Analgesic treatment of ciguatoxin-induced cold allodynia

Katharina Zimmermann¹,*, Jennifer R Deuis²,³,*, Marco Inserra²,³, Lindon S Collins², Barbara Namer¹, Peter J Cabot², Peter W Reeh¹, Richard J Lewis³, Irina Vetter²,³

¹Department of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuremberg, D-91054 Erlangen, Germany

²School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia

³Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia

*These authors contributed equally to this study

Corresponding author:
Dr Irina Vetter
Institute for Molecular Biosciences
The University of Queensland
St Lucia Queensland 4072
Australia
Phone: 61 7 3346 2986
e-mail: i.vetter@uq.edu.au

Keywords: ciguatoxin, peripheral, nociceptor, allodynia, cold pain, sensory neuropathy

Number of text pages: 25

Number of figures: 6
Introduction

Ciguatera is a perplexing neurological disease caused by consumption of highly lipophilic polyether compounds known as ciguatoxins (CTX) that bioaccumulate in tropical and subtropical fish. Clinically, ciguatera is associated with gastrointestinal disturbances of limited duration, in particular nausea, diarrhoea and abdominal pain, with neurological disturbances being the predominant presentation. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as perioral and distal paraesthesias, dysaesthesias, pruritus, headache and asthenia [18; 21]. Of these neurological disturbances, temperature dysaesthesia, or cold allodynia, is considered pathognomonic and occurs in up to 95% of ciguatera victims [3; 21].

At the molecular level, ciguatoxin is the most potent known activator of voltage-gated sodium channels (Na\textsubscript{v}) [23]. Ciguatoxin also inhibits neuronal potassium channels [5], resulting in further increased neuronal excitability. The pharmacological action of ciguatoxins on Na\textsubscript{v} in excitable cells results in a range of pathophysiological effects, including spontaneous action potential discharge, release of neurotransmitters, increase of intracellular Ca2+, and axonal Schwann cell oedema (for review see [27]).

Importantly, clinical management of the peripheral sensory disturbances associated with ciguatera, in particular cold alldynia, remains symptomatic and relies on the largely empiric choice of analgesics. This reflects both difficulties in recruiting ciguatera patients in sufficient numbers for systematic randomised controlled trials, as well as the absence of suitable \textit{in vitro} and \textit{in vivo} models able to assess the therapeutic potential of various compounds. We thus sought to establish a novel \textit{in vitro} ciguatoxin assay to identify inhibitors of acute ciguatoxin-induced Na\textsubscript{v} activation at the cellular level. In addition, we systematically evaluated the anti-allodynic effects of approved analgesic drugs and
medications modulating neuronal excitability in a novel animal model of ciguatoxin-induced cold allodynia with the aim to identify new treatment strategies for this painful condition.

Materials and Methods

Materials

P-CTX-1, P-CTX-2 and P-CTX-3 were isolated from the viscera of moray eel and purified as previously described [11]. Brevetoxin-A (BTX-A) was obtained from Latoxan (France). Synthetic conopeptides CVID (Ca,2.2 inhibitor), TIIIA (Na,1.2/Na,1.1 inhibitor) and GIIIA (Na,1.1/Na,1.6 inhibitor) were a kind gift from Prof. Paul Alewood, Institute for Molecular Bioscience, The University of Queensland. Veratridine was obtained from Ascent Scientific (Bristol, UK), tetrodotoxin (TTX) was from Enzo Life Sciences (Farmingdale, NY, USA) and ProTxII was from Peptides International (Louisville, KY, USA). All other reagents, unless otherwise stated, were obtained from Sigma Aldrich (Castle Hill, NSW, Australia). P-CTX-1, P-CTX-2, BTX-A, ProTxII, and TIIIA were routinely diluted in 0.3–0.5 % bovine serum albumin (BSA) solution to avoid adsorption to plastic surfaces.

Ethics approval for human experiments

The local human ethics committee of the University of Erlangen approved human studies that were conducted in accordance with German law, the Declaration of Helsinki principles and the Belmont Report. The dose of Pacific Ciguatoxin-1 (P-CTX-1) administered by shallow intracutaneous injection (0.2-2 pg/kg) was extrapolated from the minimum pathogenic oral dose (0.6 ng/kg)[2]. Independent academic volunteers (n=5) were recruited and a detailed risk assessment and information sheet was provided to all participants. Informed written consent
was obtained prior to the experiment. All participants gave their consent voluntarily and
could have withdrawn from the study at any time.

