‘Intended solely for their greater comfort and happiness’:

Historical archaeology, paternalism and the Peel Island Lazaret

Jonathan Mark Prangnell BA (Hons)

Department of Anthropology and Sociology

A thesis submitted to the University of Queensland in fulfillment
of the requirements of the degree of Doctor of Philosophy

November 1999
The work presented in this thesis is, to the best of my knowledge and belief, original and my own work, except as acknowledged in the text, and this thesis has not been submitted, either in whole or in part, for a degree at this or any other university.

Jonathan Mark Prangnell
Abstract

The research presented in this dissertation centres on an historical archaeological analysis of the Peel Island Lazaret. The Lazaret was located on Peel Island in Queensland’s Moreton Bay and operated between 1907 and 1959. It was an isolated, paternalistically run institution for the treatment of Hansen’s Disease. In this study I use the historical archaeological investigation of the lives of the inmates and staff at the Lazaret to examine the role of paternalism as a governing force in the organisation of the place and in the lives of the people forced to live within its boundaries. From this analysis I generate information on the formal and disciplinary power relations that operated to develop and maintain the Lazaret.

To undertake this study I develop a methodology based on Kosso (1991) that uses the distinct, epistemic entities of different written sources and the archaeological record to maintain the unique domain of each, yet determine their interrelatedness. This ensures the validity of the original basis for any interpretation of the archaeological phenomena. The written records of the Lazaret are divided into those written during the operation of the place and those written after the closure of the Lazaret and that look back upon it. They differ contextually and both can offer different yet equally legitimate starting points for interpretation.

Analysis of archival and other documentary sources and archaeological survey and excavation are the methods employed in this research. From this analysis a number of developments occur. These include an understanding of the role of control and the
use of space at the Lazaret, an understanding of the spatial and material aspects of paternalism and a demonstration that philosophies, such as paternalism, can be accessed archaeologically.
Contents

List of Figures in text vi
List of Tables in text viii

Chapter 1 Building a Partial Shelter 1
Chapter 2 Institutions, Power, Paternalism and Historical Archaeology 42
Chapter 3 The Documents 81
Chapter 4 Introduction to the Physical Evidence 137
Chapter 5 The Physical Evidence from Site D1 161
Chapter 6 The Physical Evidence from Sites 34, 39, 71 and 80 246
Chapter 7 They Gave You Everything But ... 331
Chapter 8 Full Cycle 364

