract the muscle atrophy and weakness that is seen in ALS.

Materials and Methods

Animals

WT and hSOD1G93A mice (B6.Cg-Tg[SOD1-G93A]1Gur/J) (28) were bred at the University of Queensland. Founder lines were obtained from The Jackson Laboratory. The SOD1-G93A transgene was designed with a mutant human superoxide dismutase-1 (SOD1) gene, harboring a single amino acid substitution of glycine to alanine (at codon 93). The transgene is driven by the endogenous human SOD1 promoter, resulting in phenotypic changes matching ALS symptoms. Experiments were conducted in male age-matched WT and male hSOD1G93A animals at ages that correspond to well-defined stages of disease progression: prior to the onset of overt symptoms (Presymptomatic; 30–36 d), the onset of hind limb weakness (Onset; 63–75 d), and a latter stage of disease characterized by hind-limb paralysis (End-stage; 150–175 d) (22, 29). Mice were pair-housed (n = 2) in a 12-hour light, 12-hour dark cycle (on at 0600 h and off at 1800 h) and had free access to food (20% protein, 4.8% fat; Specialty Feeds) and water. Room temperature was maintained at 22 ± 2°C. Mice were anesthetized with sodium pentobarbital (ip, 32 mg/kg) prior to the collection of tissue samples. All animal procedures were approved by The University of Queensland Animal Ethics Committee and were performed in accordance with national guidelines.

Experiment 1: Assessment of changes in the GH/IGF-I axis in hSOD1G93A mice relative to disease severity

Measures of pulsatile GH secretion from hSOD1G93A mice were assessed at ages corresponding to presymptomatic, onset, and the end stage of disease (n = 6/age). Observations were compared with age-matched WT controls (n = 8/age). Two weeks prior to the assessment of GH secretion, animals were relocated to the procedure room. Pulsatile GH secretion was assessed as previously described (22, 30). Starting at 0700 hours, 36 sequential tail-tip blood samples were collected from each mouse at 10-minute intervals. All animals had ad libitum access to food and water for the duration of the experiment. Blood loss was restricted to less than 7.5% of total blood volume. Following collection of blood samples, animals were returned to their home cage and allowed 2 days to recover. A subset of animals (n = 5–6/age and genotype) was sacrificed for collection of spinal cord, gastrocnemius, and plasma. Samples were processed for histological verification of disease progression as detailed previously (29), and assessment of hypothalamic somatostatin (Srif) and Ghrh mRNA expression, circulating IGF-I, muscle-specific IGF-I expression, and muscle-specific Gh-r mRNA, and GH-R and IGF-IR protein expression.

Experiment 2: Correlation analysis of pulsatile GH secretion in hSOD1G93A mice at disease onset relative to histopathological hallmarks of disease

Pulsatile GH secretion from a second cohort of hSOD1G93A mice at disease onset (n = 16) was measured for correlation between parameters of GH secretion and the histological hallmarks of disease. Given the absence of histological pathology in WT mice, controls (n = 6) were included to confirm altered GH secretion as observed in experiment 1. Assessment of pulsatile GH secretion was performed as described in experiment 1. Following the collection of blood samples, animals were returned to their home cage. After 2 days of recovery, hSOD1G93A mice were sacrificed for collection of the gastrocnemius muscle and spinal cord. Measures of pulsatile GH secretion were compared with the percentage of innervated NMJs of the gastrocnemius muscle (as assessed by percentage acetylcholine receptor [AChR] plaques colocalized with neurofilament and synaptophysin,
n = 16), and the number of neurons in the crural flexor motor neuron pool (L4–L5, n = 12).

Hormone analysis
Circulating IGF-I and IGF-I expression within gastrocnemii were determined using a commercial ELISA (R&D Systems). Analysis of whole blood GH and pituitary GH content was performed using an in-house GH ELISA (30). Muscle tissue and pituitary glands were lysed in buffer: 50 mM Tris-HCl, 150 mM NaCl, 10 mM NaF, 10 mM Na₃P₂O₇, 1 mM Na₂VO₄, 1% NP-40, and Protease Inhibitor (Roche). Expression levels of IGF-I in muscle and GH content in pituitary glands were normalized to total protein. The intra- and interassay coefficients of variation for all assays were below 4.50%.

