This paper is published as part of a *Dalton Transactions* themed issue on:

Solar Energy Conversion

Guest Editor Villy Sundström

Lund University, Sweden

Published in *issue 45, 2009 of Dalton Transactions*

Images reproduced with permission of Michael Grätzel

Articles published in this issue include:

PERSPECTIVES:

Introducing a dark reaction to photochemistry – Photocatalytic hydrogen from [FeFe]hydrogenase active site model complexes
Sascha Ott and Reiner Lomoth, *Dalton Trans.*, 2009, DOI: [10.1039/b911129h](http://dx.doi.org/10.1039/b911129h)

Recombinant and *in vitro* expression systems for hydrogenases: New frontiers in basic and applied studies for biological and synthetic H₂ production

Solar energy conversion in a photoelectrochemical biofuel cell

Transcription regulation of the cyanobacterial bidirectional Hox-hydrogenase
Peter Lindblad and Paulo Oliveira, *Dalton Trans.*, 2009 DOI: [10.1039/b908593a](http://dx.doi.org/10.1039/b908593a)

How algae produce hydrogen – News from the photosynthetic hydrogenase

Visit the *Dalton Transactions* website for more cutting-edge inorganic and organometallic research www.rsc.org/dalton
Probing the nanoscale phase separation in binary photovoltaic blends of poly(3-hexylthiophene) and methanofullerene by energy transfer

Arvydas Ruseckas, Paul E. Shaw and Ifor D. W. Samuel*

Received 22nd June 2009, Accepted 11th September 2009
First published as an Advance Article on the web 26th September 2009
DOI: 10.1039/b912198f

The generation of charge carriers in organic photovoltaic devices requires exciton diffusion to an interface of electron donor and acceptor materials, where charge separation occurs. We report a time resolved study of fluorescence quenching in films of poly(3-hexylthiophene) containing a range of fractions of the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We show that energy transfer from P3HT to PCBM helps to bring excitons to the interface, where they dissociate into charge carriers. Fluorescence quenching in blends with \(\leq 50\) wt\% of PCBM is controlled by exciton diffusion in P3HT. This allows us to estimate the average size of PCBM domains to be about 9 nm in the 1:1 blend. The implications for polymer solar cells are discussed.

Introduction

The dominant primary photoexcitations in organic semiconductors are tightly bound excitons. This means that the generation of charge carriers requires exciton diffusion to a donor–acceptor heterojunction and dissociation by charge transfer across the heterojunction. Reported exciton diffusion lengths in conjugated polymers typically fall in the range of 5-10 nm, which is about ten times shorter than the optical path length required for substantial absorption of the incident light. Only the excitons generated within a diffusion length of the interface give photocoherent, therefore, simple bi-layer photovoltaic devices have poor photon-charge conversion efficiencies. This problem can be solved using bulk heterojunctions (BHJ) based on interpenetrating donor–acceptor networks, in which excitons are generated within their diffusion length to the donor–acceptor interface. BHJ can form by spontaneous phase separation when blended films of a conjugated polymer and a suitable electron acceptor are spin-cast from solution. Photovoltaic devices with up to 6% power conversion efficiency of solar radiation have been reported using this approach. BHJ of poly(3-hexylthiophene) (P3HT) and a fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which is commonly known as methanofullerene, have achieved nearly 5% power conversion efficiency and good thermal stability. Device performance strongly depends on blend morphology, which can be controlled by composition, choice of solvent, temperature, solidification time and thermal annealing. Spatial Fourier-transform analysis of images obtained by transmission electron microscopy has revealed two coexisting length scales of P3HT and PCBM domains: 1) mesoscale phase separation in a range of 20-300 nm; and 2) nanoscale phase separation on a length scale smaller than 20 nm. Understanding the role of different length scales in charge separation and charge transport could help to develop new materials and structures. The dynamics of charge carrier photogeneration in polythiophene-PCBM blends has been studied previously, however its relationship with the nanoscale morphology of the blends has not yet been established.

In this paper we report a time resolved study of fluorescence quenching in P3HT-PCBM BHJ structures. We show that energy transfer from P3HT to PCBM helps to bring excitons to the interface and to speed up charge generation. Making use of a relatively slow exciton diffusion in P3HT and a fast energy transfer at the interface with PCBM, we are able to estimate the morphology length scale, which is relevant to the initial charge separation.