Assessment of ciguatoxin-evoked effects in human volunteers

P-CTX-1 was isolated from moray eel and purified to > 95% purity by HPLC using good
laboratory practice [11]. The lyophilized non-pyrogenic material was reconstituted in sterile
medical grade Ringer solution for intradermal injection. For injections, P-CTX-1 was
prepared as 0.1 nM – 10 nM solution in sterile Ringer’s solution and injected
intracutaneously in a volume of 50 μl into the volar forearm of study participants (age 27-50).
Thermal sensitivity was assessed by exposure of the injection site to a surface cooled using a
vortex thermode [4] with temperatures ranging from 40 – 2 °C at a rate 0.5 °C/s. Pain
sensations were rated verbally by the subjects (n = 5) in 2 °C intervals on a 11 point scale in
which 0 is no pain, 3 pain threshold and 10 maximal imaginable pain. The ciguatoxin-
induced axon reflex sweating was measured as previously described [14] using a custom-
made sweat chamber, in which moisture accumulation of dry air passed over the skin was
quantified using a humidity sensor (HygroClip-SC04, Rotronic GmbH, Germany). Sweat
output is presented in mV from data recorded by the humidity sensor control unit (HygroLab
2, Rotronic GmbH, Germany). The ciguatoxin-induced neurogenic flare reaction was
quantified using a Laser Doppler Imager (LDI; Moore, London, UK) as previously described
[14]. Briefly, a rectangular area (158 x 102 pixels or 75cm²) surrounding the P-CTX-1
injection site was scanned with a spatial resolution of 0·5 mm from a distance of 35 cm at
baseline and at 2 minute intervals.

CGRP release
Male Wistar rats weighing 60-80 g were sacrificed by exposure to 100% CO$_2$ and the skin covering both hindpaws was isolated through subcutaneous excision, sparing the toes, larger vessels and saphenous and peroneal nerve stems. The resulting skin flaps (0.13-0.35 g) were secured to acrylic rods and tied in place, corium side exposed. After equilibration for 30 min in 32 °C synthetic artificial fluid (SIF; composition: NaCl 108 mM, NaHCO$_3$ 26.2 mM, sodium gluconate 9.64 mM, glucose 5.55 mM, sucrose 7.6 mM, KCl 3.48 mM, NaH$_2$PO$_4$ 1.67 mM, CaCl$_2$ 1.53 mM and MgSO$_4$ 0.69 mM, pH 7.3) gassed with carbogen, the flaps were placed in glass vessels containing varying concentrations of P-CTX-1 and incubated for 5 min in a shaking bath at 32 °C. The CGRP content was determined as previously described in detail using a commercial enzyme immunoassay kit (SPIbio, Montigny, France) and a microplate reader (Dynatech, Channel Islands, UK) [1; 29].

In vitro ciguatoxin assay in SH-SY5Y cells

SH-SY5Y human neuroblastoma cells were routinely maintained in RPMI medium (Invitrogen, Australia) supplemented with 15 % foetal bovine serum and L-glutamine [18]. To assess responses elicited by activation of endogenously expressed Na$_v$1.2, Na$_v$1.3 and Na$_v$1.7, cells were plated on 384-well black-walled imaging plates (Corning) 48 h prior to loading with Calcium-4 dye (Molecular Devices, Sunnyvale, CA) for 30 min at 37 °C. Fluorescence responses (excitation 470–495 nm; emission 515–575 nm) to addition of P-CTX-1, P-CTX-2, P-CTX-3 or BTX-A were assessed using a FLIPR$^\text{TETRA}$ plate reader (Molecular Devices). Raw fluorescence readings were converted to response over baseline using the analysis tool of Screenworks 3.1.1.4 (Molecular Devices) and were expressed relative to the maximum increase in fluorescence of control responses.

Ciguatoxin-induced cold allodynia
The University of Queensland Animal Ethics Committee approved experiments involving animals. Cold allodynia was assessed in adult male C57BL/6 mice as described [26]. Naᵥ1.3^{−/−} animals were a kind gift from Prof John Wood (University College, London) and were backcrossed on C57/BL6 background for at least 6 generations. P-CTX-1 (5 nM), P-CTX-3 (15 nM), BTX-A (300 nM) and veratridine (50 µM) were diluted in sterile saline containing 0.3% serum albumin and administered in a volume of 40 µl by shallow intraplantar (i.pl.) injection under brief isoflurane (3%) anaesthesia. Drugs were administered in a volume of 500 µl by intraperitoneal injection 60 min prior to assessment of cold allodynia. To assess cold allodynia, the number of paw lifts, licks or shakes when exposed to a temperature-controlled (15 °C) Peltier plate (Ugo Basile, Comerio, Italy) was counted by a blinded investigator for 5 min.

Motor performance assessment

To assess the effect of drugs on motor performance, locomotor activity was assessed using a standard Rotarod test. In brief, 7 days prior to the test, animals were trained in 5 separate sessions to walk on a rotating drum (Rotarod, Ugo Basile, Italy), with the speed increasing gradually over 5 min from 8 to 40 rpm. On the day of the test, analgesic drugs were administered 60 min prior to the motor performance test, and the latency to fall was recorded by a blinded observer at 24 rpm with a cut-off of 5 min. The change in the latency to fall was determined for each animal respective to its pre-treatment performance.

Activity at heterologously expressed Na₉ isoforms

Na₉ responses were assessed in Chinese Hamster Ovary (CHO) cells heterologously expressing hNa₉.1.3, hNa₉.1.6, hNa₉.1.7 and hNa₉.1.8 (Chantest, Cleveland, Ohio) as previously described [24]. Cells were plated 24-48 h prior to the assay on 384-well black-walled
imaging plates at a density of 10,000-15,000 cells/well and were loaded with red membrane potential dye (Molecular Devices) according to the manufacturer’s instructions for 30 min at 37 °C. Changes in membrane potential after pre-treatment with varying concentrations of small molecule Na\textsubscript{v} inhibitors were assessed using the FLIPRTera (excitation 515-545 nm, emission 565-625 nm).