Real-time quantitative PCR
Isolated whole hypothalamic tissue from WT and hSOD1G93A mice at disease onset and gastrocnemius muscles of WT and hSOD1G93A mice at the presymptomatic, onset, and end-stage age were processed for gene expression. Samples were suspended in 1 mL TRIzol (Life Technologies) and stored at −80°C for subsequent analysis. Real-time PCR was conducted as previously described (22). Results were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Final measures are presented as relative levels of corrected gene expression compared with expression in controls. For the hypothalamus, mRNA expression was limited to Srif (No. 4331182; Life Technologies) and Ghrh (No. 4331182; Life Technologies) mRNA using commercial TaqMan primers. For gastrocnemius muscles, gene expression was limited to Gh-r mRNA (Catalog No. 4331182; Life Technologies).

Western blotting
Gastrocnemius muscles of WT and hSOD1G93A mice were lysed in buffer (as above). Samples were resolved by SDS-PAGE and transferred to nitrocellulose membranes. Membranes for IGF-I receptor α (IGF-IRα) and IGF-I receptor β (IGF-IRβ) were blocked in 5% skim milk-0.1% Tris-buffered saline-Tween 20 (TBS-T). Membranes for GH-R were blocked in 2.5% BSA-TBS-T. Membranes were incubated overnight with anti-IGF-IRα (1:150 in 2.5% skim milk-TBS-T; sc-712; Santa-Cruz), anti-IGF-IRβ (1:100 in 2.5% skim milk-TBS-T; sc-713; Santa-Cruz), or anti-GH-R (1:1 000 in 1.25% BSA-TBS-T; G8919; Sigma) and detected with donkey antirabbit secondary antibody (A-11034; Invitrogen). Whole-mount muscles were imaged with a Zeiss LSM Meta 510 upright confocal microscope using a Plan-Apochromat ×40 oil objective (NA = 1.3; Carl Zeiss Inc).

Data and statistical analysis
The kinetics and secretory patterns of pulsatile GH secretion were determined by deconvolution analysis following parameters established previously (22, 32, 33). Approximate entropy of pulsatile GH secretion is considered to be regular when the P value is at .35 or below, and progressively less regular as the P value approaches 1. Correlation analyses were determined by linear regression and a Spearman correlation coefficient using GraphPad Prism 6.0c (GraphPad Inc). Differences between groups were limited to age-matched controls, and significant differences were identified by unequal two-tailed Student’s t test using GraphPad Prism 6.0c (GraphPad Inc). Data are presented as mean ± SEM. The threshold level for statistical significance was set at P < .05.

Results
Experiment 1: Disease progression specific changes in the GH/IGF-I axis in ALS in hSOD1G93A mice
Motor neuron numbers and neuromuscular innervation are reduced in hSOD1G93A mice at the onset stage of disease
ALS is characterized by the irreversible loss of upper (cortical) and lower motor neurons (2, 34, 35). The loss of motor neurons is reflected by a loss in motor unit number throughout the course of disease (29, 36, 37). This is accompanied by the progressive loss of innervation of NMJs in skeletal muscle (29), and compensatory axonal sprouting leading to reinnervation (27). We previously described a significant loss of crural flexor motor neurons and NMJ innervation in hSOD1G93A mice at the latter stages of disease (22). To confirm histopathological changes in hSOD1G93A mice, we quantified crural flexor motor neurons and NMJ innervation in presymptomatic hSOD1G93A mice that had no signs of disease, and in hSOD1G93A mice that had just developed hind limb weakness (Onset). These distinct disease stages have been characterized previously (29) and provide histolog-
ical criteria for accurate assessment of disease progression.

When compared with age-matched WT controls, presymptomatic hSOD1^{G93A} mice had a modest yet significant reduction in the number of crural flexor motor neurons (Figure 1, A–C), whereas neuromuscular innervation was unchanged (Figure 1, D–F), indicative of compensatory reinnervation. At the onset stage of disease, hSOD1^{G93A} mice displayed a significant decrease in crural flexor motor neuron number (Figure 1, G–I) and NMJ innervation of the muscle (Figure 1, J–L). Our data are congruent with previous observations of the progressive loss of motor neurons and loss of NMJ innervation in hSOD1^{G93A} mice (28, 29) and in ALS patients (38–40).