Results and discussion

Absorption and fluorescence spectra

Absorption spectra of blended P3HT:PCBM films show the P3HT absorption in the region of 400-650 nm and the PCBM absorption, which peaks at 340 nm (Fig. 1). In the 50 wt%-PCBM blend the absorbance of P3HT is about half of that in the 2 wt%-PCBM blend in agreement with the lower concentration of P3HT. Accordingly, the PCBM absorption doubles when PCBM amount is increased from 50 to 90 wt%. The P3HT contribution to the absorption spectrum of 90 wt%-PCBM blend can be obtained by scaling down the 2 wt%-PCBM spectrum by a factor of 9.8 as both blended films had similar thicknesses. By subtracting the P3HT contribution we obtain the absorption spectrum of PCBM (shown by the solid line in Fig. 1), which also contains a contribution from the ground state charge transfer (CT) complexes. Such complexes have been shown to form in polythiophene blends with fullerenes and to generate electron-hole pairs upon photoexcitation. This spectrum has a finite overlap with the P3HT fluorescence spectrum, which suggests that energy can be transferred from P3HT to PCBM and to CT complexes by dipole–dipole interactions.

Dynamics of fluorescence quenching

Fig. 2 shows the fluorescence kinetics in a neat P3HT film and in blends with different amounts of PCBM. Fluorescence decays...
Fig. 1 Absorption spectra of P3HT films with different fractions of PCBM in the film. The solid red line shows the superposition of absorption by PCBM and by ground-state charge transfer complexes, which was obtained from the 90 wt%-PCBM:P3HT spectrum after subtraction of P3HT contribution. Circles show the fluorescence spectrum of the 2 wt%-PCBM:P3HT blend.

Fig. 2 Fluorescence decays of P3HT in blended films with different fractional amount of PCBM. Initial intensities are normalised.

Fig. 3 Quenching kinetics in blends with different amounts of PCBM as a function of the square root of time. The solid lines are the fits using Eq. (2) assuming quenching is by energy transfer to PCBM with $R_0 = 1.2$ nm.
the Förster radius of 2.7 nm found in the blend of the fluorescent dye and PCBM dispersed in the polymer matrix and consistent with a smaller spectral overlap of PCBM absorption with P3HT fluorescence (Fig. 1) than with the dye used in ref. 10 and the lower fluorescence quantum yield of P3HT. The decay in the 50 wt%-PCBM is much faster than predicted by the Förster theory for fluorescence quantum yield of P3HT. The decay in the 50 wt%-PCBM fluorescence (Fig. 1) than with the dye used in ref. 10 and the lower fluorescence quantum yield of P3HT. The decay in the 50 wt%-PCBM blend, which is a typical concentration in the 50 wt%-PCBM blend, which is a typical concentration in photovoltaic devices. The 9 nm domain size can be compared with the results obtained using the transmission electron microscopy (TEM), which showed a peak of the spatial period of two phases at around 16 nm in a blend with a similar ratio of P3HT and PCBM. This is verified by the asymmetric quenching kinetics being exponential as the second term in Eq. (3) becomes negligible when \(t \to \infty \) and \(k_q \) is time independent (Fig. 4). In the next section we derive a relationship between \(R_c \) and \(N_d \), which is then substituted into Eq. (3) to fit the experimental decays.

\[
\begin{align*}
\text{Fluorescence spectra of P3HT display no dynamical red-shift} & \ \\
\text{on the time scale} & \ t > 10 \text{ ps at room temperature (not shown), there-} \\
\text{fore, exciton diffusion can be treated as non-dispersive. In} & \\
\text{this case the quenching rate can be described using Eq. (3)} & \\
\end{align*}
\]

where \(D \) is the exciton diffusion coefficient, which has been measured as \(D = 1.8 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1} \) by surface quenching for the same batch of P3HT. \(R_c \) is the exciton capture radius and \(N_d \) is the concentration of the quencher, which in our case are PCBM domains. This equation has been shown to describe well the diffusion-mediated quenching in organic crystals and is applicable to P3HT:PCBM blends because they show a spatial periodicity of P3HT and PCBM domains. This is verified by the asymmetric quenching kinetics being exponential as the second term in Eq. (3) becomes negligible when \(t \to \infty \) and \(k_q \) is time independent (Fig. 4). In the next section we derive a relationship between \(R_c \) and \(N_d \), which is then substituted into Eq. (3) to fit the experimental decays.

\[
\begin{align*}
\text{Fluorescence intensity ratio} & \ \\
\text{2 wt%-PCBM} & \ (r = 2.3 \text{ nm}) \\
\text{50 wt%-PCBM} & \ (r = 4.7 \text{ nm}) \\
\text{10 wt%-PCBM} & \ (r = 2.8 \text{ nm}) \\
\end{align*}
\]

Fig. 4 Quenching kinetics in blends with different amounts of PCBM. Solid lines are the fits using Eq. (1) in combination with Eqs. (3)-(6), \(r \) is the radius of PCBM domains obtained from the fits.