Data analysis and statistics
Data was plotted and analyzed using GraphPad Prism Version 4.00. Statistical significance was defined as $p < 0.05$ and was determined using One-way ANOVA analysis with Dunnett’s post-test.

Results
Peripheral administration of P-CTX-1 elicits sensory disturbances consistent with the clinical symptomatology of ciguatera
Intracutaneous injections of P-CTX-1 into the volar forearm of human volunteers caused dose-dependent, strictly localized peripheral sensory disturbances consistent with the clinical symptomatology of ciguatera that were associated with a marked axon reflex flare and axon reflex sweating (Fig. 1A-E). Sub-nanomolar (0.1 nM) concentrations of P-CTX-1 elicited localized pruritus, while at higher concentrations (1 nM) intense, short-lasting burning pain and cold allodynia were experienced. The symptoms of cold allodynia persisted for several hours, with exposure of the ciguatoxin-injected region of the forearm to innocuous cool temperatures eliciting intense stabbing, pricking and burning pain (Fig. 1F) that was relieved immediately upon warming. The axon reflex erythema is generally caused by release of the vasodilatory neuropeptide calcitonin gene-related peptide (CGRP) from axons and nerve terminals [20]. Quantification of CGRP release from rat skin illustrated the exquisite potency
of P-CTX-1 to activate cutaneous nerve endings (Fig. 1G). In contrast, neither detectable prostaglandins nor histamine were released by P-CTX-1 up to 10 nM (data not shown), which supports a direct and specific action of P-CTX-1 on nociceptors and sympathetic fibers at low nM concentrations. These findings are consistent with previous reports of preferential activation of peptidergic, CGRP-positive sensory neurons by P-CTX-1, but little effect of ciguatoxins on IB4-positive neurons [26].

A novel assay for in vitro characterization of ciguatoxin-induced responses

Clinical management of ciguatoxin-induced sensory neuropathies currently relies largely on symptomatic treatment based on the empiric choice of analgesic compounds. However, little is known about the in vitro and in vivo efficacy of clinically available analgesics for treatment of ciguatera. To assess the ability of clinically available Na\textsubscript{v} and potassium channel modulators to inhibit acute ciguatoxin-induced responses, we established a novel in vitro ciguatoxin assay in the human neuroblastoma cell line SH-SY5Y. These cells endogenously express Na\textsubscript{v} channels relevant for pain signalling, including Na\textsubscript{v}1.2, Na\textsubscript{v}1.3 and Na\textsubscript{v}1.7, and are thus a suitable model for assessment of in vitro efficacy of Na\textsubscript{v} inhibitors with analgesic effect [25].

Consistent with the site 2 toxin veratridine eliciting Ca2+ responses in SH-SY5Y cells through activation of Na\textsubscript{v}, which in turn leads to activation of endogenously expressed Ca\textsubscript{v} channels and influx of Ca2+, the site 5 toxins P-CTX-1, P-CTX-2, P-CTX-3 and BTX-A were able to elicit concentration-dependent Ca2+ responses with an EC\textsubscript{50} of 2.2 ± 0.6 nM, 9.3 ± 2.6 nM, 8.3 ± 2.4 nM and 160.7 ± 19.3 nM, respectively (Fig. 2A). The ciguatoxin-induced responses were completely inhibited in the presence of 300 nM TTX (Fig. 2B and C). Similar to veratridine-induced responses [18], P-CTX-1 responses were partially inhibited by nifedipine...
(75.5 ± 4.3 % inhibition) and CVID (36.3 ± 3.6 % inhibition; Fig. 2D), consistent with contribution of both L- and N-type channels to Ca\(^{2+}\) responses elicited by P-CTX-1. Surprisingly, Na\(_{v}1.7\) did not contribute substantially to P-CTX-1 responses, as ProTxII blocked responses with an IC\(_{50}\) of 4.3 ± 3.1 µM (pIC\(_{50}\) 6.45 ± 0.65) and inhibited only 11.9 ± 1.6 % of responses at a concentration (100 nM) that fully inhibits Na\(_{v}1.7\) (Fig. 2C). In addition, the Na\(_{v}1.2\)-selective conopeptide TIIIA inhibited 25.4 ± 0.9 % of responses (pIC\(_{50}\) 7.23 ± 0.19; Fig 2C), suggesting that the majority of P-CTX-1-induced Ca\(^{2+}\) influx in SH-SY5Y cells is mediated through Na\(_{v}1.3\), the third sodium channel subtype present in these cells.

Using this assay, we characterised the ability of clinically used analgesic compounds to inhibit P-CTX-1 responses. Consistent with their reported pharmacological effects on Na\(_{v}\) and K\(_{v}\) channels, all compounds tested, with the exception of topiramate, were able to concentration-dependently inhibit ciguatoxin-induced responses (Fig. 3A). Amitriptyline was most potent (pIC\(_{50}\) 4.91 ± 0.22), while lamotrigine (pIC\(_{50}\) 3.03 ± 0.05) and phenytoin (pIC\(_{50}\) 3.52 ± 0.57) were less potent than flupirtine (pIC\(_{50}\) 4.00 ± 0.25), mexiletine (pIC\(_{50}\) 3.99 ± 0.27) and carbamazepine (pIC\(_{50}\) 4.19 ± 0.51) (Fig. 3B).

