Nuclease resistant methylphosphonate-DNA/LNA chimeric oligonucleotides

Koji Nagahama, Rakesh N. Veedu, Jesper Wengel *

Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark

ARTICLE INFO

Article history:
Received 9 March 2009
Accepted 25 March 2009
Available online 28 March 2009

Keywords:
LNA
Antisense
RNA targeting
Methylphosphonate-DNA
Nuclease stability

ABSTRACT

Synthesis of chimeric 9-mer oligonucleotides containing methylphosphonate-linkages and locked nucleic acid (LNA) monomers, their binding affinity towards complementary DNA and RNA, and their 3’-exonucleolytic stability are described. The obtained methylphosphonate-DNA/LNA chimeric oligonucleotides display similarly high RNA affinity and RNA selectivity as a corresponding 9-mer DNA/LNA chimeric oligonucleotide, but much higher resistance towards 3’-exonucleolytic degradation.

© 2009 Elsevier Ltd. All rights reserved.

Antisense oligonucleotides (AONs) targeting RNA have been widely used to evaluate gene function in vitro and in vivo,1–4 and several antisense therapeutics are in clinical trials.5,6 In order to be effective and practically useful in the above technologies, AONs should feature specific characteristics including high-target RNA binding affinity, sequence specificity and nuclease resistance. Phosphorothioate DNA oligonucleotides, which have been the most widely used AONs, exhibit nuclease resistance, but have a number of limitations, such as sequence independence, toxicity, immune stimulation and low RNA affinity.7–13 Numerous modified oligonucleotides (ONs) have been developed in the past few decades to improve the properties of AONs.10–15 Locked nucleic acid (LNA, Fig. 1), which is a conformationally restricted RNA mimic displaying unprecedented binding affinities towards complementary single stranded RNA or DNA,16–19 is a promising modification for AON applications.20–22 and is currently being utilized in various genomic technologies.23–26 Introduction of consecutive LNA monomers from the 3’-end of an AON efficiently protects against 3’-exonucleolytic degradation,16 whereas isolated LNA monomers in DNA/LNA chimeric AONs offer no significant protection.21 To ensure sufficient biostability of DNA/LNA chimeric AONs, the use of phosphorothioate linkages throughout the AON has proven very effective.27,28

Methylphosphonate-DNA (MP-DNA, Fig. 1) is another class of potential AONs which contain non-ionic internucleoside linkages.29–31 MP-DNA displays stabilization towards nucleolytic degradation but unfortunately also significantly reduced binding affinity towards complementary RNA.32–34 In a first attempt of combining the desirable properties of methylphosphate linkages and LNA monomers, we reported synthesis, satisfactory RNA binding properties and increased 3’-exonucleolytic stability of ONs containing a single methylphosphonate-LNA (MP-LNA, Fig. 1) monomer.35 However, the fact that MP-LNA monomers are not commercially available has hampered further exploration of this class of potential AONs. Herein, we describe solid phase synthesis of chimeric 9-mer ONs containing MP-DNA and LNA monomers (MP-DNA/LNA) together with their DNA/RNA binding properties and stability against 3’-exonucleolytic degradation. Our aim is to develop AONs devoid of phosphorothioate linkages which combine stability under physiological conditions and high RNA binding affinity with easy availability.

MP-DNA/LNA ONs (ON4 and ON6, Table 1) and MP-DNA/DNA ONs (ON3 and ON5, Table 1) containing different number of MP-linkages (monomers Cmp or Amp) were synthesized in 1.0 μmol scale by automated solid phase DNA synthesis using commercially available MP-DNA and LNA-T phosphoramidites. The step-wise coupling efficiencies, based on the absorbance of the dimethoxytrityl cation released after each coupling step, of all monomers were ≥98% when applying standard conditions as recommended by suppliers. The chimeric ONs were, as O5’–DMT–ON derivatives, deprotected and simultaneously cleaved off the solid support using a mixture of ethylenediamine and ethanol (1/1, v/v) at 55 °C for 55 min.36 Subsequent purification by RP-HPLC followed by detritylation provided the fully deprotected ONs. After purification, the purities (>80%) and composition of ON3–ON6 were characterized by RP-HPLC and MALDI-TOF mass spectrometry, respectively.37

