Activity of Temocillin against KPC-Producing Klebsiella pneumoniae and Escherichia coli

Temocillin, a 6-α-methoxy derivative of ticarcillin, is currently approved for treatment of infections due to members of the Enterobacteriaceae in Belgium and the United Kingdom. It is stable against hydrolysis by most β-lactamases, including extended-spectrum β-lactamases (ESBLs) and AmpC-type β-lactamases, with studies reporting MICs at which 90% of bacteria are inhibited (MIC90s) between 16 and 32 µg/ml (3, 4, 8). Temocillin is thus drawing attention as a potential alternative to carbapenems in treatment of infections caused by the Enterobacteriaceae producing these broad-spectrum β-lactamases.

Carbapenem-resistant Klebsiella pneumoniae producing KPC-type β-lactamase has emerged in recent years and caused hospital outbreaks of serious infections in the United States and other parts of the world (7). Furthermore, KPC-type β-lactamase is increasingly identified in other species of the Enterobacteriaceae as well, including Escherichia coli. One concerning recent phenomenon is the occurrence of urinary tract infections due to KPC-producing organisms at nursing homes (10). Currently, the limited treatment options for infections due to KPC-producing organisms include colistin and tigecycline. Concern over nephrotoxicity due to colistin limits its use outside closely monitored settings, whereas tigecycline does not achieve a therapeutic urinary concentration after a 500-mg dose is approximately 500 µg/ml, with serum binding of 85% and a half-life of 4 to 5 h (9). The peak serum concentration of approximately 160 µg/ml. One gram of temocillin is known to achieve a temocillin against an E. coli isogenic clone producing KPC-3 were tested to determine the direct effect of KPC production on the temocillin MIC. E. coli ATCC 25922 was used as the control strain.

Table 1 summarizes the results. For K. pneumoniae, the MICs ranged between 16 µg/ml and 64 µg/ml (MIC at which 50% of bacteria were inhibited = 32 µg/ml; MIC90 = 32 µg/ml). The E. coli clinical isolates had MICs between 8 and 16 µg/ml. E. coli DH10B both with and without the cloning vector pBCSK+ (Stratagene, La Jolla, CA) encoding blaKPC-3 had an MIC of 8 µg/ml. An inoculum effect was not observed at 10⁵ CFU, whereas a mild inoculum effect averaging within a twofold MIC difference was seen with K. pneumoniae when 10⁴ CFU was inoculated (Table 1). This result was in line with those of a previous study documenting a modest inoculum effect of temocillin for non-KPC-producing isolates (9). The frequencies of mutants of representative clinical isolates that grew at their MICs and at 2× MICs were calculated to be approximately 1 × 10⁻¹⁰ and 0 for K. pneumoniae and 3 × 10⁻¹⁰ and 1 × 10⁻¹⁰ for E. coli, respectively.

Currently, the British Society for Antimicrobial Chemotherapy (BSAC) is the only organization that defines temocillin MIC breakpoints for the Enterobacteriaceae. The BSAC defines temocillin susceptibilities at ≤8 and ≤32 µg/ml in systemic and urinary tract infections, respectively (http://www.bsac.org.uk/). One gram of temocillin is known to achieve a peak serum concentration of approximately 160 µg/ml, with serum binding of 85% and a half-life of 4 to 5 h (9). The urinary concentration after a 500-mg dose is approximately 500 µg/ml (9). These pharmacokinetic properties of temocillin make it a potential alternative treatment option for mild to moderate urinary tract infections caused by KPC-producing members of the Enterobacteriaceae.

This study was supported by funding from Eumedica Pharmaceuticals, Brussels, Belgium.

REFERENCES

TABLE 1. Susceptibilities of KPC-producing K. pneumoniae and E. coli isolates to temocillin

<table>
<thead>
<tr>
<th>Inoculum (CFU)</th>
<th>Species (n⁰)</th>
<th>No. of isolates inhibited at temocillin MIC (µg/ml) of:</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 × 10⁴ K. pneumoniae (30)</td>
<td>E. coli (3)</td>
<td>12</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 10⁵ K. pneumoniae (30)</td>
<td>E. coli (3)</td>
<td>12</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 10⁶ K. pneumoniae (30)</td>
<td>E. coli (3)</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a n, no. of isolates.

b BSAC breakpoint for systemic infections.

c BSAC breakpoint for urinary tract infections.

Jennifer M. Adams-Haduch
Brian A. Potoski
Hanna E. Sidjabat
Division of Infectious Diseases
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

David L. Paterson
University of Queensland
UQ Centre for Clinical Research
Royal Brisbane and Women’s Hospital
Brisbane, Queensland, Australia

Yohei Doi*
Division of Infectious Diseases
University of Pittsburgh Medical Center
S829 Scaife Hall
3550 Terrace Street
Pittsburgh, Pennsylvania 15213

*Phone: (412) 648-9445
Fax: (412) 648-8521
Email: yod4@pitt.edu

* Published ahead of print on 30 March 2009.