Pulsatile GH secretion is altered throughout disease progression in hSOD1^{G93A} mice

Having established that GH deficiency in human ALS (19, 20) is similar to that in end-stage hSOD1^{G93A} mice (22), we aimed to investigate the possible role of altered GH secretion in disease pathogenesis. We assessed pulsatile GH secretion in hSOD1^{G93A} mice at ages that reflect the presymptomatic, onset, and end stage of disease. Measures of pulsatile GH secretion in hSOD1^{G93A} mice were compared with that of age-matched WT controls. At all ages, pulsatile GH secretion was characterized by peak periods of GH secretion, flanked by periods of low basal secretion (Figure 2). Deconvolution analysis of GH secretion profiles between presymptomatic hSOD1^{G93A} animals and WT age-matched controls confirmed no differences in any parameters of pulsatile GH secretion (Table 1, Presymptomatic age). We observed significantly elevated total, pulsatile, and the mass per pulse (MPP) of GH secretion in hSOD1^{G93A} mice at disease onset when compared with WT age-matched controls (Table 1, Onset age). As demonstrated previously (22), we observed a significant reduction in total and pulsatile GH secretion, and the MPP of GH secretion in end-stage hSOD1^{G93A} mice when compared with WT age-matched controls (Table 1, End-stage...
Our observations thus reveal normal endogenous release of GH in presymptomatic hSOD1^{G93A} mice (regardless of the initial loss of motor neurons, Figure 1), elevated endogenous pulsatile GH secretion at the time of disease symptom onset when there is a significant loss of NMJ innervation of skeletal muscle (Figure 1), and the reduction in endogenous pulsatile GH secretion at the latter stage of disease progression.

Altered pulsatile GH secretion at disease onset in hSOD1^{G93A} mice coincides with altered Ghrh mRNA expression

In response to GH feedback, SRIF and GHRH inhibit and stimulate GH release, respectively (41). Assessment of Srif and Ghrh mRNA expression within the hypothalamus of hSOD1^{G93A} and WT animals at an age reflecting the onset of disease demonstrates no significant alterations in hypothalamic feedback that may account for increased GH release at this time. Rather, we observed a significant decline in Ghrh mRNA expression, whereas Srif mRNA expression remained unchanged (Figure 3, A and B). The decline in Ghrh mRNA, and presumably the eventual reduction in GHRH-induced GH production, may contribute to the observed reduction in pituitary GH content at the latter stage of disease progression (Figure 3C). Although speculative, data suggest that the factors accounting for enhanced GH release at disease onset do not act at the level of the hypothalamus.

Altered pulsatile GH secretion is not associated with changes in expression of skeletal muscle GH-R

GH exerts its anabolic effects directly at the level of skeletal muscle by signaling through the GH-R (42, 43). The irreversible loss of motor neurons in hSOD1^{G93A} mice throughout disease (28) occurs in parallel with pathological changes in skeletal muscle, including muscle atrophy (44, 45) and loss of NMJ innervation (29, 45). Thus, we asked whether altered GH secretion at the time of skeletal muscle denervation might result in altered GH-R expression in skeletal muscle as a means to compensate for muscle pathology. We determined the expression of Gh-r mRNA and GH-R protein in skeletal muscle of WT and hSOD1^{G93A} mice at ages that corresponded to presymptomatic, onset, and end stage of disease. Compared with age-matched WT con-
controls, we observed no significant changes in protein (Figure 4, A and B) or gene (Figure 4C) expression of GH-R in hSOD1^{G93A} mice throughout disease. Observations suggest that, despite altered pulsatile GH secretion profiles, the capacity for GH to act on skeletal muscle in hSOD1^{G93A} mice is not altered.

Disease progression–specific changes in GH secretion in hSOD1^{G93A} mice occur alongside an alteration in muscle specific but not circulating levels of IGF-I

The consequences of altered GH secretion throughout disease may be reflected by changes in IGF-I or IGF-IR expression. Although the actions of IGF-I are widespread (46–50), circulating IGF-I may inhibit GH production by negative feedback to the hypothalamus and anterior pituitary gland (48). Moreover, peak levels of GH are positively correlated to the production and release of IGF-I (51, 52). We have previously shown that diminished pulsatile GH secretion in hSOD1^{G93A} mice at the latter stages of disease occurs alongside a reduction in circulating levels of IGF-I, normal skeletal muscle IGF-I, and a decrease in the expression of muscle-specific IGF-IR^{/H9251} (22). Thus, we sought to determine circulating levels of IGF-I, and skeletal muscle expression of IGF-I, IGF-IR^{/H9251}, and IGF-IR^{/H9252} protein in presymptomatic hSOD1^{G93A} mice at the presymptomatic and onset stages of disease. We found no difference in the expression of circulating IGF-I (Figure 5A), and skeletal muscle IGF-I (Figure 5B), IGF-IR^{/H9251} (Figure 5, C and D), and IGF-IR^{/H9252} (Figure 5, E and F) protein in presymptomatic hSOD1^{G93A} mice when compared with WT age-matched controls.

