Apoptosis and schizophrenia: A pilot study based on dermal fibroblast cell lines

Vibeke Sørensen Catts a,b, Stanley Victor Catts c,d,* , John Joseph McGrath e, François Feron e,1, Duncan McLean e, Elizabeth Jane Coulson b, Louise Helen Lutze-Mann a

a School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney NSW 2052, Australia
b Queensland Brain Institute, Ritchie Building 64A, University of Queensland, St Lucia QLD 4072, Australia
c Discipline of Psychiatry University of Queensland, Australia
d Division of Mental Health, Royal Brisbane and Women’s Hospital, K Floor, Mental Health Centre, Royal Brisbane and Women’s Hospital, Herston QLD 4029, Australia
e Queensland Centre for Mental Health Research, Level 3 Dawson House, The Park — Centre for Mental Health, Wacol QLD 4076, Australia

Received 2 December 2005; received in revised form 2 March 2006; accepted 3 March 2006

Abstract

Introduction: The aim of this study was to investigate whether there is an increased susceptibility to apoptosis in cultured fibroblasts from patients with schizophrenia.

Method: Dermal fibroblasts were collected and cultured from three groups: patients with schizophrenia, patients with non-schizophrenic psychosis, and healthy comparison subjects. Susceptibility to apoptosis was measured at the level of degradation product (proportion of cells in the sub-G0 cell cycle fraction in which apoptotic bodies accumulate), pro-apoptotic effector (activated caspase-3), and molecular regulators (P53, Bax and Bcl-2). Cell lines were studied under both basal culture and cycloheximide (an apoptotic inducer) exposure conditions.

Results: Consistent with increased susceptibility to apoptosis, the proportion of sub-G0 cells under basal conditions was significantly larger in the schizophrenia group, compared to the non-schizophrenic psychosis group. However when apoptosis was stimulated with cycloheximide, the schizophrenia group showed an attenuated caspase-3 response. The pattern of correlations between regulators/caspase-3 and the proportion of sub-G0 cells was different in the schizophrenia group, consistent with group-specific apoptotic pathway dysregulation.
Conclusion: The study demonstrated anomalous apoptotic mechanisms in schizophrenia, which appear not to affect non-schizophrenia psychosis patients. The detection of these anomalies in fibroblasts suggests that altered apoptosis may be observable in all somatic cell types in schizophrenia.

© 2006 Published by Elsevier B.V.

Keywords: Schizophrenia; Bipolar disorder; Cell cycle; Apoptosis; Fibroblast

1. Introduction

The evidence of reduced incidence rates of cancer in schizophrenia (for a recent review, see Grinshpoon et al., 2005) was advanced in support of the hypothesis that increased susceptibility to apoptosis is implicated in the pathophysiology of schizophrenia (Catts and Catts, 2000). The rationale for this proposal was based upon the role of apoptosis in protecting against malignancy. Apoptotic regulators check DNA integrity at all stages of the cell cycle. If DNA damage is detected, cell cycle progression is arrested to allow repair of damaged DNA. If DNA repair is not possible, the potentially pre-cancerous cell normally undergoes apoptosis and is eliminated.

The current study was designed to carry out a multi-level functional assessment of apoptosis in living cells—at the level of regulators (P53, Bax and Bcl-2), effectors (caspase-3), and degradation products (apoptotic bodies). Phosphorylation of the transcription factor P53 increases levels of the pro-apoptotic protein Bax. Homodimerisation of Bax results in mitochondrial release of cytochrome C, which activates proteolytic enzymes called caspases in the cytosol. Caspase activation leads to DNA fragmentation and cell death. As the dying cell shrinks, the plasma membrane forms convolutions around cellular contents (‘blebbing’), which sequester to form ‘apoptotic bodies’ containing DNA fragments. The anti-apoptotic protein, Bcl-2 keeps this process in check by forming Bax-Bcl-2 heterodimers, preventing Bax–Bax Homodimerisation.

