TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>PLAIN LANGUAGE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>METHODS</td>
<td>3</td>
</tr>
<tr>
<td>RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>6</td>
</tr>
<tr>
<td>AUTHORS’ CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>CHARACTERISTICS OF STUDIES</td>
<td>8</td>
</tr>
<tr>
<td>DATA AND ANALYSES</td>
<td>10</td>
</tr>
<tr>
<td>WHAT’S NEW</td>
<td>10</td>
</tr>
<tr>
<td>HISTORY</td>
<td>10</td>
</tr>
<tr>
<td>CONTRIBUTIONS OF AUTHORS</td>
<td>10</td>
</tr>
<tr>
<td>DECLARATIONS OF INTEREST</td>
<td>10</td>
</tr>
<tr>
<td>SOURCES OF SUPPORT</td>
<td>11</td>
</tr>
<tr>
<td>INDEX TERMS</td>
<td>11</td>
</tr>
</tbody>
</table>
[Intervention Review]

Vitamin A supplementation for cystic fibrosis

Catherine M Bonifant, Elizabeth Shevill, Anne B Chang

1 Department of Nutrition and Dietetics, Royal Children’s Hospital, Herston, Australia. 2 Department of Cystic Fibrosis, Royal Children’s Hospital, Herston, Australia. 3 Menzies School of Health Research, Charles Darwin University, Casuarina, Australia

Contact address: Catherine M Bonifant, Department of Nutrition and Dietetics, Royal Children’s Hospital, Lower Ground Floor, South Tower, Herston Road, Herston, Queensland, 4029, Australia. Catherine_Bonifant@health.qld.gov.au.

Editorial group: Cochrane Cystic Fibrosis and Genetic Disorders Group.

Publication status and date: New search for studies and content updated (no change to conclusions), published in Issue 8, 2012.

Review content assessed as up-to-date: 7 June 2012.

Citation: Bonifant CM, Shevill E, Chang AB. Vitamin A supplementation for cystic fibrosis. Cochrane Database of Systematic Reviews 2012, Issue 8. Art. No.: CD006751. DOI: 10.1002/14651858.CD006751.pub3.

Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

People with cystic fibrosis and pancreatic insufficiency are at risk of fat soluble vitamin deficiency as these vitamins (A, D, E and K) are co-absorbed with fat. Thus, some cystic fibrosis centres routinely administer these vitamins as supplements but the centres vary in their approach of addressing the possible development of deficiencies in these vitamins. Vitamin A deficiency causes predominantly eye and skin problems while supplementation of vitamin A to excessive levels may cause harm to the respiratory and skeletal systems in children. Thus a systematic review on vitamin A supplementation in people with cystic fibrosis would help guide clinical practice.

Objectives

To determine if vitamin A supplementation in children and adults with CF:

1. reduces the frequency of vitamin A deficiency disorders;
2. improves general and respiratory health;
3. increases the frequency of vitamin A toxicity.

Search methods

We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.

Date of the most recent search of the Group’s Cystic Fibrosis Trials Register: 23 May 2012.

Selection criteria

All randomised or quasi-randomised controlled trials comparing all preparations of oral vitamin A used as a supplement compared to either no supplementation (or placebo) at any dose and for any duration, in children or adults with cystic fibrosis (defined by sweat tests or genetic testing) with and without pancreatic insufficiency.

Data collection and analysis

No relevant studies for inclusion were identified in the search.
Main results

No studies were included in this review.

Authors’ conclusions

As there were no randomised or quasi-randomised controlled trials identified, we cannot draw any conclusions on the benefits (or otherwise) of regular administration of vitamin A in people with cystic fibrosis. Until further data are available, country or region specific guidelines on the use of vitamin A in people with cystic fibrosis should be followed.

PLAIN LANGUAGE SUMMARY

The use of regular vitamin A preparations for children and adults with cystic fibrosis

Cystic fibrosis can cause certain vitamins, such as vitamin A, to be inadequately absorbed leading to problems caused by vitamin deficiency. Lack of vitamin A (vitamin A deficiency) can cause specific problems such as eye and skin problems. It can also be associated with poorer general and respiratory health. Thus people with cystic fibrosis are usually given regular vitamin A preparations from a very young age. However, excess vitamin A can also cause respiratory and bone problems. The review found no studies to show whether giving vitamin A regularly for people with cystic fibrosis is beneficial or not. The authors are unable to draw any conclusions regarding the routine administration of vitamin A supplements and recommend that until further evidence is available, local guidelines are followed regarding this practice.