Table 1. Deconvolution Analysis Parameters of Pulsatile GH Secretion From Age-Matched Wild Type Controls and hSOD1^{G93A} Mice at an Age Prior to the Development of Disease Symptoms (Presymptomatic), at an Age Corresponding to the Appearance of Disease Symptoms (Onset), and at an Age Corresponding to Severe Disease Symptoms (End Stage)

<table>
<thead>
<tr>
<th></th>
<th>WT (n = 8)</th>
<th>SOD (n = 6)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presymptomatic (30–36 d old)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total GH secretion, ng/mL/6 h</td>
<td>895 ± 116</td>
<td>1192 ± 324</td>
<td>.35</td>
</tr>
<tr>
<td>Pulsatile GH secretion rate, ng/mL/6 h</td>
<td>802 ± 92.0</td>
<td>1091 ± 292</td>
<td>.31</td>
</tr>
<tr>
<td>Mass of GH secreted/pulse, ng/mL</td>
<td>184 ± 42.8</td>
<td>231 ± 84.2</td>
<td>.60</td>
</tr>
<tr>
<td>Basal GH secretion rate, ng/mL/6 h</td>
<td>93.0 ± 32.8</td>
<td>99.4 ± 48.0</td>
<td>.91</td>
</tr>
<tr>
<td>Number of pulses/6 h</td>
<td>5.13 ± 0.58</td>
<td>5.88 ± 0.60</td>
<td>.42</td>
</tr>
<tr>
<td>Onset (63–75 d old)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total GH secretion, ng/mL/6 h</td>
<td>494 ± 52.0</td>
<td>1308 ± 301</td>
<td>.01<sup>a</sup></td>
</tr>
<tr>
<td>Pulsatile GH secretion rate, ng/mL/6 h</td>
<td>451 ± 50.6</td>
<td>1214 ± 300</td>
<td>.01<sup>a</sup></td>
</tr>
<tr>
<td>Mass of GH secreted/pulse, ng/mL</td>
<td>121 ± 18.1</td>
<td>424 ± 146</td>
<td>.04<sup>a</sup></td>
</tr>
<tr>
<td>Basal GH secretion rate, ng/mL/6 h</td>
<td>43.1 ± 10.7</td>
<td>94.3 ± 41.3</td>
<td>.20</td>
</tr>
<tr>
<td>Number of pulses/6 h</td>
<td>3.88 ± 0.30</td>
<td>3.50 ± 0.56</td>
<td>.54</td>
</tr>
<tr>
<td>End stage (150–175 d old)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total GH secretion, ng/mL/6 h</td>
<td>583 ± 78.5</td>
<td>313 ± 32.8</td>
<td>.02<sup>a</sup></td>
</tr>
<tr>
<td>Pulsatile GH secretion rate, ng/mL/6 h</td>
<td>526 ± 62.4</td>
<td>248 ± 44.6</td>
<td><.01<sup>a</sup></td>
</tr>
<tr>
<td>Mass of GH secreted/pulse, ng/mL</td>
<td>189 ± 32.1</td>
<td>70.4 ± 16.0</td>
<td><.01<sup>a</sup></td>
</tr>
<tr>
<td>Basal GH secretion rate, ng/mL/6 h</td>
<td>56.3 ± 19.5</td>
<td>65.4 ± 22.6</td>
<td>.77</td>
</tr>
<tr>
<td>Number of pulses/6 h</td>
<td>3.38 ± 0.38</td>
<td>3.83 ± 0.54</td>
<td>.49</td>
</tr>
</tbody>
</table>

Samples were collected at 10-minute intervals between 0700 h and 1300 h. Data are presented as mean ± SEM.

^a P < .05 was considered significant.