Bibliography 398
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Map of Moreton Bay, Southeast Queensland Showing the Location of Peel Island</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Plan of Lazaret Showing Compounds</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Schematic Representation of the Analytical Categories of Paternalism and Disciplinary Power</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4</td>
<td>White Male Patients' Hut</td>
<td>108</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Coloured Patients' Compound</td>
<td>109</td>
</tr>
<tr>
<td>Figure 6</td>
<td>The Hierarchical Structure of the Lazaret Staffing</td>
<td>124</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Surawski Name Plate on Building Remains</td>
<td>139</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Male Patients' Compound in the 1950s</td>
<td>141</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Male Patients' Compound in the 1990s</td>
<td>141</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Survey Transects</td>
<td>151</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Results of Survey of Peel Island</td>
<td>155</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Plan of Site D1</td>
<td>165</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Figurative Representation of the Slope on Site D1</td>
<td>166</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Site D1</td>
<td>167</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Stratigraphic Profile of Trench A, Site D1</td>
<td>169</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Stratigraphic Profile of Site Trench B, D1</td>
<td>170</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Parts of a Bottle</td>
<td>180</td>
</tr>
<tr>
<td>Figure 18</td>
<td>The Three Main Bottle Rim Types</td>
<td>181</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Comparison of Frequency and Weight of Ceramics in Site D1 as Percentages</td>
<td>182</td>
</tr>
</tbody>
</table>
Figure 20. Catedral Design 187
Figure 21. A van Hoboken Seal 199
Figure 22. Details of Clay Pipe Artefacts 218
Figure 23. Variables of Green Beer Bottle Glass Sherds from Grid Unit B1 of Site D1 235
Figure 24. Comparison of Percentage of Glass and Metal in each SU in the Six Grid Units 243
Figure 25. Plan of Site 34 255
Figure 26. Stratigraphic Profile of Site 34 256
Figure 27. Plan of F 1 257
Figure 28. Queensland Government Crest on Cup Rim Sherd 259
Figure 29. Plan of Site 39 276
Figure 30. Stratigraphic Profiles of Site 39 277
Figure 31. Cut-Throat [Straight] Razor in SU II of Site 39 285
Figure 32. Plan of Site 71 293
Figure 33. Stratigraphic Profiles of Site 71 294
Figure 34. Plan of Site 80 311
Figure 35. Stratigraphic Profiles of Site 80 312
Figure 36. Figurative Representation of the Arrangement of Compounds 346
Figure 37. Structure of the Thesis 365
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>Comparison of Characteristics of Total Institutions and Disciplinary Power</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.</td>
<td>The Historical Documentary Record of the Peel Island</td>
<td>85</td>
</tr>
<tr>
<td>Table 3.</td>
<td>The Documentary Record of the Peel Island Lazaret</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Lazaret Staff in 1938</td>
<td>126</td>
</tr>
<tr>
<td>Table 5.</td>
<td>Roster Worked by Male Attendants at the Peel Island Lazaret in 1937</td>
<td>127</td>
</tr>
<tr>
<td>Table 6.</td>
<td>Restoration and Maintenance Work as per Conservation Plan</td>
<td>143</td>
</tr>
<tr>
<td>Table 7.</td>
<td>Classification System for Ceramic Body (Thompson and Wilson 1987:2-3)</td>
<td>176</td>
</tr>
<tr>
<td>Table 8.</td>
<td>Counts of Artefacts by Class and by Stratigraphic Unit in Site D1</td>
<td>183</td>
</tr>
<tr>
<td>Table 9.</td>
<td>Distribution of Food Class in Site D1</td>
<td>183</td>
</tr>
<tr>
<td>Table 10.</td>
