Circuit QED with a Nonlinear Resonator: ac-Stark Shift and Dephasing

F. R. Ong,1 M. Boissonneault,2 F. Mallet,1 A. Palacios-Laloy,1 A. Dewes,1 A. C. Doherty,3,4 A. Blais,2 P. Bertet,1 D. Vion,1 and D. Esteve1

1Quantronics group, Service de Physique de l’État Condensé (CNRS URA 2464), IRAMIS, DSM, CEA-Saclay, 91191 Gif-sur-Yvette, France
2Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1
3School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
4School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

(Received 29 October 2010; published 21 April 2011)

We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.

In quantum mechanics, any measurement necessarily induces decoherence in the variable conjugate to the one being measured. This principle is quantitatively expressed by the inequality \(\Gamma_{\text{dm}} \geq \Gamma_{\text{meas}} / 2 \) between the system’s measurement-induced dephasing rate \(\Gamma_{\text{dm}} \) and the measurement rate \(\Gamma_{\text{meas}} \), stating that the most efficient detector can measure only as fast as it dephases [1]. Determining how far a specific detector departs from this quantum limit is a fundamental issue. The measurement of a two-level atom by a cavity to which it is nonresonantly (dispersively) coupled has been studied in detail theoretically and experimentally, first in cavity quantum electrodynamics (QED) with Rydberg atoms [2] and then in circuit QED with superconducting qubits [3–5]. In this situation, information about the atom state \(i \) (ground state \(g \) or excited state \(e \)) is encoded in the complex dimensionless amplitude of the qubit-dependent intracavity field \(\alpha_c \) (the pointer states) and is quantified by the distinguishability \(D = |\alpha_c - \alpha_e| \). The backaction of this dispersive readout consists in a shift of the atom frequency called the ac-Stark shift and in a gradual dephasing at a rate \(\Gamma_{\text{dm}} = \kappa D^2 / 2 \) (\(\kappa \) is the resonator damping rate) reaching the quantum limit \(\Gamma_{\text{meas}} / 2 \) [5].

Introducing a nonlinearity into the measuring cavity makes it possible to turn it into an active device, which can considerably enhance the signal-to-noise ratio, a key requirement for high-fidelity measurement of superconducting qubits [6–9]. In appropriate parameter ranges, pumped nonlinear resonators indeed behave as noiseless parametric amplifiers for small incoming signals [10], generate squeezing [11], and display bistability [12–14]. An important fundamental open question is then to determine in what respect these novel physical effects modify the backaction of the measuring cavity onto the atom and to investigate whether the measurement is still at the quantum limit or not.

To address this issue, we measure the spectrum of a superconducting transmon qubit [15] dispersively coupled to a nonlinear resonator pumped by a microwave tone. Both the ac-Stark shift and the measurement-induced dephasing show new features compared to the case of a passive linear resonator. The ac-Stark shift provides a sensitive probe of the intraresonator mean photon number \(\bar{n} \) and allows us to characterize the resonator nonlinearity with high precision. The measurement-induced dephasing rate is found to have a completely different dependence on the pump power than in a linear resonator: Instead of growing linearly with \(\bar{n} \), \(\Gamma_{\text{dm}} \) peaks where the parametric amplifier gain is maximum and decreases towards zero at large \(\bar{n} \). This unexpected behavior is well described by the simple relation \(\Gamma_{\text{dm}} = \kappa D^2 / 2 \), \(D \) being now the distinguishability between the pointer states of the nonlinear resonator. We finally discuss how close this backaction is to the quantum limit.

In our experiment [see Fig. 1(a)], a transmon qubit is capacitively coupled with a strength \(g / 2 \pi = 42.4 \text{ MHz} \) to a \(\lambda / 2 \) coplanar resonator of frequency \(\omega_0 / 2 \pi = 6.4535 \text{ GHz} \) and quality factor \(Q = 670 \) (damping rate \(\kappa / 2 \pi = 9.6 \text{ MHz} \)). The resonator is made nonlinear by inserting a Josephson junction of critical current \(I_0 = 750 \text{ nA} \) in its center [9]. We model [16,17] this nonlinear distributed resonator by one single mode with Hamiltonian \(H / \hbar = \omega_0 a^\dagger a + (K / 2)(a^\dagger)^2 + (K'/3)(a^\dagger)^3 a^3 \) containing a Kerr nonlinearity with constants \(K \) and \(K' = 2 \times 10^{-3} \text{ K} \) that can be explicitly derived from the circuit parameters (see [18]). The classical steady-state response \(\alpha \) of such a Kerr resonator (KR, also called a Duffing oscillator) to a pump drive of frequency \(\omega_p \) and input power \(P_p \) is therefore highly nonlinear and given by [19] \(\alpha \left(\Omega, K, K', |\alpha|^2, |\alpha|^4 \right) = \frac{K}{2} \alpha = -i \varepsilon_p \).
At a critical power P_r the resonator frequency shifts downwards Lorentzian around $10/C_1$ and shows a sharpened response in a frequency window in stronger drive, the resonance frequency towards lower values, as well as the FWHM linewidth γ. Where Δ is reflected from the resonator and routed through circulators to a cryogenic amplifier, a demodulator, and a digitizer, with a Josephson junction. The sample is cooled to 20 mK and is driven through an attenuator A by three microwave sources. Source p is used to establish a pump field in the resonator, source q for qubit spectroscopy, and source r as a JBA readout: Its signal at ω_r is reflected from the resonator and routed through circulators to a cryogenic amplifier, a demodulator, and a digitizer, which yields the JBA switching probability p_s and thus the probability of the qubit excited state e. (b) Frequency dependence of the maximum current I in the resonator calculated for the sample parameters and for reduced powers $P_r/P_c=0.1, 0.635, 1, 3.5,$ and 16.35 (bottom to top). (c) Stability diagram of the resonator in the Ω-P_r plane. The solid lines indicate the highest parametric amplifier gain below Ω_c and the power at which the resonator bifurcates from the low- (L) to the high- (H) amplitude state, respectively. The hatched area is the bistability region. Vertical dotted lines correspond the two data sets of Figs. 2 and 3.