![Figure 3](image-url)
Figure 3. Hypothalamic Srf (A) and Ghrh (B) mRNA expression in age-matched WT and hSOD1^{G93A} (SOD) mice at disease onset (63 to 75 d old), and pituitary GH content (C) in WT and SOD mice at ages corresponding to the presymptomatic (PS; 30–36 d old), onset (OS, 63 to 75 d old), and end stage (ES; 150–175 d old) ages of disease progression. No change in the expression of hypothalamic Srf mRNA was observed, whereas Ghrh mRNA expression declined significantly relative to age-matched WT controls. Pituitary GH content remained unchanged at disease onset; however, it declined significantly toward the latter stage of disease progression. Values are expressed as mean ± SEM. A value of P < .05 was accepted as significant; n = 6/group.
at the onset of disease. By contrast, the expression of muscle IGF-I protein in hSOD1G93A mice was significantly higher at the onset stage of disease when compared with WT age-matched controls (Figure 5B).

Experiment 2: GH secretion in hSOD1G93A mice at the onset of disease correlates with reduced NMJ denervation but not motor neuron survival

When compared with age-matched controls, an elevation in GH secretion was observed in hSOD1G93A mice at the disease stage corresponding to the loss of motor neurons and reduced NMJ innervation (Onset; experiment 1). Thus, using a second cohort of hSOD1G93A mice at the onset stage of disease symptoms, we next assessed the relationship between GH secretion and these histological hallmarks of disease. For each individual hSOD1G93A animal, GH secretion profiles were correlated with the percentage of NMJ innervation and crural flexor motor neuron number from their gastrocnemius muscle and spinal cord.

In accordance with experiment 1, total, pulsatile, and MPP of GH secretion in hSOD1G93A mice were elevated at the onset stage of disease when compared with age-matched WT mice (Table 2). Similarly, when compared with age-matched WT controls, we observed a decrease in the percentage of neuromuscular innervation and crural flexor motor neuron number. In hSOD1G93A mice, Spearman correlation coefficient revealed that total and pulsatile GH secretion, and the MPP of GH secretion were positively correlated with the percentage of innervated NMJs; animals with higher levels of GH had less denervation. Crural flexor motor neuron number did not correlate with any of the parameters of pulsatile GH secretion. Representative examples of comparisons between total and pulsatile GH secretion, and the MPP of GH secretion relative to percentage NMJ innervation (Figure 6, A–C) and motor neuron count (Figure 6, D–F) are illustrated in Figure 6. All correlations are presented in Table 3.
Table 2. Histopathological Data (Crural Flexor Motor Neuron Number and Percentage NMJ Innervation), Deconvolution Analysis Parameters and Approximate Entropy Analysis Parameters of Pulsatile GH Secretion From C57Bl/6J and/or hSOD1G93A Mice at an Age Corresponding to the Appearance of Disease Symptoms (Onset, 63 to 75 days of age)

<table>
<thead>
<tr>
<th>Histopathological Data</th>
<th>WT</th>
<th>SOD</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor neuron count</td>
<td>75.0 ± 5.18 (n = 6)</td>
<td>46.4 ± 5.19 (n = 12–16)</td>
<td><.01a</td>
</tr>
<tr>
<td>% NMJ innervation</td>
<td>96.9 ± 1.14 (n = 6)</td>
<td>88.5 ± 3.21 (n = 12–16)</td>
<td>.03a</td>
</tr>
</tbody>
</table>

Measure of pulsatile GH release

Total GH secretion, ng/mL/6 h	514 ± 73.8 (n = 6)	925 ± 146 (n = 16)	.01a
Pulsatile GH secretion rate, ng/mL/6 h	461 ± 64.7 (n = 6)	803 ± 144 (n = 16)	.04a
Mass of GH secreted/pulse (MPP), ng/mL	107 ± 12.2 (n = 6)	184 ± 29.2 (n = 16)	.04a
Basal GH secretion rate, ng/mL/6 h	52.6 ± 14.0 (n = 6)	105 ± 19.4 (n = 16)	.03a
Number of pulses/6 h	4.38 ± 0.32 (n = 6)	4.67 ± 0.38 (n = 16)	.57
Approximate entropy (1,0.35)	0.51 ± 0.05 (n = 6)	0.45 ± 0.04 (n = 16)	.34

For GH, samples were collected at 10-minute intervals between 0700 h and 1300 h. Data are presented as mean ± SEM.
a P < .05 was considered significant.