We measured apoptotic markers in cultured dermal fibroblasts, based on the assumption that systemic cancer resistance would be related to altered apoptotic mechanisms in all cell types. Cultured dermal fibroblasts have been demonstrated to be a convenient and useful model for investigating schizophrenia (Mahadik and Mukherjee, 1996). The primary culture can be maintained in vitro for many cell passages overcoming the confounding effects of medications taken by the patients at the time of biopsy, barring prolonged medication-induced gene expression changes via epigenetic modification. By assessing cells under basal culture conditions, apoptotic mechanisms could be studied when not challenged by an apoptotic stimulus. By exposing cells to cycloheximide, mechanisms could be assessed when cells were undergoing an active apoptotic response.

2. Materials and methods

2.1. Subject recruitment and assessment

The study was approved by Griffith University and Woolston Park Hospital Institutional Ethics Committees. Subjects provided written informed consent. Full details of the subject recruitment procedures are provided elsewhere (McGrath et al., 2000). Subjects were assessed with the Diagnostic Interview for Psychosis (Jablensky et al., 1999) and diagnosed according to DSM-III-R. Patients in the schizophrenia group (n = 10) were diagnosed with schizophrenia (7 males, 3 females; mean age 38 ± 10). The non-schizophrenic psychosis (NSP) group (n = 11) included six patients with Bipolar Disorder (Episode(s) With Psychotic Features), four with Major Depressive Episode With Psychotic Features, and one patient with Psychotic Disorder Not Otherwise Specified (Atypical Psychosis) (6 males, 5 females; mean age 41 ± 10). There were 10 healthy controls (6 males, 4 females; mean age 39 ± 13). Groups did not differ significantly in terms of age (F=0.261, df=2, 28, p=0.772) or sex (p=0.764).

2.2. Specimen collection and cell culture

Human dermal fibroblasts were cultured by explant growth from skin obtained by biopsy from the upper
107 inside arm, under local anaesthesia using a 5 mm
108 disposable punch. Initial cell line culture procedures
109 were based on those of Edelstein and Breakefield
110 (1980). Fibroblasts were then cryogenically stored in
111 liquid nitrogen.
112
113 2.3. Experimental procedures
114 Full details of laboratory procedures are available
115 on request. The experimenter (VSC) was blind to
116 group membership of cell lines. Cell lines were
117 cultured under proliferating conditions in complete
118 DMEM (containing 10% fetal bovine serum and 50
119 ng/ml gentamycin) over a period of about two to three
120 weeks. An aliquot of about 6.5 million cells was
121 plated into each of 6 culture flasks at a density of
122 10,000 cells/cm². After 48 h incubation, cyclohexi-
123 mide (200 µg/µl methanol; Calbiochem) at a concen-
124 tration of 200 µg/ml of culture medium was added to
125 three flasks. Nothing was added to the three flasks
126 containing the untreated cell lines. All experimental
127 procedures were carried out in duplicate.

128 2.4. Flow cytometry analysis
129 Flow cytometry measures the distribution of cells
130 in the different cell cycle phases by sorting and
131 counting cells according to DNA content. Cells were
132 fixed in 250 µl ice-cold PBS followed by a 250 µl
133 ice-cold 60% ethanol and stored at 4 °C. Prior to
134 analysis, the cells were resuspended in 500 µl warm
135 PBS, 1 µg RNase and 25 µg propidium iodide for
136 30 min in the dark. Flow cytometric analysis was
137 performed on a BD Calibur flow cytometer.
138 Percentage of cells was determined for each of the
139 following cell cycle phases: G0/G1 (46 chromo-
140 somes); S (greater than 46 chromosomes, less than
141 92 chromosomes); G2/M (92 chromosomes); and
142 polyploid (greater than 92 chromosomes). Cells with
143 a DNA content of less than 46 chromosomes were
144 designated as being sub-G0 (including apoptotic
145 bodies).