The ability of the MP-DNA/LNA ONs to form duplexes with complementary RNA and DNA in medium salt buffer (120 mM [Na+])
was evaluated by UV melting experiments (Table 1). Reference duplex melting temperatures \(T_m \) values were obtained for the corresponding all-DNA (ON1), DNA/LNA (ON2) and MP-DNA/DNA (ON3 and ON5) ONs. As reported earlier\(^{23,24}\), introduction of MP-DNA monomers into DNA (ON3 and ON5) induced decreased \(T_m \) values. We furthermore note an additive affinity-decreasing effect of MP-DNA monomers, especially towards complementary RNA. As reported earlier, introduction of three LNA monomers into a DNA ON resulted in significantly increased \(T_m \) values (ON2 relative to ON1). The data obtained for the MP-DNA/LNA chimeras ON4 and ON6 reflect high-affinity targeting of DNA/RNA complements also for these constructs, and the affinity-decreasing effect on the MP-DNA monomers is more than counterbalanced by the affinity-enhancing effect of LNA monomers. Furthermore encouraging in light of AON development is the fact that the MP-DNA/LNA chimeras display RNA targeting selectivity in line with the parent DNA/LNA chimeras.

Next, the effects of sodium ion concentration on the \(T_m \) values of the chimeric ONs were investigated (Table 1). As expected, decreasing salt concentration (from 120 to 30 mM NaCl) destabilized the duplexes, even for ON3–ON6 containing non-ionic methylphosphonate linkages. Although the affinity-decreasing effect was also observed for the MP-DNA/LNA chimeric ONs, ON4 containing two MP-linkages and three LNA monomers showed remarkably higher \(T_m \) value \((\Delta T_m > 30 \degree C) \) towards RNA relative to ON3 containing two MP-linkages without LNA modification. A similar trend was observed for ON6 relative to ON5.

Stability towards nucleolytic degradation is an important factor when applying AONs in biological systems, and it has been reported that 3'-exonuclease activity is the primary cause of AON degradation. The susceptibility of ON1–ON6 towards the 3’-exonuclease snake venom phosphodiesterase (SVPDE)\(^{38}\) was evaluated (Fig. 2). The ONs were 5’-\(^{32}\)P-labelled using \(^{32}\)P-ATP and T4 polynucleotide kinase and mixed with the corresponding unla-

Table 1

\(T_m \) values (\(\degree C \)) of the oligonucleotides used in this study towards complementary single-stranded DNA and RNA\(^a\)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>(T_m) with DNA ((\degree C))</th>
<th>(T_m) with RNA ((\degree C))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 mM [Na(^+)](^b) ((\Delta T_m))</td>
<td>30 mM [Na(^+)](^b) ((\Delta T_m))</td>
</tr>
<tr>
<td>5'-d(GTATAGT) (ON1)</td>
<td>29 (+0)</td>
<td>14 (+0)</td>
</tr>
<tr>
<td>5'-d(GCATATAGT) (ON2)</td>
<td>44 (+15)</td>
<td>28 (+14)</td>
</tr>
<tr>
<td>5'-d(GCTATAGT) (ON3)</td>
<td>27 (-2.0)</td>
<td>15 (+1.0)</td>
</tr>
<tr>
<td>5'-d(GCTATAGT) (ON4)</td>
<td>39 (+10)</td>
<td>27 (+13)</td>
</tr>
<tr>
<td>5'-d(GGTTAGT) (ON5)</td>
<td>25 (-4.0)</td>
<td>18 (+4.0)</td>
</tr>
<tr>
<td>5'-d(GGTTAGT) (ON6)</td>
<td>34 (+5.0)</td>
<td>28 (+14)</td>
</tr>
</tbody>
</table>