Discussion

ALS is a neurodegenerative disease, characterized by the irreversible death of upper (cortical) and lower motor neurons (1, 2). Although predominantly considered a neurological disorder, the dysregulation of multiple metabolic processes is thought to contribute to the rate of disease progression (14, 53). GH deficiency is observed in human ALS patients and mouse models of ALS (19, 22). However, the contribution of altered GH secretion to disease pathogenesis remains unknown. This is of particular interest, given that IGF-I-directed interventions prolong survival in a mouse model of ALS (54–56), whereas GH/IGF-I therapies were of no benefit in slowing disease progression in human ALS (21, 23–26). The discrepancy between these studies may occur as a consequence of species-specific differences in disease progression. Alternatively, disease stage-specific or tissue-specific interventions may have accounted for improved outcome in ALS mice. For example, effective IGF-I intervention in hSOD1G93A mice occurred prior to the onset of disease pathology (55), or via administration of IGF-I to the central nervous system (57). To explain the striking differences in treatment outcomes between human trials and animal studies, it is essential that we understand the physiological changes in the GH/IGF-I axis throughout disease progression. Moreover, given that the existing treatment for ALS is largely ineffective, and that no cure currently exists for ALS, identification of key factors that modify the course of disease is of critical importance.

In this study, we first investigated the GH/IGF-I system in the hSOD1G93A mouse at various stages of ALS disease progression. hSOD1G93A mice showed alterations in GH secretion as disease symptoms and severity progressed. Relative to age-matched WT controls, we observed equivalent levels of GH secretion at an age reflecting the pre-symptomatic stage of disease, elevated GH secretion at the onset of disease symptoms, and GH deficiency at the latter stage of disease. When compared with age-matched con-

Table 3. Spearman Correlation Analysis of Deconvolution Parameters of Pulsatile GH Secretion With Percentage NMJ Innervation of the Gastrocnemius, and Crural Flexor Motor Neuron Number From C57Bl/6J and/or hSOD1G93A Mice at an Age Corresponding to the Appearance of Disease Symptoms (Onset, 63 to 75 days of age)

<table>
<thead>
<tr>
<th>% NMJ Innervation (n = 16)</th>
<th>Motor Neuron Number (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
</tr>
<tr>
<td>Total GH secretion, ng/mL/6 h</td>
<td>0.64</td>
</tr>
<tr>
<td>Pulsatile GH secretion rate, ng/mL/6 h</td>
<td>0.69</td>
</tr>
<tr>
<td>Mass of GH secreted/burst (MPP), ng/mL</td>
<td>0.82</td>
</tr>
<tr>
<td>Basal GH secretion rate, ng/mL/6 h</td>
<td>0.09</td>
</tr>
<tr>
<td>Number of pulses/6 h</td>
<td>−0.39</td>
</tr>
<tr>
<td>Approximate entropy (1,0.35)</td>
<td>−0.31</td>
</tr>
</tbody>
</table>

For GH, samples were collected at 10-minute intervals between 0700 h and 1300 h. Data are presented as mean ± SEM.
a P < .05 was considered significant.
controls, normal levels of circulating and muscle IGF-I, and muscle GH-R and IGF-IR (α and β subunit) protein, accompanied normal pulsatile GH secretion in hSOD1^{G93A} mice at the presymptomatic stage of disease. When compared with age-matched WT controls, hSOD1^{G93A} mice at disease onset had higher levels of pulsatile GH and muscle IGF-I protein expression, but normal circulating levels of IGF-I, and skeletal muscle GH-R and IGF-IR (α and β subtype) protein expression. By the end stage of disease in hSOD1^{G93A} mice, and despite GH deficiency, there was no change in skeletal muscle GH-R protein expression. We have previously shown that GH-deficient hSOD1^{G93A} mice at the end stage of disease have decreased circulating IGF-I, normal muscle IGF-I, and decreased skeletal muscle IGF-IRα (22). After characterizing GH secretion relative to disease progression, we assessed the relationship between GH secretion and histological hallmarks of disease in individual hSOD1^{G93A} mice at the onset of symptoms. Parameters of pulsatile GH secretion were positively correlated with the percentage of NMJ innervation (suggesting reinnervation has occurred to compensate for denervation) in skeletal muscle, but not with crural flexor motor neuron number. Taken together, our observations suggest that altered GH secretion and muscle IGF-I expression may reflect an endogenous endocrine response that serves to counteract the denervation that occurs in ALS, as it is known that IGF-I promotes axonal sprouting (58).