The qubit-resonator detuning is fixed at $\Delta/2\pi = 732$ MHz $\gg g/2\pi$, so that their interaction is well described by the dispersive Hamiltonian $\hat{H}_{\text{int}} = \hbar (\sigma_+ + \delta) a^\dagger a$ with $\chi/2\pi = -0.8$ MHz and $\delta/2\pi = 1.7$ MHz [20]. In this dispersive regime, the resonator frequency takes the qubit-state-dependent value $\omega_i = \omega_0 + \delta \pm \chi$ for $i = g,e$. Consequently, the reduced pump detuning Ω_i as well as the bifurcation threshold $P_s(\Omega_i)$ now depend on the qubit state. This allows us to readout the qubit by sending microwave pulses with a frequency $\omega_i/2\pi = 6.439$ GHz ($\Omega_i/\Omega_c = 2$) and power P_r between $P_s(\Omega_i)$ and $P_s(\Omega_c)$ [9]. After reflection on the cavity, the phase of the readout pulse is measured by homodyne detection yielding the final oscillator state. By repeating this sequence, the Josephson bifurcation amplifier (JBA) switching probability p_s, and thus the qubit excited-state probability, is determined.

To study the backaction of the pumped KR, we perform qubit spectroscopy with a microwave pulse of varying frequency ω_q and fixed power P_q while the cavity is driven by a microwave pump pulse of varying frequency ω_p and power P_r. The experimental sequence ends with a qubit readout pulse (see the inset in Fig. 2). Note that the pump pulse starts long before the spectroscopy pulse so that the intracavity field has reached its stationary state. Moreover, the readout pulse is applied 200 ns after switching off both pulses, a time long enough to let the intraresonator field relax before readout but shorter than the qubit relaxation time $T_1 = 700$ ns. Figure 2 shows the resulting qubit spectra as a function of P_r at two pump frequencies above and below Ω_c. We observe the ac-Stark shift of the qubit resonance frequency towards lower values, as well as the
broadening of the qubit line. This is akin to the behavior observed with a linear resonator but with a very different dependence on P_p [4]. First, an abrupt discontinuity in the ac-Stark shift at $\Omega_c/\Omega_\chi = 3.1$ clearly indicates the sudden increase in the intracavity average photon number \bar{n} as the resonator switches from L to H. In this region, two spectroscopic peaks are observed at a given pump power. Second, the linewidth narrows down at large \bar{n}, in strong contrast with the linear resonator case where it increases linearly [4].

Our measurements of the qubit frequency shift $\Delta\omega_q$ versus P_p, allow us to quantitatively determine \bar{n}, by using a model for the ac-Stark shift that includes the next order correction to the linear ac-Stark shift formula $\bar{n} = \Delta\omega_q/(2\chi)$ [21] and that takes into account the first 5 levels of the transmon [15,20] [see Fig. 3(a)]. We then fit the resulting experimental $\bar{n}(P_p)$ curves with the \bar{n} values calculated from the sole dynamics of the resonator (with the qubit in g) given by the square modulus of the solutions of Eq. (1) using K and A as the only fitting parameters. The agreement is excellent over the whole (Ω_c, P_p) range for $K/2\pi = -625 \pm 15$ kHz and $A = 110.8 \pm 0.2$ dB, which is consistent with the design value $K/2\pi = -750 \pm 250$ kHz and with independent measurements of the line attenuation $A = 111 \pm 2$ dB. This demonstrates that measuring the ac-Stark shift of a qubit is a sensitive method for probing the field inside a nonlinear resonator and for characterizing its Kerr nonlinearity [10].

We show in Fig. 3(b) the qubit total dephasing rate $\Gamma_2 = \pi w$, with w the FWHM of a Lorentzian fit to the experimental data. In addition to the field-induced dephasing $\Gamma_{\text{em}}\chi$, Γ_2 also includes a constant contribution Γ_0^2 due to all other dephasing processes (mainly energy relaxation, flux noise, and radiative broadening). For the sake of comparison, we also show the independently measured gain G of the KR operated as a parametric amplifier on a small additional signal frequency-shifted by 100 kHz from $\omega_p/2\pi$. Below and above Ω_c, $\Gamma_2(P_p)$ peaks where G is maximum and near the bifurcation threshold, respectively, and tends towards Γ_0^2 at large \bar{n}.