\(a \) \(T_m \) values were obtained as the maximum of the first derivative of the melting curve \((A_260 \text{ vs temperature}) \) in buffer using 1.0 mM concentrations of the two components.
\(\Delta T_m \) values calculated relative to the all-DNA reference ON1 are shown in parentheses.
\(T = \text{thymine-1-yl LNA monomer, } A = \text{adenine-9-yl DNA methylphosphonate monomer, } G = \text{guanosine-9-yl DNA methylphosphonate monomer.} \)

\(b \) \(T_m \) values measured in medium salt buffer (100 mM NaCl, 10 mM NaH\(_2\)PO\(_4\), 5 mM Na\(_2\)HPO\(_4\), 0.1 mM EDTA, pH 7.0).

\(c \) \(T_m \) values measured in low salt buffer (10 mM NaCl, 10 mM NaH\(_2\)PO\(_4\), 5 mM Na\(_2\)HPO\(_4\), 0.1 mM EDTA, pH 7.0).

\(d \) No cooperative transition above 10 ‘\degree C’ was observed.

\(e \) Not determined.

Figure 1. Structures of the thymine nucleotide monomers of DNA, methylphosphonate DNA, LNA and methylphosphonate LNA.

Figure 2. Snake venom phosphodiesterase degradation of \(^{32}\)P-labelled DNA (ON1), DNA/LNA (ON2), MP-DNA/DNA (ON3) and MP-DNA/LNA (ON4) oligomers (9-mer). The numbers above the lanes indicate the time of incubation (in minutes).
belled ON prior to digest reactions. These were performed at 25 °C in 8 μL of the following buffer: 0.1 M Tris–HCl pH 8.0, 0.1 M NaCl, 14 mM MgCl₂. In each reaction, 5 pmol of the ON was digested with 0.002 U of SPVDE (Crotalus adamanteus). The reactions were stopped by addition of 1 μL of a solution containing formamide and EDTA to a 1 μL sample of the reaction mixture, and the reaction products were analyzed by denaturing PAGE (20%). Although improvement in the stability towards 3′-exonuclease degradation by introduction of LNA into a DNA strand has been reported, we herein observed complete and rapid degradation of all-DNA ON1 and LNA-modified ON2 (Fig. 2). MP-DNA/DNA ON3 showed significantly improved resistance but complete degradation was seen after 60 min of incubation. In contrast, MP-DNA/LNA significantly improved resistance but complete degradation was seen after 60 min of incubation. The resistance against 3′-exonuclease degradation induced by a MP-DNA monomer has been reported, but the present study clearly demonstrates that methylphosphonate-DNA/LNA oligonucleotides therefore constitute an alternative to phosphorothioate-DNA/LNA oligonucleotides for antisense applications, and the neutral methylphosphonate linkages can be designed to alter the biodistribution relative to currently applied antisense molecules. All nucleotide building blocks necessary to synthesize these novel constructs are commercially available and no significant synthetic hurdles prevent their evaluation as antisense agents in cell culture and in vivo. We thus believe that methylphosphonate-DNA/LNA oligonucleotides have potential for practical antisense applications aiming at miRNA and miRNA targeting.

Acknowledgements

The Nucleic Acid Center is a research center of excellence founded by the Danish National Research Foundation. We greatly appreciate funding from the Danish National Research Foundation.

References and notes

30. MALDI-TOF mass data (m/z) [M-H⁻]: ON1: found 27353.0 (calcd 27533.0); ON2: found 28179.9 (calcd 28368.0); ON3: found 27487.0 (calcd 27647.0); ON4: found 28345.0 (calcd 28533.0); ON5: found 27438.0 (calcd 27627.0); ON6: found 28283.0 (calcd 28472.0). Reverse phase HPLC (RP-HPLC) can be used to evaluate the purity of MP-DNA containing ONs as the non-charged nature of the MP linkages allows one-nucleotide separation.