<td>Tableware Identifiable by Backstamp in Site D1</td>
<td>185</td>
</tr>
<tr>
<td>Table 11.</td>
<td>Summary Data for Cups in Site D1</td>
<td>189</td>
</tr>
<tr>
<td>Table 12.</td>
<td>Patterned Plate Sherds in Site D1</td>
<td>191</td>
</tr>
<tr>
<td>Table 13.</td>
<td>Frequency of Glass by Colour in Site D1</td>
<td>194</td>
</tr>
<tr>
<td>Table 14.</td>
<td>Percentage of Glass by Colour in Site D1</td>
<td>194</td>
</tr>
<tr>
<td>Table 15.</td>
<td>Distribution of Glass Food Artefacts in Site D1</td>
<td>195</td>
</tr>
<tr>
<td>Table 16.</td>
<td>Bottle Body Part of Food Glass in Site D1</td>
<td>195</td>
</tr>
<tr>
<td>Table 17.</td>
<td>Distribution of Bottle Rim Types in Site D1</td>
<td>196</td>
</tr>
<tr>
<td>Table 18.</td>
<td>Fragmentation of Beer Bottle Glass in Site D1</td>
<td>197</td>
</tr>
<tr>
<td>Table 19.</td>
<td>Fragmentation of Cordial Bottle Glass in Site D1</td>
<td>198</td>
</tr>
</tbody>
</table>
Table 20. Fragmentation of Mineral Water Bottle Glass in Site D1
Table 21. Fragmentation of Sauce Bottle Glass in Site D1
Table 22. Fragmentation of Unidentified Bottle Glass in Site D1
Table 23. Distribution of Clothing Artefacts in Site D1
Table 24. Distribution of Accommodation Artefacts in Site D1
Table 25. Metal Accommodation Artefacts in Site D1
Table 26. Distribution of Hospital Related Artefacts in Site D1
Table 27. Distribution of Lotion Pot Sherds in Site D1
Table 28. Distribution of Personal Artefacts in Site D1
Table 29. Distribution of Unassigned Artefacts in Site D1
Table 30. Distribution of Charcoal in Site D1
Table 31. NISP of Faunal Remains in Site D1
Table 32. Distribution of Bone in Site D1
Table 33. Distribution of Bone in Trench A and Trench B
Table 34. Bone Identifiable at the Class Level
Table 35. Distribution of Coral in Site D1
Table 36. Distribution of Shell in Site D1
Table 37. Decoration Style by Ceramic Body Material in Site D1
Table 38. Underglaze Decoration Colour and Ceramic Body Material in Site D1
Table 39. Overglaze Decoration Colour and Ceramic Body Material in Site D1
Table 40. Summary of Internal Rim Measurements (in mm) of Green Beer Bottle Glass from Grid Unit B1 in Site D1
Table 41. Summary of Minimum External Rim Measurements (in mm) of Green Beer Bottle Glass from Grid Unit B1 in Site D1
Table 42. Summary of Maximum External Rim Measurements (in mm) of Green Beer Bottle Glass from Grid Unit B1 in Site D1
Table 43. Summary of the Height (in mm) of Green Beer Bottles from Grid Unit B1 in Site D1
Table 44. Summary of the Height (in mm) of the Kick of Green Beer Bottles from Grid Unit B1 in Site D1
Table 45. Summary of the Diameter (in mm) of the Base of Green Beer Bottles from Grid Unit B1 in Site D1
Table 46. Summary of the Diameter (in mm) of the Body of Green Beer Bottle from Grid Unit B1 in Site D1
Table 47. Average Weight (in grams) of Artefact Materials at Site D1
Table 48. Distribution of Artefact Classes in Site 34
Table 49. Materials in Food Class in Site 34
Table 50. Distribution of Accommodation Artefacts in Site 34
Table 51. Distribution of Metal Accommodation Artefacts in Site 34
Table 52. Species of Shell in SU 2 of Site 34
Table 53. Distribution of Personal Artefacts in Site 34
Table 54. Distribution of Unassigned Artefacts in Site 34
Table 55. Distribution of Charcoal in Site 34
Table 56. NISP of Unassigned Faunal Remains in Site 34
Table 57. NISP of Unassigned Shell in Site 34
Table 58. Unassigned Metal Artefacts in Site 34
Table 59. Distribution of Artefact Classes in Site 39
Table 60. Distribution of Food Artefacts in Site 39
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 61.</td>
<td>Accommodation Artefacts in Site 39</td>
<td>280</td>
</tr>
<tr>
<td>Table 62.</td>
<td>NISP of Faunal Remains in F 3 Site 39</td>
<td>281</td>
</tr>
<tr>
<td>Table 63.</td>
<td>Species of Shell in F 3 in Site 39</td>
<td>282</td>
</tr>
<tr>
<td>Table 64.</td>
<td>Distribution of Metal Accommodation Artefacts in Site 39</td>