BACKGROUND

Description of the condition

Cystic fibrosis (CF) is a genetic disorder that affects multiple organs. Pancreatic insufficiency affects up to 90% of people with CF, whereby fat malabsorption occurs and pancreatic enzyme replacement is required to prevent steatorrhoea and malnutrition (Dodge 2006). Fat soluble vitamins (A, D, E and K) are co-absorbed with fat and thus deficiency of these vitamins may occur (Dodge 2006). Some CF centres routinely administer these vitamins as supplements from the neonatal period, whilst others administer them only later in life or when deficiencies are detected clinically or on routine monitoring. While deficiencies may occur from the disease process of CF and insufficient supplementation, vitamin toxicity may also occur from excess supplementation. Both deficiency and excess of these vitamins may lead to specific medical problems (Dodge 2006; Sethuraman 2006).

Vitamin A is an essential nutrient for epithelial cell maintenance and repair in the respiratory, urinary and intestinal tract, immune response, and bone growth (DAA 2006). Dietary vitamin A (retinol or retinol esters) is found in liver, beef, eggs, fish, the fat of dairy products and vitamin A fortified margarine. Beta- and alphacarotene can act as precursors for the synthesis of vitamin A. The dietary carotenoid (beta-carotene) is found in red, orange, yellow and leafy green vegetables (e.g. carrots, sweet potato, silverbeet) and red and orange fruit (e.g. mangos, oranges).

Vitamin A deficiency can be defined as serum retinol (SROL) concentration less than 0.70 µmol/L (less than 20 µg/dl) (West 2003). However, SROL levels may be influenced by albumin and retinol binding protein (RBP) as well as acute illnesses with infection and inflammation (Napoli 1996; Stephensen 1994). SROL levels should be measured during clinical stability (DAA 2006).

The major consequence of vitamin A deficiency is ocular (eye) with abnormal dark adaptation (night blindness), conjunctival and corneal xerosis (thickening) which can lead to blindness (DAA 2006; West 2003). Another consequence of vitamin A deficiency is the skin condition phrynoderma (a form of follicular hyperkeratosis associated with some micronutrient deficiencies). Vitamin A deficiency has also been linked to impaired mechanisms of host resistance to infection, poor growth and increased mortality in a study of mothers and children (West 2003).

Description of the intervention

Vitamin A is available as a sole supplement as well as in combination form with other vitamins as multi-vitamins (either as a liquid or a tablet). The availability of different formulations differ
in different health services (Graham-Maar 2006). Vitamin A is usually administered as a daily dose, but the recommended doses vary in different guidelines. For example, the Royal Brompton Hospital guidelines recommend 4000 IU for children aged under one year, then 4000 to 10,000 IU for all other age groups (Royal Brompton Hospital 2011); and the USA guidelines recommend 3000 µg retinol activity equivalents (approximately 10,000 IU) (Graham-Maar 2006).

How the intervention might work
Normalisation of vitamin A levels may avoid the afore-mentioned problems. However supplementation of these vitamins to excessive levels may cause harm to the respiratory system, the skeletal system (osteoporosis and fractures) and liver abnormality (Penniston 2006) in children with and without CF (Graham-Maar 2006; Sethuraman 2006).

Why it is important to do this review
The approach of addressing the possibility of the development deficiency of these fat soluble vitamins is variable among CF centres. Thus a systematic review on the efficacy of vitamins A, D, E and K supplementation in children and adults with CF in preventing effects of the deficiency of these vitamins would help guide clinical practice. Supplementation of vitamins D, E and K will be addressed in other Cochrane Systematic Reviews (Ferguson 2012; Jagannath 2011; Okebukola 2011; Shamseer 2010). This review will evaluate vitamin A supplementation in children and adults with CF.

OBJECTIVES
To determine if vitamin A supplementation in children and adults with CF:

1. reduces the frequency of vitamin A deficiency disorders;
2. improves general and respiratory health;
3. increases the frequency of vitamin A toxicity.

METHODS

Criteria for considering studies for this review

Types of studies

Types of participants
Children or adults with CF (defined by sweat tests or genetic testing) with and without pancreatic insufficiency.

Types of interventions
All preparations of oral vitamin A used as a supplement compared to either no supplementation or placebo at any dose for at least three months.