In order to assess the therapeutic potential of these compounds, we assessed their analgesic efficacy in a novel animal model of ciguatoxin-induced cold allodynia. Intraplantar administration of P-CTX-1 induces cold allodynia [26], consistent with the clinical presentation of ciguatera and our findings from intradermal injection of P-CTX-1 in human volunteers (Fig 1). As expected, intraplantar injection of an equivalent concentration of P-CTX-3, based on its in vitro potency in SH-SY5Y cells, also elicited cold allodynia (Fig. 4A). However, intraplantar injection of the site 5 toxin BTX-A, or the Na\(_{v}\) activator veratridine, surprisingly only elicited spontaneous nocifensive behaviour (data not shown) but no cold
allodynia (Fig. 4A). This finding supports the relevance of our animal model to the clinical presentation of ciguatera, and validates cold allodynia as a hallmark feature of the effects of ciguatoxins on peripheral sensory neurons.

Analgesic treatment of ciguatoxin-induced cold allodynia

Based on these results, we used our novel animal model of ciguatoxin-induced peripheral sensory disturbances [26] to assess the analgesic effect of these compounds tested at doses approximately equivalent to ceiling doses used in humans. Surprisingly, only lamotrigine (10 mg/kg; 82.5 ± 6.1 % inhibition), flupirtine (10 mg/kg, 72.0 ± 5.0 % inhibition) and phenytoin (10 mg/kg; 57.5 ± 6.3 % inhibition) significantly (p < 0.05) reduced ciguatoxin-induced cold allodynia, while amitriptyline (3 mg/kg; 2.5 ± 13.2 % inhibition), carbamazepine (10 mg/kg; 34.9 ± 3.0 % inhibition), topiramate (50 mg/kg; 24.7 ± 14.1 % inhibition) and mexiletine (10 mg/kg; 30.7 ± 12.4 % inhibition) had no significant effect on ciguatoxin-induced cold allodynia (Fig. 4B). The observed effects on cold allodynia were not due to impaired motor performance, since only amitriptyline caused a significant (p < 0.05) decrease in locomotor activity attributable to sedating effects that were apparent at the administered dose (Fig. 4C).

In addition, we assessed the effect of the two most efficacious compounds, lamotrigine and flupirtine, on CGRP release. Only flupirtine (50 µM; 36.3 ± 5.3 pg/ml; control, 56.6 ± 4.6 pg/ml), but not lamotrigine (50 µM; 38.5 ± 6.7 pg/ml; control, 48.3 ± 9.9 pg/ml) significantly (p < 0.05) decreased CGRP release induced by P-CTX-1 (3 nM), suggesting contribution of non-peptidergic nociceptors to ciguatoxin-induced cold allodynia, and/or central analgesic effects of these compounds.

TTX-sensitive Na, isoforms contributing to ciguatoxin-induced cold allodynia
We have previously demonstrated that cold allodynia induced by local intraplantar injection of P-CTX-1 is mediated partially through Na,1.8 [26]. However, TTX-sensitive channels, expressed on unmyelinated C- as well as myelinated A-fibers, also contribute significantly to cold-induced pain after local injection of ciguatoxin [26]. To assess the contribution of TTX-sensitive Na, isoforms to ciguatoxin-induced cold allodynia in vivo, we assessed the effect of subtype-selective Na, inhibitors on cold pain behaviours. Intraplantar injection of ProTxII (30 nM), a Na,1.7-selective inhibitor, did not affect the development of ciguatoxin-induced cold allodynia (Fig. 5). Intraplantar administration of the Na,1.2/Na,1.1 inhibitor TIIIA (10 µM) [28] also did not affect cold alldynia, while pain behaviour was virtually abolished by concomitant intraplantar injection of A803467 (10 µM), a Na,1.8 inhibitor, and the conotoxin GIIIA (10 µM), which inhibits Na,1.4, Na,1.1, Na,1.6 and Na,1.2, but not Na,1.7 or Na,1.3 [28]. In addition, ciguatoxin-induced cold allodynia and spontaneous pain was not significantly decreased in Na,1.3⁻/⁻ animals (98.5 ± 13.5 % of control). This provides further evidence that TTX-sensitive isoforms other than Na,1.7 or Na,1.3 contribute to ciguatoxin-induced cold allodynia, and suggests an important role for Na,1.6 in peripheral cold pain pathways [8]. However, given the lack of subtype-selective inhibitors for these isoforms, and the profound effect on motor performance in mice with loss of function mutations of Scn8a and Scn1a, the precise role of these Na, subtypes in pain pathways remains to be elucidated.