<td>283</td>
</tr>
<tr>
<td>Table 65.</td>
<td>Distribution of Unassigned Artefacts in Site 39</td>
<td>285</td>
</tr>
<tr>
<td>Table 66.</td>
<td>Distribution of Charcoal in Site 39</td>
<td>286</td>
</tr>
<tr>
<td>Table 67.</td>
<td>NISP of Unassigned Faunal Material in Site 39</td>
<td>286</td>
</tr>
<tr>
<td>Table 68.</td>
<td>Distribution of Unassigned Shell in Site 39</td>
<td>287</td>
</tr>
<tr>
<td>Table 69.</td>
<td>Distribution of Artefact Classes in Site 71</td>
<td>295</td>
</tr>
<tr>
<td>Table 70.</td>
<td>Distribution of Food Artefacts in Site 71</td>
<td>295</td>
</tr>
<tr>
<td>Table 71.</td>
<td>Distribution of Metal Food Artefacts in Site 71</td>
<td>297</td>
</tr>
<tr>
<td>Table 72.</td>
<td>Distribution of Clothing Artefacts in Site 71</td>
<td>297</td>
</tr>
<tr>
<td>Table 73.</td>
<td>Distribution of Accommodation Artefacts in Site 71</td>
<td>298</td>
</tr>
<tr>
<td>Table 74.</td>
<td>Distribution of Metal Accommodation Artefacts in Site 71</td>
<td>299</td>
</tr>
<tr>
<td>Table 75.</td>
<td>Plastic Accommodation Artefacts in Site 71</td>
<td>300</td>
</tr>
<tr>
<td>Table 76.</td>
<td>Distribution of Wooden Artefacts in Site 71</td>
<td>300</td>
</tr>
<tr>
<td>Table 77.</td>
<td>Distribution of Hospital Artefacts in Site 71</td>
<td>300</td>
</tr>
<tr>
<td>Table 78.</td>
<td>Distribution of Personal Artefacts in Site 71</td>
<td>301</td>
</tr>
<tr>
<td>Table 79.</td>
<td>Count of Post-Lazaret Artefacts in Site 71</td>
<td>303</td>
</tr>
<tr>
<td>Table 80.</td>
<td>Distribution of Unassigned Artefacts in Site 71</td>
<td>304</td>
</tr>
<tr>
<td>Table 81.</td>
<td>Distribution of Unassigned Charcoal in Site 71</td>
<td>305</td>
</tr>
<tr>
<td>Table 82.</td>
<td>Distribution of Unassigned Shell in Site 71</td>
<td>306</td>
</tr>
<tr>
<td>Table 83.</td>
<td>Distribution of Unassigned Metal Artefacts in Site 71</td>
<td>307</td>
</tr>
<tr>
<td>Table 84</td>
<td>Distribution of Artefact Classes in Site 80</td>
<td>310</td>
</tr>
<tr>
<td>Table 85</td>
<td>Distribution of Food Artefacts in Site 80</td>
<td>313</td>
</tr>
<tr>
<td>Table 86</td>
<td>Distribution of Faunal Material Food Artefacts in Site 80</td>
<td>314</td>
</tr>
<tr>
<td>Table 87</td>
<td>Distribution of Clothing Artefacts in Site 80</td>
<td>315</td>
</tr>
<tr>
<td>Table 88</td>
<td>Distribution of Accommodation Artefacts in Site 80</td>
<td>316</td>
</tr>
<tr>
<td>Table 89</td>
<td>Distribution of Fibro Artefacts in Site 80</td>
<td>317</td>
</tr>
<tr>
<td>Table 90</td>
<td>Distribution of Metal Accommodation Artefacts in Site 80</td>
<td>318</td>
</tr>
<tr>
<td>Table 91</td>
<td>Count of Post-Lazaret Artefacts in Site 80</td>
<td>320</td>
</tr>
<tr>
<td>Table 92</td>
<td>Distribution of Unassigned Artefacts in Site 80</td>
<td>321</td>
</tr>
<tr>
<td>Table 93</td>
<td>Distribution of Charcoal in Site 80</td>
<td>321</td>
</tr>
<tr>
<td>Table 94</td>
<td>NISP of Faunal Material in Site 80</td>
<td>322</td>
</tr>
<tr>
<td>Table 95</td>
<td>Distribution of Unassigned Shell in Site 80</td>
<td>323</td>
</tr>
<tr>
<td>Table 96</td>
<td>Distribution of Unassigned Metal Artefacts in Site 80</td>
<td>323</td>
</tr>
<tr>
<td>Table 97</td>
<td>Count of Artefacts per Site</td>
<td>326</td>
</tr>
<tr>
<td>Table 98</td>
<td>Distribution of Artefact Classes across Sites</td>
<td>326</td>
</tr>
<tr>
<td>Table 99</td>
<td>Distribution of Artefact Classes across the Lazaret Wide Horizons</td>
<td>326</td>
</tr>
<tr>
<td>Table 100</td>
<td>Electricity Related Artefacts at the Lazaret</td>
<td>328</td>
</tr>
<tr>
<td>Table 101</td>
<td>Identified Manufacturers or Brand Names from the Peel Island Lazaret Excavations</td>
<td>339</td>
</tr>
<tr>
<td>Table 102</td>
<td>Comparison of Quantities of Artefacts by Class Across all Sites</td>
<td>342</td>
</tr>
<tr>
<td>Table 103</td>
<td>Paternalistic Elements Accessible from the Archaeological Record</td>
<td>362</td>
</tr>
</tbody>
</table>
Acknowledgments