Types of outcome measures

Primary outcomes
1. Vitamin A deficiency disorders
 i) visual impairment
 ii) any other ocular dysfunction
 iii) skin manifestations (e.g. phrynoderma)
2. Growth and nutritional status (e.g. weight, height, body mass index, z score for weight, etc.)
3. Mortality

Secondary outcomes
1. Respiratory outcomes
 i) bronchiectasis severity control (e.g. Likert scale, visual analogue scale or radiological score (Marchant 2001))
 ii) lung function indices (spirometry e.g. FEV1 and FVC)
 iii) proportions of participants who had respiratory exacerbations or hospitalisations or both
 iv) total number of hospitalised days or days off work or school
2. Quality of life
3. Adverse events (e.g. vomiting, loss of appetite, osteoporosis, fractures or any other adverse event noted)
4. Possible toxicity events (e.g. liver dysfunction)
5. Measured levels of vitamin A

We planned to evaluate outcomes based on
1. short term (12 months or less), and
2. medium to long term (longer than one year)
Search methods for identification of studies

Electronic searches
We attempted to identify relevant studies from the Group’s Cystic Fibrosis Trials Register using the term ‘vitamin A’.

The Cystic Fibrosis Trials Register is compiled from electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL) (updated each new issue of The Cochrane Library), quarterly searches of MEDLINE, a search of EMBASE to 1995 and the prospective handsearching of two journals - Pediatric Pulmonology and the Journal of Cystic Fibrosis. Unpublished work is identified by searching through the abstract books of three major cystic fibrosis conferences: the International Cystic Fibrosis Conference; the European Cystic Fibrosis Conference and the North American Cystic Fibrosis Conference. For full details of all searching activities for the register, please see the relevant sections of the Cystic Fibrosis and Genetic Disorders Group Module.

Date of the most recent search of the Group’s Cystic Fibrosis Trials Register: 23 May 2012.

Searching other resources
Searches of bibliographies and texts of selected studies were also conducted to identify additional studies.

Data collection and analysis
The authors did not apply the process described below since no studies were identified. In future updates of this review, the authors will apply the following methods if studies are identified:

Selection of studies
From the title, abstract, or descriptors, two authors will independently review results of the literature searches to identify studies potentially relevant to the review according to our inclusion criteria for further assessment. From these studies, the same two authors will independently examine the papers in further detail in order to select studies for inclusion using the criteria stated before. The authors will resolve disagreement by consensus.

Data extraction and management
The authors will review studies that satisfy the inclusion criteria for the review and independently extract data on the outcomes described as follows: study setting; year of study; source of funding; participant recruitment details (including number of eligible participants); inclusion and exclusion criteria; randomisation and allocation concealment method; numbers of participants randomised; blinding (masking) of participants, care providers and outcome assessors; dose and type of intervention; duration of therapy; co-interventions; numbers of participants not followed up; reasons for withdrawals from study protocol (clinical, side effects, refusal and other); side effects of therapy; and whether intention-to-treat analyses were possible.

Assessment of risk of bias in included studies
In order to assess the risk of bias, two review authors will independently assess the quality of the studies included in the review according to the criteria described by Jüni (Jüni 2001):

Allocation concealment
The authors will assess allocation concealment in each study as follows:
1. adequate, if the allocation of participants involved a central independent unit, on-site locked computer, identically appearing numbered drug bottles or containers prepared by an independent pharmacist or investigator, or sealed opaque envelopes;
2. unclear, if the method used to conceal the allocation was not described;
3. inadequate, if the allocation sequence was known to the investigators who assigned participants or if the study was quasi-randomised.

Generation of the allocation sequence
The authors will grade each study for allocation concealment as follows:
1. adequate, if methods of randomisation include using a random number table, computer-generated lists or similar methods;
2. unclear, if the study is described as randomised, but no description of the methods used to allocate participants to treatment group was described;
3. inadequate, if methods of randomisation include alternation; the use of case record numbers, dates of birth or day of the week, and any procedure that is entirely transparent before allocation.

Blinding (or masking)
The authors will grade each study for blinding as follows:
1. blinding of clinician (person delivering treatment) to treatment allocation;
2. blinding of participant to treatment allocation;
3. blinding of outcome assessor to treatment allocation.
Follow-up
The authors will grade each study as to whether numbers of and reasons for dropouts and withdrawals in all intervention groups were described; or if it was specified that there were no dropouts or withdrawals.
They will also report on whether the investigators had performed a sample-size calculation and if they used an intention-to-treat (ITT) analysis.

Measures of treatment effect
The authors will include the results from studies that meet the inclusion criteria and report any of the outcomes of interest in the subsequent meta-analyses if any data are applicable.