146 2.5. Western blot analysis of Bax, Bcl-2, phosphorylated
147 P53P392Ser and actin protein
148 Western blot analyses of whole cell lysates were
149 performed using standard procedures. Protein was
150 extracted in an ice-cold lysis buffer (50 mM Tris.HCl,
151 pH 7.5; 150 mM NaCl; 1% Nonidet P40; 0.5% sodium deoxycholate; 0.1% SDS; 1% protease inhib-
152 itor cocktail [Sigma]). To enable comparison across
153 gels, an aliquot of cell lysate from the breast cancer
cell line MCF-7 was included in each blot. The
154 primary antibodies used were rabbit anti-Bax 1:20
155 (Oncogene); rabbit anti-Bcl-2 1:50 (Oncogene); rabbit
156 anti-actin 1:200 (Sigma); mouse anti-phosphorylated
157 P53P392Ser 1:200 (Alexis) and horseradish peroxidase
158 conjugated secondary antibodies used were anti-
mouse (BioRad); anti-rabbit (BioRad), both 1:50,000.
159 Band volumes were determined using Quantity One
160 4.4.0. Band volumes for Bax, Bcl-2, phosphorylated
161 P53P392Ser and actin protein were divided by the
162 corresponding band volume of the MCF-7 cell lysate;
163 and, loading errors of Bax, Bcl-2 and phosphorylated
164 P53P392Ser were controlled for by dividing with the
165 adjusted actin band volume.

166 2.6. Caspase-3 activity assay
167 Levels of caspase-3 activity were derived from a
168 fluorometric assay involving the cleavage of the
169 synthetic substrate, DEVD-AFC, by caspase-3 accord-
170 ing to the manufacturers instructions (Clontech).

171 2.7. Data analysis
172 Data analysis of laboratory measures was per-
173 formed using the mean of the two independent
determinations of each measure. Significant outliers
174 (p < 0.01) were assessed within each diagnostic
group using Grubb’s method. Three outliers were
175 detected and replaced with the highest value plus
176 one unit for that variable within that diagnostic
177 group, in accordance with standard procedure
178 (Tabanick and Fidell, 2001). Across the matrix there
179 were less than 3% missing data, missing at random
180 due to technical errors. Estimation maximisation
181 was used to replace these missing values using all
categorical and continuous data to perform this
182 procedure.
183 We conservatively conceptualised the experiment
184 as a two-way factorial design, with one between-
185 groups (diagnosis) and one within-groups (treatment)
independent variable. Diagnosis had three levels:
schizophrenia group, NSP group, and healthy com-
parison group. Treatment had two levels: cycloheximide exposure and no treatment (basal condition). A multivariate analysis of variance (MANOVA) was performed to assess overall effects of group and treatment. While one of the assumptions of MANOVA (that there be more subjects in the smallest cell than DVs) is violated (the smallest cell contains the same number of subjects as DVs), overall this technique was considered a conservative preparatory analysis for the univariate post-hoc testing. Significant effects detected by the MANOVA were explored using univariate ANOVA and Tukey’s post-hoc test. Correlations between markers were assessed using Pearson’s coefficients.

3. Results

3.1. Overall effects on laboratory measures

The MANOVA including laboratory measures showed a significant overall effect of treatment.
The average caspase activity across groups increased (caspase activity) from 9% to 10%. There was no significant effect of cycloheximide exposure on sub-G0 (57% to 49%); and, in the proportion of cells in G2/M from 13% to 18%, and polyploid phase, from 9% to 10%. There was no significant effect of cycloheximide exposure on Bcl-2 or Bax protein levels, or on Bcl-2:Bax ratios (see Fig. 3).

3.2. Treatment effects

The results of flow cytometry analysis for each diagnostic group are presented in Fig. 1. Points on the left of each graph are values for cell lines under basal conditions. Points on the right of each graph are values for cell lines exposed to cycloheximide. Although the MANOVA did not detect a statistically significant effect of diagnostic group on the proportion of cells in sub-G0 (F = 1.395, df = 2, 59, p = 0.037), Tukey’s post-hoc test revealed that this effect was due to a significant increase (p = 0.029) in the proportion of cells in sub-G0 in the schizophrenia group compared to the NSP group (basal and cycloheximide exposure conditions combined), whilst there was no difference between the healthy comparison group and the NSP group on this measure (p = 0.515). As can be seen in Fig. 1, this result was mainly attributable to a significant increase in the basal level of sub-G0 cells (t = 2.117, p = 0.024, one-tailed) in the schizophrenia group (6.4%) compared with the NSP group (2.8%), though this effect was apparent at the level of a trend in the cycloheximide exposed cells (5.1% versus 3.9%; t = 1.443, p = 0.083, one-tailed). There was a trend for the basal level of sub-G0 cells to be increased in the schizophrenia group (6.4%) compared with the healthy comparison group (3.8%), though again this trend did not achieve conventional levels of statistical significance (t = 1.395, p = 0.090, one-tailed). In the cycloheximide exposed cells, there was no difference in the proportion of sub-G0 cells between the schizophrenia and healthy comparison groups (5.1% versus 5.6%; t = -0.443, p = 0.33, one-tailed).