This PhD dissertation is the culmination of seven years work and as a consequence there are a large number of people who need to be acknowledged for their contribution to the work.

The Queensland National Parks rangers on Peel Island: Geoff Mason and Leif Shipway. The boat crews that got us on and off the Island: the Spoonbill Crew, the Stradbroke Flyer Water Taxi Crew and the Quandamooka Vehicle Ferry Crew who undertook a dangerous emergency rescue to get a stranded field crew off the Island during an extremely violent storm.

Officers of the Environmental Protection Agency have been particularly helpful. Prominent among these are Leigh Harris of the Southeastern Regional Marine Parks, Marcus Richardson for facilitating access to the Heritage Council and assisting them to understand the value of the project, and Rob Neal, Regional Manager, Cultural Heritage, Southeastern Region, for introducing me to the Peel Island Lazaret, facilitating the survey described in Chapter 4, and being a constant source of support.

I received enormous support in the field particularly from the Quandamooka CRM Team and especially Brian 'Beaver' Coghill. The University volunteer excavation teams included Annie Ross, Bronwyn Marler, Carney Matheson, Catherine Westcott, Catriona Murray, Chris Clarkson, David Masel, Deborah Brian, Garrick Hitchcock,
Jim Smith, John Richter, Karla Hancock, Kate Quirk, Kevin Rains, Le Van An, Lorelei Cooke, Mair Underwood, Melissa Carter, Neville Turloch, Nikki Ferguson, Paul Knopke, Phil Manning, Sean Ulm, Sebastian Crangle, Vanessa Kruger and Victoria Garton.

A very select group of people volunteered to sort and analyse the excavated material. Therefore I wish to especially thank Brit Asmussen, Deborah Brian, Denise Freeman, Neville Turloch and Tam Smith.

Four postgraduate students have been a constant source of ideas and willingly criticised anything I wrote: Jim Smith, Tam Smith, Sean Ulm and Paul McInnes. My membership of the Blue Mountains Postgraduate Research Group, the Ross Postgraduate Group and the Anthropology Postgraduate Reading Group has also been of value in debating concepts and gaining multiple perspectives.

John Richter drew Figures 12 and 25. Penny MacGregor drew Figures 20, 21 and 22. Kevin Rains drew Figure 28.

I received a University of Queensland University Research Grant and a University of Queensland HECS Exemption Scholarship to assist in conducting this research. The Department of Anthropology and Sociology provided laboratory facilities and general support.
I thank Mrs June Berthelson and Mr Bob Izlaub for sharing information concerning the times they spent on Peel Island.

I received an exceptionally high level of academic supervision. I therefore especially thank my supervisors Jay Hall, Annie Ross and Leonn Satterthwait, without whom this project would never have been realised.

My family have selflessly provided the supportive environment essential for the successful completion of this project. To my wife Penny, let me spend the rest of my life making up for the time that has been taken from our relationship. And to seven-year-old Morgan and two-year-old Callum, who have never known a time when Dad wasn’t working on his thesis, thank you for your patience and now I’m home.
CHAPTER 1

BUILDING A PARTIAL SHELTER

We have not been happy, my Lord, we have not been too happy.
We are not ignorant women, we know what we must expect and not expect.
We know of oppression and torture,
We know of extortion and violence,
Destitution, disease,
The old without fire in winter,
The child without milk in summer,
Our labour taken away from us,
Our sins made heavier upon us.
We have seen the young man mutilated,
The torn girl trembling by the mill-stream.
And meanwhile we have gone on living,
Living and partly living,
Picking together the pieces,
Gathering faggots at nightfall,
Building a partial shelter,
For sleeping, and eating and drinking and laughter.
(T S Eliot 1962 Murder in the Cathedral).

This dissertation is an historical archaeological examination of the intersection of a disease process and a political system. The disease process is Hansen’s Disease, the political system is paternalism and the setting is the Lazaret on Peel Island, southeast Queensland. This work is not a history of the Peel Island Lazaret; rather, one

1 The terms ‘leprosy’, ‘leper’, ‘leprous’ etc. will not be used in this thesis except in direct quotations from other authors. See de Mallac (1992:15-42) for a detailed discussion of the stigma attached to the words as well as the disease.
historical archaeologist's attempt to construct possible lifeways and social relationships that existed at a twentieth century institution. The Peel Island Lazaret was a hospital ostensibly for the long-term care of Hansen's Disease patients. In reality it was a place of oppression, violence, destitution, disease, idleness and a site where the pollution of the disease could be separated from mainstream society. For the inmates of the Lazaret it was indeed only a 'partial shelter'.