Although GH modulates the size and density of cortical neurons during development (59), it does not regulate the survival of motor neurons that innervate the hind limb (60). Thus, it is unlikely that GH alone would attenuate neuronal death in ALS. In line with this, GH therapy in ALS patients does not slow disease progression (21, 25), nor did we observe alterations in GH release relative to motor neuron death. When compared with age-matched WT controls, presymptomatic hSOD1^{G93A} mice had reduced crural flexor motor neuron numbers, whereas the secretion of GH did not change. Moreover, given that parameters of pulsatile GH secretion did not correlate with crural flexor motor neuron number in hSOD1^{G93A} mice at the onset of disease, we conclude that altered GH release does not specifically occur as a consequence of motor neuron loss. If not neuronal death, does muscle pathology in ALS contribute to altered GH release?

If changes in GH/IGF-I were a consequence of muscle pathology, it may be expected that the first observable differences in GH/IGF-I would occur when the loss of NMJs first manifest. In this instance, we demonstrate altered GH release alongside NMJ denervation. As documented (29, 61), NMJ denervation in hSOD1^{G93A} mice occurs at symptom onset, or at a slightly earlier age (29, 61). The delay between motor neuron loss and the loss of NMJ innervation is thought to occur in response to early compensatory adaptive collateral sprouting of motor axons, which promotes the reinnervation of denervated muscle (27). Once adaptive sprouting reaches a critical threshold, maladaptive sprouting results in an inability to compensate for further neuromuscular denervation (27), resulting in the loss of innervation. Not surprisingly, muscle weakness and atrophy in ALS are attributed to this significant loss of neuromuscular innervation (39). Thus, it is plausible that on the loss of a critical number of NMJs (29), the GH/IGF-I axis may compensate by promoting muscle mass and hypertrophy (17, 62), and by attempting to drive axonal sprouting further to preserve remaining muscle function (46, 47). Alternatively, activation of the GH/IGF-I axis may occur much earlier and may precede sprouting. Of interest, GH secretion in WT animals declined between 5 to 10 weeks of age, whereas this age-associated decline in GH secretion was not observed in hSOD1^{G93A} mice between the presymptomatic and onset.

Figure 6. Representative examples of total (A and D), pulsatile (B and E), and mean mass per GH pulse (MPP; C and F) of GH secretion correlated to the percentage of innervated neuromuscular junctions (% NMJ Innervation) in gastrocnemii (A–C) and crural flexor motor neuron number (Motor Neuron Count) in L4–L5 of the lateral motor column (D–F) of respective hSOD1^{G93A} mice. Spearman correlation analysis was performed to assess the relationship between measures of pulsatile GH secretion following deconvolution analysis and percentage NMJ innervation and motor neuron count. Data for all parameters are summarized in Table 2 and 3. For %NMJ innervation, n = 16. For motor neuron count, n = 12.
stages of disease. This observation is reflected by the maintenance of muscle IGF-I expression in hSOD1^{G93A} mice at the onset stage of disease. Thus, whether the altered GH/IGF-I profile in hSOD1^{G93A} mice observed at the onset of disease results from GH hypersecretion or is a reflection of the prevention of the age-associated decline GH secretion remains to be determined. Future studies that define the parameters of GH secretion in hSOD1^{G93A} mice between the presymptomatic and onset stages of disease will provide insight into the mechanisms that underlie this unique GH/IGF-I profile. More importantly, these observations may provide key insights to couple GH release and compensatory adaptive collateral sprouting of motor axons in ALS.

We observe no difference in the expression of circulating IGF-I between hSOD1^{G93A} mice and age-matched WT controls at ages that corresponded to the presymptomatic and onset stage of disease. This is consistent with reports in human ALS, which describe equivalent levels of IGF-I between ALS patients and controls in the absence of confirmed GH deficiency (21). These observations, taken with our previous reports of reduced circulating IGF-I in GH-deficient hSOD1^{G93A} mice at the end stage of disease (22), and a trend toward lower IGF-I in GH-deficient ALS patients (19), suggest that circulating IGF-I may not act as a neuroprotective factor in ALS. Conversely, GH drives tissue-specific production of IGF-I (48), whereas muscle IGF-I promotes axonal sprouting (46, 47). Thus, although GH itself appears to have no neuroprotective role, the protective capacity of the GH/IGF-I axis may lie in the early overexpression of tissue-specific IGF-I. Indeed, delivery of IGF-I into the spinal cord of animal models of ALS prolongs survival (57), improves motor function, and attenuates motor neuron loss (63, 64). Similarly, early retrograde delivery of IGF-I via im injection prolongs survival (56), and embryonic overexpression of IGF-I in skeletal muscle prevents motor neuron loss in ALS mice (55). In line with the argument that beneficial effects from IGF-I specifically require early and tissue-specific treatment, subcutaneous administration of IGF-I in ALS patients well after the onset of disease symptoms has resulted in minimal benefit (23, 26).