Although the MANOVA did not detect a statistically significant effect of diagnostic group on caspase activity, there was evidence of an effect at trend level (F = 2.994, df = 2, 59, p = 0.06). Visual inspection of Fig. 2 suggested that there was no difference in caspase-3 activity levels between the three diagnostic groups under basal conditions, but there was a difference in the cycloheximide exposure condition. An exploratory post-hoc t-test revealed, contrary to hypothesis, that the schizophrenia group had significantly less caspase-3 activity compared to the healthy comparison group in the cycloheximide exposed samples (t = -2.246, p = 0.038, two-tailed).
There was no statistically significant effect of diagnostic group for the level of phosphorylated P53
$^{\text{Ser}392}$ protein ($F=0.448$, $df=2$, 59, $p=0.64$), level of Bcl-2 protein ($F=0.394$, $df=2$, 59, $p=0.68$), level of Bax protein ($F=2.089$, $df=2$, 59, $p=0.13$), or for the ratio of Bcl-2:Bax protein ($F=1.177$, $df=2$, 59, $p=0.32$). Inspection of the Fig. 3 graph headed Bcl-2:Bax reveals that the Bcl-2:Bax ratio was numerically lower in cells under both basal and cycloheximide exposure conditions in the schizophrenia group compared with the other two groups, but post-hoc testing did not detect significant group differences.

3.4. Intercorrelations between apoptotic markers

Assay intercorrelations were determined to assess whether the relationships between markers conformed to what is known about apoptotic pathways, and to explore group differences in these relationships. When bivariate correlation coefficients were calculated for apoptotic markers across diagnostic groups separately for cells under basal and cycloheximide exposure conditions, there were no significant correlations between: phosphorylated P53$^{\text{Ser}392}$ and Bax levels; Bax levels and caspase-3 activity; and caspase-3 activity and the proportion of cells in sub-G0.

Within-group intercorrelations between apoptotic markers are presented in Table 1. There are distinct diagnostic group differences in the overall pattern of relationships. Under basal conditions there are significant negative correlations between Bax levels and the Bcl-2:Bax ratio (and the absence of such a relationship between Bcl-2 levels and the Bcl-2:Bax ratio) in the healthy comparison group and the NSP group; whereas in the schizophrenia group, there is a significant positive correlation between Bcl-2 levels and the Bcl-2:Bax ratio (and the absence of such a relationship between Bcl-2 levels and the Bcl-2:Bax ratio) in the healthy comparison group and the NSP group; whereas in the schizophrenia group, there is a significant positive correlation between Bcl-2 levels and the Bcl-2:Bax ratio (and the absence of such a relationship between Bcl-2 levels and the Bcl-2:Bax ratio). In the cycloheximide exposure condition, Bax levels are significantly negatively correlated with the Bcl-2:Bax ratios in each of the three subject groups. However, the expected positive correlations between Bax levels and caspase-3, and caspase-3 and sub-G0, are only evident in the healthy comparison group and the NSP group. In the schizophrenia group correla-
t.12 Inter-assay correlations for diagnostic groups