The Peel Island Lazaret was run paternalistically. I describe the characteristics of this paternalism which were embedded in an (often cynical) utilitarian belief that legislative will and government practice could assist the less fortunate members of society. I define paternalism (see Chapter 2) as a set of behaviours that culminate in the exercise of 'freedom diminishing control by one person over another' (Kleinig 1984:xii) justified by reasons referring 'to the welfare, good, happiness, needs, interests or values of the person being coerced' (Dworkin 1983a:20). My examination focuses on the social relationships that existed within the institutionalised paternalism at the Peel Island Lazaret and I analyse the reactions of individuals and groups to the paternalistic structure of a government institution.

PEEL ISLAND LAZARET

The word 'lazaret', used to describe a 'house for the reception of the diseased poor, esp. lepers' (Shorter Oxford English Dictionary 1932:1117) entered the English language from the French in 1611. The word derives from the word 'lazar' which was a medieval
synonym for Hansen's Disease sufferer and this in turn derives from the name of the biblical Lazarus (Luke 16:20). Other names for lazarets have included lazarettos, lazarettos, leprosaria, magdalenes, mawdelyns and mauldins (Richards 1977:8).

The Lazaret that is the subject of this study, was located on Peel Island, a small island in Moreton Bay, Queensland, Australia which lies midway between Cleveland on the mainland and Dunwich on North Stradbroke Island (Figure 1). The Lazaret was established on the northwestern corner of the Island. It opened in 1907 and closed in 1959.

The Lazaret was a multi-racial institution that housed people with Hansen's Disease in isolation from the rest of twentieth century Queensland. It contained up to 90 inmates at any one time. In total there were 572 admissions (including readmissions) and 250 deaths over the 52 years of its operation (Blake 1993:61). When the Lazaret opened it consisted of three patient compounds and a Superintendent's Quarters, Nurses' Quarters and an Attendants' Quarters. The three patients' compounds were a white female patients' compound, a white male patients' compound and a coloured patients' compound that housed both males and females (Figure 2). These compounds were separated geographically as well as physically: a high wire fence surrounded each.

2 'Coloured' was a contemporary term used to organise inmates of lazarets. It was generally an ad hoc ascription that was based on physical characteristics or place of birth. The opposite of 'coloured' was 'white'. I use the two terms only in their historic sense.
Figure 1. Map of Moreton Bay, Southeast Queensland Showing the Location of Peel Island
Figure 2. Plan of Lazaret Showing Compounds (Blake 1993:63)
The Lazaret was operated by the Queensland Department of Health and Home Affairs. It was originally staffed by a Superintendent and his wife. Over time the size of the staff grew to include four cooks, an assistant superintendent, matron, doctor, many male attendants and registered nurses.

On arrival at the Lazaret, patients were stripped and supplied with Government issue clothing. From then on everything they needed was supplied by the government including food, cutlery, alcohol, tobacco, medication, treatment, crystal radio sets, fishing boats and employment. The patients' days were constituted as a regular round of meals, treatment and boredom.

From 1940, when the coloured patients were removed to a Lazaret on Fantome Island near Townsville (see Frankland draft), until 1959 only white patients were admitted. The development of sulfone drugs in the late 1940s and early 1950s led to the closure of the Lazaret. Chapter 3 details the information about the Lazaret that is available from the documentary evidence.

QUESTIONS AND RATIONALE

My major concern in this dissertation is the use of historical archaeology to provide data and explanation on past human lifeways. In particular my thesis is an historical archaeological investigation of the paternalistic social relations that existed at a twentieth century health institution, namely the Peel Island Lazaret. I now address
each aspect of 'my', 'historical archaeology', 'paternalism', 'twentieth century' and 'health institution' in turn.