We next assessed the in vitro activity of adjuvant analgesics at heterologously expressed Na,1.3, Na,1.6, Na,1.7 or Na,1.8 (Fig. 6). The rank order of inhibition was similar to that observed in SH-SY5Y cells, with amitriptyline being most potent at all Na, subtypes (pIC₅₀ Na,1.3, 4.85 ± 0.09; Na,1.6, 4.89 ± 0.17; Na,1.7, 4.85 ± 0.11; Na,1.8, 4.51 ± 0.06), followed by flupirtine (pIC₅₀ Na,1.3, 3.88 ± 0.18; Na,1.6, 3.86 ± 0.21; Na,1.7, 3.99 ± 0.35; Na,1.8, 3.53 ± 0.10) and mexiletine (pIC₅₀ Na,1.3, 3.73 ± 0.08; Na,1.6, 3.65 ± 0.26; Na,1.7, 3.93 ±
Carbamazepine (pIC₅₀ Naᵥ1.3, 3.26 ± 0.13; Naᵥ1.6, 3.29 ± 0.15; Naᵥ1.7, 3.49 ± 0.17; Naᵥ1.8, 3.60 ± 0.52). Lamotrigine (pIC₅₀ Naᵥ1.3, 3.37 ± 0.32; Naᵥ1.6, 3.41 ± 0.39; Naᵥ1.7, 3.36 ± 0.10; Naᵥ1.8, 2.87 ± 0.19) and phenytoin (pIC₅₀ Naᵥ1.3, 2.66 ± 0.14; Naᵥ1.6, 2.84 ± 0.13; Naᵥ1.7, 2.73 ± 0.12; Naᵥ1.8, 3.06 ± 0.25) were least potent. Overall, little subtype-selectivity for Naᵥ isoforms was apparent, suggesting that in addition to inhibition of Naᵥ in peripheral sensory neurons, alternative mechanisms such as activity at thermosensitive TRP or neuronal potassium channels, but also central analgesic effects, may contribute to the observed anti-allodynic effects.

Discussion

Ciguatera, the most common non-bacterial ichthysarcotoxism, remains a significant clinical challenge, with the treatment standard, mannitol (IV, 0.5–1.0 g/kg), no longer recommended due to a reported lack of efficacy, especially in more prevalent milder forms of the disease [10; 21]. Thus, in the absence of effective treatment strategies validated through appropriate clinical trials, management of the neurological symptoms of ciguatera, including a number of painful neuropathies, remains predominantly symptomatic. The sensory neuropathies associated with ciguatera have been postulated to arise from a direct excitatory action of the toxin on peripheral sensory neurons. However, given the presence of centrally-mediated symptoms such as ataxia in human ciguatera patients, altered central processing could also contribute to the perception of pain and cold allodynia [18]. To address this issue, we have now shown for the first time that local intradermal administration of P-CTX-1 in humans elicits symptoms consistent with ciguatera, confirming a peripheral origin of cold allodynia. To initially profile analgesics that might reverse ciguatoxin-induced activation of neurons, we established a novel ciguatoxin assay in the human neuroblastoma cell line SH-SY5Y. In SH-
SY5Y cells, ciguatoxin-induced Ca\(^{2+}\) responses are elicited as a result of membrane depolarisation which in turn activates Ca\(_v\) channels. In peripheral sensory neurons, this effect is amplified by cold-induced activation of TRPA1 in CTX-sensitive neurons, although P-CTX-1 does not directly activate or potentiate TRPA1 [26]. P-CTX-1 also causes de novo Ca\(^{2+}\) responses to cold in cultured sensory neurons [26], and elicits Ca\(^{2+}\) increases in neurons as a result of Na\(_v\)-mediated membrane depolarisation (for review see [27]). Thus, neuronal cells that permit characterisation of the effects of CTX on Na\(_v\) channels, in particular TTX-sensitive Na\(_v\), provide an elementary in vitro model of the cellular mechanisms underlying ciguatoxin-induced neuronal activation. SH-SY5Y cells express TTX-sensitive Na\(_v\) which have previously been suggested to be important in pain signalling, including Na\(_v\)1.3 and Na\(_v\)1.7, and were particularly sensitive to the effects of P-CTX-1 compared to other neuronal cell lines including ND7/23 and Neuro2a cells (data not shown). Activation of endogenously expressed Na\(_v\)1.2, Na\(_v\)1.3 and Na\(_v\)1.7 in SH-SY5Y cells leads to membrane depolarization, and subsequent Ca\(^{2+}\) influx through endogenously expressed voltage-gated Ca\(^{2+}\) channels.

Thus, this assay provides an excellent signal-to-noise ratio and enables characterization of the effects of subtype-selective pharmacological modulators as well as clinically used analgesics on ciguatoxin-induced responses. Surprisingly, Na\(_v\)1.2 and Na\(_v\)1.7 contributed little to responses elicited by P-CTX-1, while these Na\(_v\) isoforms were recently shown to mediate the majority of veratridine-induced responses in this cell line. The lack of subtype-specific Na\(_v\)1.3 inhibitors prohibited direct characterization of the contribution of Na\(_v\)1.3 to ciguatoxin-induced responses. However, given that responses elicited by P-CTX-1 were entirely TTX-sensitive in this cell line, and both selective Na\(_v\)1.2 and Na\(_v\)1.7 inhibitors blocked only a minor portion of ciguatoxin responses in SH-SY5Y cells, it seems likely that Na\(_v\)1.3 is the major mediator of P-CTX-1 responses in this assay. The toxicological target of
CTX is thus distinct from veratidine, which induces Ca^{2+} responses in SH-SY5Y cells through activation of Na\textsubscript{v}1.2 and Na\textsubscript{v}1.7 [25].