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls</th>
<th>Non-schizophrenic psychosis</th>
<th>Schizophrenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>P53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bcl-2</td>
<td>−0.15</td>
<td>0.41</td>
<td>0.74*</td>
</tr>
<tr>
<td>Bax</td>
<td>−0.32</td>
<td>−0.13</td>
<td>0.26</td>
</tr>
<tr>
<td>Bcl-2:Bax</td>
<td>0.09</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>0.24</td>
<td>−0.36*</td>
<td>0.49</td>
</tr>
<tr>
<td>Sub-G0</td>
<td>0.43</td>
<td>−0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>0.32</td>
<td>0.32</td>
<td>0.26</td>
</tr>
<tr>
<td>Bax</td>
<td>−0.22</td>
<td>−0.03</td>
<td>−0.01</td>
</tr>
<tr>
<td>Bcl-2:Bax</td>
<td>0.32</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>−0.22</td>
<td>0.33</td>
<td>0.07</td>
</tr>
<tr>
<td>Sub-G0</td>
<td>0.32</td>
<td>−0.07</td>
<td>−0.07</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>0.32</td>
<td>−0.32</td>
<td>−0.31</td>
</tr>
<tr>
<td>Bax</td>
<td>−0.22</td>
<td>0.45</td>
<td>0.86*</td>
</tr>
<tr>
<td>Bcl-2:Bax</td>
<td>0.32</td>
<td>−0.01</td>
<td>−0.83**</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>−0.22</td>
<td>0.33</td>
<td>0.49</td>
</tr>
<tr>
<td>Sub-G0</td>
<td>0.32</td>
<td>−0.07</td>
<td>−0.44</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>0.32</td>
<td>0.07</td>
<td>−0.44</td>
</tr>
<tr>
<td>Bax</td>
<td>−0.22</td>
<td>0.33</td>
<td>0.27</td>
</tr>
<tr>
<td>Bcl-2:Bax</td>
<td>0.32</td>
<td>−0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>−0.22</td>
<td>0.33</td>
<td>−0.41</td>
</tr>
<tr>
<td>Sub-G0</td>
<td>0.32</td>
<td>−0.07</td>
<td>−0.62</td>
</tr>
</tbody>
</table>

* p < 0.05
** p < 0.01.

4. Discussion

The central aim of the present study was to test in a dermal fibroblast cell model the hypothesis that there is an increased susceptibility to apoptosis in schizophrenia. Supporting this hypothesis, we found an increased proportion of cells in the sub-G0 fraction of the cell cycle under basal culture conditions in the schizophrenia group compared to the NSP group. This measure was not significantly different in the NSP group compared to the healthy comparison group. As it is well established that apoptotic cell bodies accumulated in sub-G0, we interpreted this finding as being consistent with patients with schizophrenia showing increased basal susceptibility to apoptosis. This interpretation is supported by the finding that the Bcl-2:Bax ratio was numerically lower in the schizophrenia group compared to the other groups, consistent with an increased proneness to apoptosis in the schizophrenia patient fibroblasts (Adams and Cory, 1998).

There were no differences in caspase-3 activity across the three diagnostic groups under basal conditions. This finding is comparable to Jarskog et al. (2004), who did not find a significant difference in the level of caspase-3 in a postmortem tissue study of temporal cortex in patients with schizophrenia compared with healthy controls. In the cycloheximide exposed cell lines there was a strong trend (statistically significant on post-hoc testing) for patients with schizophrenia to have decreased caspase-3 activity compared with healthy controls. Hence, our findings concerning caspase activity are not consistent with increased susceptibility to apoptosis in patients with schizophrenia, unless this susceptibility is caspase-3 independent. For instance, this form of susceptibility to apoptosis could be mediated by another caspase. Alternatively, caspase-independent susceptibility could be mediated by the apoptosis-inducing factor (AIF), which is essential for programmed cell death during cavitation of embryoid bodies (Joza et al., 2001).

Further convergent evidence of schizophrenia-specific altered apoptotic mechanism was seen in the pattern of within-group correlations between apoptotic pathway markers. Under basal conditions
the Bcl-2:Bax ratio was primarily determined by Bcl-2 levels in the schizophrenia group, in contrast to the two control groups where Bax was the primary determinant of the Bcl-2:Bax ratio. In the cycloheximide exposure condition the expected positive correlations between Bax levels and caspase-3, and caspase-3 and sub-G0, found in the two control groups, were both negative in the schizophrenia group. This pattern of findings may account for the unexpected reduction in caspase-3 activity, and the attenuated increase in the sub-G0 cell fraction, in the schizophrenia group cultures under cycloheximide exposure conditions.