My Background

I am 38 years old and have been a Registered Psychiatric Nurse in the State of Queensland since 1984. I worked in government psychiatric institutions from 1979 until 1991 in varying roles from Assistant Nurse to Nurse-in-Charge. I am also an Honours graduate in historical archaeology from the Department of Anthropology and Sociology at the University of Queensland. My years as a Psychiatric Nurse left me with an enduring interest in the paternalism and the methods of power negotiation used within the health system.

I perceive four advantages stemming from my role as a staff member in government institutions:

1. It has generated and assisted in the maintenance of my interest in this project over many years;

2. It allows me an emic perspective on the staff of the Lazaret. I experienced many of the routine aspects of nursing life experienced by the staff of the Lazaret. For example, I was a workplace organiser for the same union that covered the male attendants at the Lazaret. Professionalisation of nursing in Queensland did not occur until the mid-1980s;

3. I am able to recognise and understand specialist terms and jargonistic turns of phrase used in the documents; and
4. I am able to recognise material culture items that specifically relate to nursing care.

In terms of this study the one major disadvantage of my background as a staff member is that my story of life at the Peel Island Lazaret may inadvertently become biased towards an account of the Lazaret staff or be perceived as such.

My interest in the archaeology of twentieth century health care does not end with this thesis as I have recently obtained a grant as co-principal investigator to undertake a large-scale project into the history of The Prince Charles Hospital in Brisbane in its social and cultural setting.

Historical Archaeology

In recent times historical archaeology has found its intellectual niche. I agree with Deagan’s statement that:

historical archaeology’s obvious niche as a modern, synthetic field of inquiry is in the study of the processes and interrelationships by which human social and economic organization developed and evolved in the modern world (Deagan 1988:8).

The modern world is generally regarded as having commenced in the late fifteenth century (Dussel 1993; Orser 1996; Orser and Fagan 1995:18-20). This marks the start of a new world order after which the world experienced a combination of European colonial expansion and the development of capitalism with its global trading markets. In Australia the beginning of the modern world can be marked by the first
expression of European colonial expansion, the voyage of the Spaniard Luis de Torres (1606) and the planned and unplanned Dutch encounters with the Western Australian coast after 1605.

Historical archaeology has important and unique contributions to make in understanding the modern world (see Deagan 1991) and perhaps its greatest contribution is in providing a voice for past peoples who left little or no written evidence. These people are ‘those of little note’ (Scott 1994), the ‘silent men and women of the modern past’ (Orser 1996:160) or those whose ‘lifestyles [are] of the poor and insignificant’ (Cook et al. 1996:51). They belong to groups marginalised on the basis of gender, race or class memberships or, in the case of this study, those marginalised and isolated due to illness or physical disability. Traditionally history has been written about ‘heroic characters’ doing ‘historical events’ (Cederlund 1997:83) and has had little time for ‘lesser’ people. The people without a major voice (blacks, poor, women, fringe-dwellers) have been discounted as much by traditional history as they were discounted during their lifetimes. Historical archaeology allows insights into the lives of these silent people. It allows them a place in the modern world and to express the concerns of their lives, albeit through the ideologically tinted (tainted?) senses of historical archaeologists.

Historical archaeology uses a transdisciplinary approach concentrating on the material manifestations of the ‘silent’ lives of marginalised group members to construct interpretations of past group activities (Orser and Fagan 1995) and to inform on the
development of the modern world from a unique perspective. For example, the study of colonial expansion has always been within the purview of historical archaeology. The first historical archaeologists excavated colonial sites (Schuyler 1978a; South 1994) and the most famous historical archaeology sites are colonial sites, such as Historic Williamsburg in the USA (e.g. Noël Hume 1969:73) and First Government House in Australia (Proudfoot et al. 1991). "Historical archaeology has been essential and instrumental in understanding the cultural impacts, processes, and results of colonization" (Deagan 1991:105). Colonial accounts, however, are invariably written by the people with history (Little 1994) - the conquerors. Modern historical archaeology now focuses on those without history:

The words of Indian chiefs were garbled by poor translators; the indignation of the dispossessed Hottentots was recorded only briefly, in passing. The fly-blown eyes of the natives of west Australia still stare out from William Dampier's prose, though their opinions remain unknown. Historical sources, being inadequate, leave it to other disciplines to comment further upon the impact of colonialism (Schrire 1991:69-70).