Based on their ability to pharmacologically antagonise the effects of ciguatoxin, compounds with activity at Na\textsubscript{v}, such as antiepileptics or tricyclic antidepressants, would be expected to provide effective relief from ciguatera symptoms. Thus, we characterised the \textit{in vitro} efficacy of a number of clinically used adjuvant analgesics on the ciguatoxin-induced responses in this assay. All compounds except topiramate were able to inhibit P-CTX-1 responses with varying potencies. While topiramate has been reported to inhibit Na\textsubscript{v} currents in rat cerebellar granule cells [30], these cells express predominantly Na\textsubscript{v}1.2 and Na\textsubscript{v}1.6 [17], suggesting that topiramate may have a preference for inhibition of Na\textsubscript{v} isoforms other than Na\textsubscript{v}1.3 [17].

Consistent with a lack of effect on P-CTX-1-induced \textit{in vitro} ciguatoxin-induced responses, topiramate did not decrease ciguatoxin-induced cold allodynia significantly. Similarly, amitriptyline had no effect on cold allodynia in our animal model, consistent with previous anecdotal reports that this tricyclic antidepressant was ineffective for the treatment of ciguatera-associated cold allodynia [7; 19], despite it being the most potent inhibitor of ciguatoxin-induced responses in SH-SY5Y cells. In contrast, both lamotrigine and flupirtine provided nearly complete inhibition of cold allodynia, while phenytoin partially reversed ciguatoxin-induced cold allodynia. The reason(s) for the lack of efficacy of amitriptyline, mexiletine and carbamazepine are unclear, but may involve pharmacokinetic and pharmacodynamic effects that result in insufficient local concentration at peripheral sensory neurons at the doses selected in this study, which were chosen to be approximately equipotent based on \textit{in vitro} efficacy, \textit{in vivo} dosing and tolerability in animals.

The weak correlation between our \textit{in vitro} assay and \textit{in vivo} efficacy suggests that CTX-induced cold allodynia might not arise simply from activation of sodium channels. We have
previously shown that ciguatoxin-induced cold allodynia is mediated by TRPA1-expressing unmyelinated C- and myelinated A-fibers despite the lack of any direct effect of CTX on TRPA1 [26]. In addition, ciguatoxin is known to affect K\(^+\) channels, some of which also have profound effects on excitability at cool temperatures [13; 16]. Thus, CTX-induced cold allodynia appears to arise from effects of CTX on both Na\(_v\) and K\(^+\) channels expressed in TRPA1-expressing C fibers as well as myelinated A-fibers, with both TTX-resistant and TTX-sensitive sodium channels contributing to this effect.

The most effective analgesics in our model were lamotrigine and flupirtine, both of which affect Na\(_v\) and potassium channels [6; 9]. Thus, it is plausible that rather than a subtype-selective effect on a particular isoform of Na\(_v\) channels, the *in vivo* efficacy is a reflection of the combined pharmacological profile of a given compound on Na\(_v\), K\(_v\) and perhaps TRP channels relevant for signalling in pain pathways. Such effects are too complex to be replicated well in *in vitro* systems, and it is thus not surprising that the potency at individual Na\(_v\) isoforms was a poor predictor of efficacy. In addition to inhibition of Na\(_v\) and K\(_v\) isoforms in peripheral sensory neurons, central effects of adjuvant analgesics tested here may also contribute to the observed *in vivo* anti-allodynic effect. Thus, the *in vitro* ciguatoxin assay described here is a poor model for ciguatoxin-induced cold allodynia and may more accurately reflect the acute activation of neurons by ciguatoxin. The weak correlation between *in vitro* and *in vivo* efficacy highlights the complex nature of cold allodynia and native nerve terminals and supports the need for appropriate *in vivo* models. Nonetheless, although not directly representative of the mechanisms underlying ciguatoxin-induced cold allodynia, the *in vitro* ciguatoxin assay presented here may be useful for high-throughput assessment of modulators of acute ciguatoxin-induced neuronal activation.
Nav1.3, the isoform contributing to the majority of P-CTX-1-induced responses in our in vitro assay, is expressed at low levels in adult rodent DRG neurons, and its contribution to pain remains controversial [12; 15]. Consistent with low expression levels in adult rodents, we found that Na\(v\)1.3 plays a minor role in ciguatoxin-induced cold allodynia in mice, and had no effect on spontaneous pain behaviours. It is unclear whether Na\(v\)1.3 is expressed at similarly low levels in humans, or whether this isoform contributes significantly to cold allodynia, acute pain or the axon reflex flare. Alternatively, it may be possible that this isoform contributes to ciguatera symptoms other than cold allodynia and spontaneous pain, such as central nervous system disturbances.

It is clear that ciguatoxin-induced cold allodynia in mice involves contribution of both Na\(v\)1.8 and TTX-sensitive Na\(v\) [26]. However, ciguatoxin-induced cold allodynia was not significantly affected in Na\(v\)1.3\(^{-}\) animals. Consistent with reports that IB4-negative sensory neurons, the population which we previously found to be particularly sensitive to P-CTX-1, express TTX-sensitive Na\(v\) isoforms other than Na\(v\)1.7 [22], we found that ciguatoxin-induced cold allodynia was not affected by intraplantar injection of the Na\(v\)1.7-selective inhibitor ProTxII but was blocked almost completely when Na\(v\)1.8 as well as Na\(v\)1.6 were inhibited.