For the dichotomous outcome variables of each individual study, they will calculate the odds ratio (OR) using a modified ITT analysis, i.e. if the original investigators did not use ITT analysis, they will consider dropouts to be failures. They will also calculate the summary weighted odds ratios and 95% confidence intervals (CIs) (fixed-effect model) using RevMan (RevMan 2011). The authors will calculate numbers-needed-to-treat (NNT) and their 95% CIs from the pooled OR and its 95% CI for a specific baseline risk, which is the sum of all the events in the control groups (in all studies) divided by the total participant numbers in control groups in all studies using an online calculator (Cates 2003).

For continuous outcomes, they will record the mean relative change from baseline for each group or mean post-treatment or post-intervention values and standard deviation. If standard errors are reported, they will calculate the standard deviations. The authors will then calculate a pooled estimate of treatment effect by the weighted mean difference and 95% confidence interval (fixed-effect model) again using RevMan (RevMan 2011).

Unit of analysis issues
For cross-over studies, the authors will calculate the mean treatment differences where possible and enter these using the fixed-effect generic inverse variance (GIV) analysis in RevMan, to provide summary weighted differences and 95% CIs (RevMan 2011). In cross-over studies, if they believe there is a carryover effect which will outlast any washout period included in the study, they will include only data from the first arm in the meta-analysis (Elbourne 2002).
If studies report outcomes using different measurement scales, the authors will estimate the standardised mean difference and 95% CIs.

Dealing with missing data
The authors will request further information from the primary investigators where required.

Assessment of heterogeneity
They will describe any heterogeneity between the study results and test this to see if it reached statistical significance using the chi-squared test. They will consider heterogeneity to be significant when the P value is less than 0.10 (Higgins 2011). The authors also plan to use the I² statistic where heterogeneity is categorised such that a value of under 25% is considered low, around 50% is considered moderate and over 75% is considered a high degree of heterogeneity (Higgins 2003).

Data synthesis
The authors will include the 95% CI, estimated using a fixed-effect model. However, they will utilise the random-effects model whenever there are concerns about statistical heterogeneity.

Subgroup analysis and investigation of heterogeneity
The authors plan to perform the following a priori subgroup analyses to investigate any heterogeneity which they identify:
1. children (aged 18 years or less) and adults (over 18 years);
2. formulations of the vitamin (single or multivitamin);
3. presence of significant liver synthetic dysfunction (low baseline albumin);
4. presence of previous bowel resections;
5. presence of pancreatic insufficiency;
6. method of CF diagnosis (i.e. screening versus symptomatic diagnosis).

Sensitivity analysis
Sensitivity analyses are also planned to assess the impact of the potentially important factors on the overall outcomes:
1. analysis using a random-effects model;
2. analysis by “treatment received” (as opposed to ITT analysis).

RESULTS
Description of studies
See: Characteristics of excluded studies.

Results of the search
The authors identified a single study in our searches (Wood 2003).
Excluded studies
The only study identified was excluded because it was not placebo controlled (see Characteristics of excluded studies).

Risk of bias in included studies
The authors did not find any eligible studies that fulfilled the inclusion criteria.

Effects of interventions
The authors did not find any eligible studies that fulfilled the inclusion criteria.

DISCUSSION
Daily vitamin A supplementation is almost universally recommended for people with CF who are pancreatic insufficient. However, it is unfortunate that there are no controlled studies that have examined this. The appropriate dose and frequency of vitamin A supplementation is also unknown. Furthermore while vitamin A deficiency causes eye and skin disorders, excess vitamin A can also cause problems (Griffiths 2000; Penniston 2006). Indeed, increasingly data on micronutrients have shown that micronutrient supplementation is only beneficial in states of deficiency and harmful when no deficiency exists (Chang 2006; Shenkin 2006). For vitamin A, Griffiths has termed this the ‘vitamin A paradox’ as vitamin A supplementation is likely to be “protective against pneumonia in malnourished children (who are likely to be vitamin A-deficient) and is paradoxically detrimental for adequately nourished children” (Griffiths 2000). It is well accepted that people with cystic fibrosis and pancreatic insufficiency are at risk of vitamin A deficiency. However, it is also biologically plausible that currently, with improved pancreatic replacement therapies and attention to macro nutrition and caloric supplements, the majority of people with CF are vitamin A sufficient and may not require daily vitamin A supplementation. Daily supplementation in these situations at best causes no harm, but it adds a further burden to the daily medical regimen of people with CF and it is possible that it may be biologically harmful.