Determining the PCBM domain size

The mass of PCBM molecules in small (nanoscale) domains in 1 cm³ is

\[
m = sf \cdot \rho
\]

where \(f \) is the fraction of PCBM in the blend (by mass), \(\rho \) is the film density in PCBM domains and \(s \) is the PCBM fraction stored in small (<20 nm) domains. This can also be expressed as

\[
m = \rho \cdot V \cdot N_d
\]

where \(V \) is the average volume of nanoscale PCBM domains. Assuming the domains are spherical with a radius \(r \),

\[
V = \frac{4}{3} \pi r^3.
\]

We set \(R_c = r + d \), where \(d \) is the distance at which energy transfer from P3HT to PCBM is much faster than the diffusion-controlled quenching. We can estimate \(d \) from the Förster formula: \(d^6 = \left(\frac{\tau_\text{et}}{\tau_\text{f}} \right) R_c^6 \), where \(\tau_\text{et} = 10 \text{ ps is the } 1/e \text{ decay time observed in the } 90 \text{ wt%-PCBM blend and } \tau = 400 \text{ ps is the fluorescence decay time of the neat P3HT. This gives } d = 0.6 \text{ nm. Substituting Eqs. (4)-(6)} \)

\[
\text{into Eq. (3) and assuming } s = 1 \text{ leaves } r \text{ as the only unknown parameter, which can be determined by fitting the quenching} \\
\text{kinetics. The fits and the } r \text{ values which gave the best fits are} \\
\text{shown in Fig. 4. The average size of PCBM domains, defined as} \\
\text{2r, is dependent on the amount of PCBM in the blend (Fig. 5). It increases} \\
\text{from 4.6 to 5.6 nm with the increase of the PCBM} \\
\text{amount in the blend from 2 to 10 wt% and is found to be 9.4 nm} \\
\text{in the 50 wt%-PCBM blend, which is a typical concentration in} \\
\text{photovoltaic devices. The 9 nm domain size can be compared with} \\
\text{the results obtained using the transmission electron microscopy} \\
\text{(TEM), which showed a peak of the spatial period of two phases at} \\
\text{around 16 nm in a blend with a similar ratio of P3HT and PCBM.} \\
\text{As the spatial period corresponds to the [P3HT | PCBM] domain} \\
\text{size, the dominant PCBM domain size from TEM is about 8 nm.} \\
\text{The length scale of <10 nm is at the resolution limit of TEM,} \\
\text{whilst energy transfer can be used to probe even smaller length} \\
\text{scales.}
\]

Experimental

The P3HT with a regio-regularity of 98.5%, an average molecular weight of 76000 g/mol and polydispersity of 2.1 was supplied by Merck. The PCBM with a specified purity of >99.5% was obtained from American Dye Source Inc and used as received. Binary solutions of P3HT with 0, 2, 10, 50 and 90 wt% of PCBM by weight were prepared in chlorobenzene at a concentration of 10 mg/ml and stirred overnight at 40 °C. Films were spin-cast.
at 900 rpm and their thickness was about 70 nm. Absorption and time-integrated fluorescence spectra were measured with a Varian Cary 300 UV-Vis spectrophotometer and Fluoromax 3 fluorimeter respectively. For the time-resolved PL measurements films were excited using 100 fs light pulses at a repetition rate of 80 MHz and a wavelength of 425 nm. Fluorescence was dispersed in an imaging spectrograph and detected by a Hamamatsu C6860 streak camera in synchroscan mode. To obtain the fluorescence decays of P3HT the detection window was set for the wavelength range 600-680 nm to avoid any possible PCBM fluorescence at longer wavelengths. To ensure that no fluorescence quenching by photogenerated charges occurs, the excitation intensity was attenuated to a level much lower than the onset of intensity-dependent kinetics. The fluorescence decays were measured over both short and long time ranges, which were then spliced together to give the full decay with a resolution of about 3 ps.

Conclusions

Time resolved study of fluorescence quenching in P3HT films with different fractions of the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is reported. We found that the decay of singlet excitons generated in P3HT in the 90 wt% PCBM blend for the time \(t > 3 \) ps is described well by Förster-type energy transfer to PCBM and have determined the Förster radius \(R_0 = 1.2 \) nm for energy transfer from P3HT to PCBM. Energy transfer to PCBM followed by hole transfer to P3HT is an important process contributing to the dissociation of excitons. This observation does not exclude electron transfer from P3HT to PCBM, which may occur in competition with energy transfer within our time resolution of 3 ps. We show that the rate of charge photogeneration in the bulk heterojunction structures is controlled by exciton diffusion to the interface with an electron acceptor. This allows us to estimate an average size of PCBM domains of about 9 nm in the 1:1 blend and significantly smaller in the blends with a low PCBM concentration. Domain size is smaller than the Coulombic capture radius of electron-hole pairs at room temperature, which indicates that generated charge pairs have to overcome the binding potential in order to dissociate into free charge carriers.

Acknowledgements

We thank EPSRC for financial support.

Notes and references