Interestingly, other Na\(v\) activator toxins appear to target different sodium channel combinations, since local intraplantar injection of the Na\(v\) activators BTX-A and veratridine failed to induce signs of cold allodynia using a similar protocol but caused spontaneous nocifensive behaviour, evidenced by lifting, licking, shaking and flinching of the ipsilateral hind paw. These findings validate cold allodynia as a pathognomonic symptom of ciguatera,
and support the relevance of our animal model to the clinical presentation of ciguatera. Based on our findings, as well as pharmacokinetic and safety considerations, lamotrigine and flupirtine appear to have potential in the treatment of ciguatoxin-induced cold allodynia. While these findings remain to be validated clinically, this is the first systematic evaluation of clinically used analgesics for the treatment of ciguatoxin-induced cold allodynia.

Acknowledgements

Funding for this project was obtained through the Australian Research Council ARC LIEF grant for the FLIPR TETRA, a National Health and Medical Research Council (NHMRC) Program Grant, a NHMRC project grant (APP1045592), a NHMRC Fellowship (to RJL), a NHMRC Postdoctoral Fellowship and International Association for the Study of Pain Early Career Research Grant (to IV), and the Go8 Australia-Germany Joint Research Co-operation Scheme (to IV, RJL and KZ). The authors declare no conflicts of interest.

References

Figure 1. Peripheral sensory effects of P-CTX-1 in humans. (A-D) Subcutaneous injection of P-CTX-1 (1 nM; 50 μl) into the volar forearm of human subjects causes an axon reflex flare. Arrow; P-CTX-1 injection site. (A) Photographic image of the injection site at baseline. (B-D) Laser doppler image of the injection site at baseline (B), 2 min (C) and 30 min (D) after injection of P-CTX-1. Scale bar; perfusion units. (E) Axon reflex sweating induced by P-CTX-1. Arrow; timepoint of P-CTX-1 injection. Sweat output is presented in mV from data recorded by the humidity sensor control unit (HygroLab 2, Rotronic GmbH, Germany). (F) Temperature-dependence of cold pain (control, prior to P-CTX-1 injection, white) and cold allodynia induced by P-CTX-1 (1 nM, black) in human volunteers (n=5). (G) P-CTX-1
increased CGRP release from rat skin with an EC$_{50}$ of 2.3 nM. The intensity and nature of sensations elicited by intradermal injection of P-CTX-1 in human skin paralleled CGRP release in rat skin, with concentrations equal to and above the EC$_{50}$ of ~2.3 nM for CGRP release causing pain and cold allodynia, while concentrations below 1 nM caused itch.

Figure 2. Characterisation of ciguatoxin-induced responses in the human neuroblastoma cell line SH-SY5Y. (A) In SH-SY5Y cells loaded with Calcium-4 dye, stimulation with P-CTX-1 (EC$_{50}$ 2.2 ± 0.6 nM), P-CTX-2 (EC$_{50}$ 9.3 ± 2.6 nM), P-CTX-3 (EC$_{50}$ 8.3 ± 2.4 nM) as well as BTX-A (EC$_{50}$ 160.7 ± 19.3 nM) caused concentration-dependent increases in intracellular Ca$^{2+}$. (B) P-CTX-1 responses were mediated through TTX-sensitive Na$_v$ isoforms endogenously expressed in SH-SY5Y cells, as responses were completely abolished in the presence of TTX (300 nM). (C) TTX completely inhibited P-
CTX-1 responses with an IC\textsubscript{50} of 12.9 ± 2.2 nM, while the Na\textsubscript{v}1.2 inhibitor TIIIA caused partial (25.4 ± 0.9 %) inhibition with an IC\textsubscript{50} of 49.9 ± 14.9 nM. The Na\textsubscript{v}1.7 inhibitor ProTxII caused a small inhibition (11.9 ± 1.6 %) at concentrations (100 nM) which fully inhibit Na\textsubscript{v}1.7, and blocked P-CTX-1 responses with an IC\textsubscript{50} of 4.3 ± 3.1 µM. (D) The Ca\textsubscript{v} inhibitors nifedipine and CVID partially blocked P-CTX-1 responses with IC\textsubscript{50}s of 59.1 ± 16.4 nM and 33.6 ± 8.8 nM, respectively. Data is presented as mean +/- SEM and is representative of 3-9 independent experiments.