There were limitations with the cell model used. Dermal fibroblasts were chosen because they can be induced to proliferate in vitro, and antipsychotic medication effects can be minimised or eliminated by maintaining the culture for many cell passages. However, they do not appear to be readily susceptible to apoptotic cell death. In pilot testing, hydrogen peroxide in doses of 50, 100, 200 µM; UV radiation (dose 19.6 J/m²); ethanol at concentrations of 1%, 2%, 3%, 4%, and 5%; and 100 µg cycloheximide/ml of media, were ineffective in inducing cell death in the adult human dermal fibroblasts, although it has been reported that high concentrations (1000 µM) of H₂O₂ do induce apoptosis in these cells (Uberti et al., 2002). We chose to use a relatively high dose of cycloheximide (200 µg/ml) which successfully induced apoptosis but which also impacts many biologically significant processes in addition to those directly involved in apoptotic or cell cycle mechanisms. Another issue with dermal fibroblasts is that they appear to be sensitive to small differences in experimental procedures since we found that correlations between duplicate estimates of laboratory measures were relatively low.

The authors acknowledge that there are reasons to view the results as preliminary and in need of confirmation. Nonetheless, our results are in accord with those of Jarskog et al. (2000, 2004). We found, as this other research group found, significant evidence of anomalous apoptotic mechanisms that is relatively specific for schizophrenia. Investigations of apoptosis tend to include a limited number of molecules and use a single type of assay, for example gene expression or protein measures. This approach restricts interpretation, especially in relation to determining whether a change is primary or secondary. Benes (2006) recently reported down-regulation of pro-apoptotic markers in a postmortem gene expression study of hippocampal tissue in schizophrenia. However, as noted by Weinberger and McClure (2002), it is impossible to determine from gene expression studies alone whether reduced mRNA levels of pro-apoptotic markers represent secondary molecular compensation to cell loss from apoptosis or primary reduction in apoptotic signaling.

However, comprehensive assessment of apoptotic mechanisms will generate a large number of dependent variables, especially if proneurotrophins and neurotrophins are included (Lu et al., 2005; Weickert et al., 2005). This suggests that functional studies informed by genotyping data in large subject samples (see Harris et al., 2005 for exemplar) may accelerate the understanding of the significance of altered apoptosis in schizophrenia.

In conclusion, the results of the current study provide further evidence of disease specific aberrant regulation of apoptosis in schizophrenia, which may be observed in somatic cell lines, not just in brain tissue. Although our study did not conclusively support or refute the hypothesis, the proposal of increased susceptibility to apoptosis in schizophrenia continues to have heuristic value. As well as accounting for the putative cancer resistance in schizophrenia, it could also explain the negative disease association between schizophrenia and rheumatoid arthritis (Oken and Schulzer, 1999). The hypothesis has generated interesting genetic candidates (e.g. adenomatous polyposis coli [APC] and P53, Cui et al., 2005; Ni et al., 2005). Although apoptotic mechanisms operate mainly to cause cell death, there is evidence that they may occur in neurons as a sub-lethal cellular process, called synaptic apoptosis (Mattson and Duan, 1999; Mattson et al., 1998) or, simply as a modulator of neuroplasticity (see Lu et al., 2005, in reference to proneurotrophins). In schizophrenia, abnormalities in synaptic apoptosis are ideal candidates to account in part for putative anomalies in dendritic pruning (Glantz et al., 2006) and the reported loss of prefrontal neuropil (Slemon et al., 1995). We believe further that large scale studies of apoptotic mechanisms in schizophrenia are justified.
Acknowledgements

A grant-in-aid from the Rebecca L. Cooper Medical Research Foundation, Sydney is gratefully acknowledged. The first author (VSC) was supported by an Australian Postgraduate Award. We thank Professor Mackay-Sim for his advice on the project and comment on the manuscript.

References

Benes, F.M., 2006. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol. Psychiatry. Advance online publication.