AUTHORS’ CONCLUSIONS

Implications for practice
As there were no randomised or quasi-randomised controlled trials identified, we cannot draw any conclusions on the benefits (or otherwise) of regular administration of vitamin A in people with cystic fibrosis. Until further data are available, country or region specific guidelines (e.g. UK CF Trust Nutrition Guidelines (CF Trust 2002)) on the use and monitoring of vitamin A in people with cystic fibrosis should be followed.

Implications for research
The need for a well-designed, parallel, adequately-powered, multicentre, randomised controlled trial to assess if vitamin A supplementation in children and adults with cystic fibrosis is beneficial or otherwise, is obvious. The study should examine if vitamin A supplementation positively or negatively influences the frequency of symptoms of vitamin A deficiency or general and respiratory outcomes. The possible negative effects should be examined in light of recent data showing possible harm when micronutrients are used in people who are not micronutrient-deficient. Safety monitoring during such a study would be important as the current practice is to use supplementation of vitamin A in people with CF. Vitamin A levels should be measured before and during the studies when clinically stable and related to serum albumin and retinol binding protein. Studies involving both children and adults are required and results should be related to nutritional status and pancreatic status. Data relating to appropriate dose and frequency of supplementation are also needed.

ACKNOWLEDGEMENTS
We thank Nikki Jahnke and Dr Gerard Ryan from the Cochrane Cystic Fibrosis & Genetic Disorders Group for their advice, supportive role and comments to the protocol and review and to Natalie Yates for help with the searches.
References to studies excluded from this review

Wood 2003 [published data only]

Additional references

Cates 2003

CF Trust 2002

Chang 2006

DAA 2006

Dodge 2006

Elbourne 2002

Ferguson 2012

Graham-Maar 2006

Griffiths 2000

Higgins 2003

Higgins 2011

Jagannath 2011

Jüni 2001

Marchant 2001

Napoli 1996

Okebukola 2011

Penniston 2006

RevMan 2011

Royal Brompton Hospital 2011

Sethuraman 2006

Shamseer 2010

Shenkin 2006

Stephensen 1994

West 2003

References to other published versions of this review

O’Neil 2008

* Indicates the major publication for the study
Characteristics of excluded studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood 2003</td>
<td>Non-placebo controlled trial. This trial examined outcomes of forty-six CF patients randomly assigned to either group A [low dose of supplement (10 mg vitamin E and 500 micro g vitamin A)] or group B [high dose of supplement (200 mg vitamin E, 300 mg vitamin C, 25 mg beta-carotene, 90 micro g Se, and 500 micro g vitamin A)]</td>
</tr>
</tbody>
</table>
DATA AND ANALYSES

This review has no analyses.

WHAT'S NEW

Last assessed as up-to-date: 7 June 2012.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 June 2012</td>
<td>New citation required but conclusions have not changed</td>
<td>No new studies were included so the conclusions of the review have not changed</td>
</tr>
<tr>
<td>7 June 2012</td>
<td>New search has been performed</td>
<td>A search of the Group's Cystic Fibrosis Trials Register did not identify any new references potentially eligible for inclusion in this review</td>
</tr>
</tbody>
</table>

HISTORY

Review first published: Issue 1, 2008

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 December 2009</td>
<td>New search has been performed</td>
<td>A search of the Group’s Cystic Fibrosis Trials Register identified a single reference which was excluded (Wood 2003).</td>
</tr>
<tr>
<td>12 August 2009</td>
<td>Amended</td>
<td>Contact details updated.</td>
</tr>
<tr>
<td>10 April 2008</td>
<td>Amended</td>
<td>Converted to new review format.</td>
</tr>
<tr>
<td>10 April 2008</td>
<td>New search has been performed</td>
<td>A search of the Group's Cystic Fibrosis Trials Register did not identify any trials which might be eligible for inclusion in this review</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

Protocol: CO and AC wrote the protocol. ES reviewed the protocol.

Review: When any studies are identified, CO and AC will select relevant studies, perform data extraction and analysis and write the review. ES will contribute to writing of the review.
DECLARATIONS OF INTEREST

There is no conflict of interest.

SOURCES OF SUPPORT

Internal sources

- Royal Children's Hospital Foundation, Brisbane, Australia.

External sources

- National Health and Medical Research Council, Australia.

INDEX TERMS

Medical Subject Headings (MeSH)

Cystic Fibrosis [*complications]; Vitamin A [*administration & dosage; adverse effects]; Vitamin A Deficiency [*prevention & control]; Vitamins [*administration & dosage; adverse effects]

MeSH check words

Humans