Figure 3. Inhibition of ciguatoxin-evoked responses in the human neuroblastoma cell line SH-SY5Y. (A) Amitriptyline, carbamazepine, flupirtine, lamotrigine, mexiletine and phenytoin concentration-dependently inhibited responses elicited by addition of P-CTX-1 (3 nM), while topiramate did not affect ciguatoxin-mediated responses at concentrations up to 1 mM. (B) The in vitro potency (pIC\textsubscript{50}) of amitriptyline (pIC\textsubscript{50} 4.91 ± 0.22), carbamazepine (pIC\textsubscript{50} 4.19 ± 0.51), flupirtine (pIC\textsubscript{50} 4.00 ± 0.25), lamotrigine (pIC\textsubscript{50} 3.03 ± 0.05), mexiletine (pIC\textsubscript{50} 3.99 ± 0.27) and phenytoin (pIC\textsubscript{50} 3.52 ± 0.57) for inhibition of CTX-mediated responses. Data are presented as mean ± SEM of n = 3 independent experiments.
Figure 4. Anti-allodynic treatment of ciguatoxin-
induced cold alldynia. (A) Intraplantar injection of P-CTX-1 and P-CTX-3, but not the Na$_v$ activators BTX-A or veratridine, elicits cold alldynia (B) Lamotrigine (10 mg/kg), flupirtine (10 mg/kg) and phenytoin (10 mg/kg) significantly decreased cold alldynia elicited by intraplantar injection of P-CTX-1 (5 nM), while amitriptyline (3 mg/kg), mexiletine (10 mg/kg), carbamazepine (10 mg/kg) and topiramate (50 mg/kg) had no significant anti-alldynic effect. Data are presented as mean ± SEM of n = 5-16 animals. (C) The anti-alldynic effects of lamotrigine, flupirtine and phenytoin were not due to impaired locomotor activity, as only amitriptyline significantly ($p < 0.05$) affected latency to fall in a Rotarod test. Data are presented as mean ± SEM of n = 5 animals. Statistical significance was determined using ANOVA with Dunnett’s post-test; *, $p < 0.05$; **, $p < 0.01$.
5. Na_v isoforms contributing to ciguatoxin-induced cold allodynia. Ciguatoxin-induced cold allodynia was not significantly inhibited in Na_v1.3^{−/−} animals, or after intraplantar administration of the Na_v1.7-specific inhibitor ProTxII (10 nM) and the Na_v1.2/Na_v1.1 inhibitor TIIIA (10 µM). Co-administration of TIIIA (10 µM) and the Na_v1.8-inhibitor A803467 (10 µM) partially decreased cold allodynia elicited by i.pl. administration of P-
CTX-1. Intraplantar administration of the Na\textsubscript{v}1.1/Na\textsubscript{v}1.6 inhibitor GIIIA (10 µM) inhibited cold allodynia by 46.6 ± 8.9 % and was additive to inhibition of Na\textsubscript{v}1.8, with co-administration of GIIIA and A803467 reducing cold pain behaviour by 87.2 ± 3.3 %. Data are presented as mean ± SEM of n = 5 – 12 animals. Statistical significance was determined using ANOVA with Dunnett’s post-test; *, p <0.05; ***, p < 0.001.
Inhibition of heterologously expressed Na\textsubscript{v} isoforms by adjuvant analgesics. Inhibition of heterologously expressed Na\textsubscript{v}1.3, Na\textsubscript{v}1.6, Na\textsubscript{v}1.7 and Na\textsubscript{v}1.8 was assessed using a high-throughput FLIPRTera membrane potential assay. Amitriptyline (▲), carbamazepine (♦), flupirtine (●), lamotrigine (▼), mexiletine (■) and phenytoin (○) concentration-dependently inhibited Na\textsubscript{v}1.3 (A), Na\textsubscript{v}1.6 (B), Na\textsubscript{v}1.7 (C) and Na\textsubscript{v}1.8 (D) mediated responses, while topiramate (◇) did not inhibit any Na\textsubscript{v} isoform assessed. (A) The \textit{in vitro} potency (pIC\textsubscript{50}) for inhibition of heterologously expressed Na\textsubscript{v}1.3 by amitriptyline (pIC\textsubscript{50} 4.85 ± 0.09),
carbamazepine (pIC$_{50}$ 3.26 ± 0.13), flupirtine (pIC$_{50}$ 3.88 ± 0.18), lamotrigine (pIC$_{50}$ 3.37 ± 0.32), mexiletine (pIC$_{50}$ 3.73 ± 0.08) and phenytoin (pIC$_{50}$ 2.66 ± 0.14). (B) The *in vitro* potency (pIC$_{50}$) for inhibition of heterologously expressed Na$_v$1.6 by amitriptyline (pIC$_{50}$ 4.89 ± 0.17), carbamazepine (pIC$_{50}$ 3.29 ± 0.15), flupirtine (pIC$_{50}$ 3.86 ± 0.21), lamotrigine (pIC$_{50}$ 3.41 ± 0.39), mexiletine (pIC$_{50}$ 3.65 ± 0.26) and phenytoin (pIC$_{50}$ 2.84 ± 0.13). (C) The *in vitro* potency (pIC$_{50}$) for inhibition of heterologously expressed Na$_v$1.7 by amitriptyline (pIC$_{50}$ 4.85 ± 0.11), carbamazepine (pIC$_{50}$ 3.49 ± 0.17), flupirtine (pIC$_{50}$ 3.99 ± 0.35), lamotrigine (pIC$_{50}$ 3.36 ± 0.10), mexiletine (pIC$_{50}$ 3.93 ± 0.16) and phenytoin (pIC$_{50}$ 2.73 ± 0.12). (D) The *in vitro* potency (pIC$_{50}$) for inhibition of heterologously expressed Na$_v$1.8 by amitriptyline (pIC$_{50}$ 4.51 ± 0.06), carbamazepine (pIC$_{50}$ 3.45 ± 0.16), flupirtine (pIC$_{50}$ 3.53 ± 0.10), lamotrigine (pIC$_{50}$ 2.87 ± 0.19), mexiletine (pIC$_{50}$ 3.60 ± 0.52) and phenytoin (pIC$_{50}$ 3.06 ± 0.25). Concentration-response curves are representative of 3-4 independent experiments, with pIC$_{50}$ data presented as mean ± SEM from n = 3-4 independent experiments.