The mechanisms underlying altered GH release in symptomatic hSOD1^{G93A} mice remain unknown. In this regard, a feedback mechanism may exist in ALS, wherein a muscle-derived factor (produced in response to early denervation and/or maladaptive sprouting) may modulate hypothalamic and/or pituitary-mediated GH release. We observed a reduction in hypothalamic Ghrh mRNA expression in hSOD1^{G93A} mice at an age reflecting disease onset. Given established feedback mechanisms whereby GH suppresses central GHRH-induced GH release (41), the observed reduction in Ghrh mRNA expression is likely a consequence of high levels of endogenous GH secretion. Thus, one may speculate that the GH secretion profile, specific to disease onset, occurs in response to circulating factors acting specifically at the level of the anterior pituitary gland. Moreover, prolonged suppression of GHRH activity may eventuate in an overall reduction in GHRH-induced GH production and may account for the eventual depletion of pituitary GH content in hSOD1^{G93A} mice at the end stage of disease (22). This requires further investigation. Moreover, the secretion of a muscle-derived factor that influences the amplitude of GH release in ALS, through central or peripheral mechanisms, presents an interesting avenue for further assessment.

This study is the first to investigate the GH/IGF-I axis throughout disease progression in ALS mice. Alterations in circulating and muscle IGF-I in hSOD1^{G93A} mice are reflective of the endogenous GH profile. The positive correlation between circulating levels of GH and neuromuscular innervation (ie, reduced denervation) in hSOD1^{G93A} mice at the onset of disease imply that primary changes to the GH/IGF-I axis are a physiological response to compensate for, and potentially to minimize the morbidity of, disease at the earlier stages of the disease process (when muscle pathology is less severe). Subsequent GH deficiency and decreased circulating IGF-I (22) may result from the ongoing disease process, when severe histological pathology inherent to ALS (inexorable motor neuron loss and coincident muscle weakness and atrophy due to an inability to maintain collateral sprouting of axons) are prominent. Current measures provide insight into the role of the endogenous GH/IGF-I response in disease progression in ALS. Despite the benefits of IGF-I treatment in ALS mice (54–56), the inability for elevated and/or sustained levels of endogenous GH and muscle IGF-I to attenuate motor neuron loss and neuromuscular denervation in hSOD1^{G93A} mice throughout disease is not supportive of a neuroprotective role of endogenous GH/IGF-I in ALS.

Acknowledgments

The authors dedicate this manuscript to Mr Scott Sullivan and Dr Ian Davis and their efforts in raising awareness and research funding for ALS. We thank Dr Lili Huang, Ms Hwee Tan, Ms Teresa Xie, and Ms Ying Wan for their technical assistance. This research was supported by the Australian National Health and Medical Research Council, The University of Queensland, and the Motor Neurone Disease Research Institute of Australia. S.T.N. is supported by a Bill Gole Fellowship from the Motor Neurone Disease Research Institute of Australia. K.L. is the recipient of an Australian Post-graduate Award Postgraduate...
Scholarship from the Australian Government Department of Industry, Innovation Science, Research, and Tertiary Education.

Address all correspondence and requests for reprints to: Dr Shyuan Ngo, School of Biomedical Sciences, University of Queensland, St Lucia 4072, Australia. E-mail: s.ngo@uq.edu.au; or Prof Chen Chen, School of Biomedical Sciences, University of Queensland, St Lucia 4072, Australia. E-mail: chen.chen@uq.edu.au.

Disclosure Summary: The authors have nothing to disclose.

References

4706

Steyn et al

GH Secretion in Early-Symptomatic hSOD1G93A Mice

Endocrinology, December 2013, 154(12):4695–4706