To account for this behavior, we have calculated Γ_2 by numerical integration of the master equation of the multilevel transmon coupled to the KR and a Jaynes-Cummings Hamiltonian for the sample parameters and damping rates determined independently [see full symbols in Fig. 3(b)]. The agreement with the experimental data is excellent with no adjustable parameter, in contrast with experiments with a flux qubit in which an unexplained shortening of the qubit relaxation time is observed when the KR is driven above bifurcation [22,23]. We also derive an analytical expression for Γ_{em} starting from the master equation in the dispersive limit, by using methods similar to those of Ref. [21] for the linear case. This is done by linearizing the quantum fluctuations of the field around the two classical solutions α_i of Eq. (1) that correspond to the two qubit states, assuming that the separation between these pointer states is small, and neglecting squeezing and transients ($\Gamma_{\text{em}} \ll \kappa$). The details of these calculations, which go beyond a simple linear response.
approximation, will be presented elsewhere [24]. In this way, we obtain
\[\Gamma_{\phi m} = \frac{\kappa}{2} |\alpha_{e} - \alpha_{g}|^2 = \frac{\kappa}{2} D^2. \]
(2)

We thus recover the same link as for a linear resonator between the decoherence rate and distinguishability. Here, however, due to the nonlinearity, \(\Gamma_{\phi m} \) and therefore \(\Gamma_{\phi m} \) are no longer proportional to \(\bar{n} \) [4] and on the contrary tend towards zero at large \(\bar{n} \). Since in a pumped KR the susceptibility \(|\alpha / \partial \Omega| \) varies similarly to the small-signal gain \(G \) [25,26], Eq. (2) also explains the correlation observed between \(\Gamma_{\phi m} \) and \(G \). The predictions of Eq. (2) calculated without any adjustable parameter as well as the corresponding pointer states are shown in Figs. 3(b) and 3(c). The theory reproduces well the nontrivial dependence of \(\Gamma_2 \) on the pump power over a large parameter range and, in particular, the dephasing peak observed above and below \(\Omega_c \). The direct correlation between \(\Gamma_2 \) and \(D \) is clear. The agreement is quantitative in the validity range of our approximation \(D \ll 1 \), which is satisfied by our data when \(\Gamma_2 \) is below \(\sim 10 \text{ MHz} \).

In order to verify whether the pumped KR backaction is at the quantum limit, \(\Gamma_{\phi m} \), needs to be compared to the rate \(\Gamma_{\text{meas}} \) at which information about the atom state leaks out of the resonator. If the two pointer states are coherent states, \(\Gamma_{\text{meas}} = \kappa D^2 \) [5] and our results therefore establish that the quantum limit is reached. According to the quantum theory of the pumped KR [26,27], this is, however, true only in the limit of small parametric gain \(G \sim 1 \) [corresponding to \(P_+ \) significantly different from \(P_- \) and \(\Omega \)]. Indeed, when \(G \gg 1 \), the intracavity field is expected to show enhanced phase-dependent fluctuations and the field reflected on the cavity to show some degree of squeezing. The measurement rate then needs to be reevaluated. Note that recent theoretical work [26] showed that if the linear response theory is valid and if the gain is large, the backaction of the pumped KR misses the quantum limit by a large factor of order \(G \). In contrast, our experimental parameters, which are typical for circuit QED, require going beyond the linear response but involve limited parametric gain. It is also important to note that our work does not address the situation encountered in the bifurcation amplification regime close to the bifurcation threshold \(P_+ (\Omega) \), in which \(\alpha_{g,e} \) are the two different oscillator states \(L \) and \(H \). As a result, further work is needed to decide whether the readout of a qubit by a JBA is quantum-limited or not.

In summary, we have measured the quantum backaction of a pumped nonlinear resonator on a dispersively coupled qubit. We observe a nontrivial dependence of the measurement-induced dephasing on the pump power, which we link to the distinguishability between the pointer states of the nonlinear resonator and to the gain of the resonator operated as a parametric amplifier. In the small gain limit, we find that the backaction is quantum-limited; further theoretical work is needed to describe the high gain regions. More generally, our results demonstrate that circuit QED is an ideal playground to study the interplay between strong coupling and nonlinear effects such as bistability, squeezing, or parametric amplification.

We acknowledge discussions with M. Dykman, M. Devoret, J. Gambetta, and R. Vijay and within the Quantronics group as well as technical support from P. Sénat, P.-F. Orfila, T. David, and J.-C. Tack. We acknowledge support from NSERC, FQRNT, the Alfred P. Sloan Foundation, CIFAR, the ANR project Quanjo, the European project SCOPE, and the Australian Research Council.

[23] M. Boissonneault et al. (to be published).