In this connection the primary intention of this thesis is to give voice to the silent people of the Peel Island Lazaret, be they patients or staff. Although some staff and patients authored documents relating to the Lazaret, the vast majority left no oral or written accounts of their lives on Peel Island.

Paternalism

Historical archaeological studies of power relationships are rare in Australian archaeology. In Chapter 2 I discuss this issue and provide two case studies
(Birmingham 1992; Casella 1996) in which power and/or paternalism are addressed to demonstrate that my study, which is an archaeological study directed specifically at understanding power relationships within an institution, is unique in Australian historical archaeology.

Twentieth Century

The twentieth century is a period that has been virtually ignored by Australian historical archaeologists. Although Marsden (1993:142-144) pleaded for historical archaeological investigation of the twentieth century, no subsequent articles relating to this period have been published in the only Australian journal dedicated to this subject, *Australasian Historical Archaeology*. This fact is largely due to the fixation of Australian historical archaeologists on colonial and early industrial activity (see Chapter 2). Marsden (1993) suggests a number of themes that twentieth century historical archaeology could address including development of regional character, twentieth century industry, cultural continuity and World Wars I and II places. Recently, some preliminary work has been done on World War II places (e.g. McCarthy in Marsden 1993:143; Waterson 1998) and demonstrates the value of such studies.

Historical archaeology allows unique insights and perspectives (see below) and the twentieth century is just as surely grist for an anthropological mill as any other time period, as American historical archaeologists have shown. In the United States historical archaeologists have tackled the complexities of the twentieth century (e.g. 11
Burley 1995; Davidson 1981; McGuire 1991; Rathje and Murphy 1992). As this does not appear to be the situation in Australia, my study breaks new ground by moving Australian historical archaeology into the twentieth century.

Health Institutions

As Connah noted more than a decade ago, hospitals have ‘failed to attract much interest from [Australian] historical archaeologists as yet’ (1988:151). The situation remains unchanged and this is due to the focus of Australian historical archaeologists on the colonial period and industrial structures. It is also because they have not generated questions that relate to social relationships; rather they relate to buildings or industries. For example:

Lunatic asylums, civil prisons and hospitals still - but only just - retain research potential for the historical archaeologist. The task of defining problem domains ... is an urgent and challenging one - but nevertheless one that requires some grounding in the theoretical structure of the relevant areas of medical science and penology (Birmingham and Jeans 1983:13).

British archaeologists have a long tradition of the investigation of hospitals and other institutions (e.g. Lee and Magilton 1989; Magilton and Lee 1989; Manchester 1983; Thomas et al. 1997). North American historical archaeologists also investigate health (Geismar and Janowitz 1993) and hospitals. However, even in the 1993 thematic edition of *Historical Archaeology* (Geismar and Janowitz 1993) which is wholly dedicated to ‘health, sanitation and foodways’, no archaeology of hospitals was included. Cabak et al. (1995) have investigated an African Methodist Episcopal Church that doubled as a health care delivery facility, highlighting the inequality
experienced in obtaining medical services. Lazarets in particular have been studied by French (1995) and Somers (1985). Somers (1985) undertook an archaeological project at the Kalaupapa National Historical Park on Moloka‘i, Hawai‘i, which aimed to inventory the archaeological resources within the park but which tended to concentrate on the prehistoric features identified during the surveys. Thus, although hospitals have attracted some historical archaeological interest in Britain and North America, they remain an under utilised resource, particularly in Australia.

In this study I use the historical archaeological investigation of the lives of inmates and staff at the Peel Island Lazaret to examine the role of paternalism as a governing force in the organisation of the Lazaret and in the lives of the people forced to live inside its boundaries. From this analysis I generate information on the formal and disciplinary power relations in the development and maintenance of this particular place and on the development of borders, boundaries and valued space (Sibley 1995). Consequently, this dissertation deals with social relationships in the twentieth century and not colonial or industrial structures.

To assist in understanding the social relationships at work at the Peel Island Lazaret it is necessary to understand the reasons for the creation of a place of isolation for Hansen’s Disease patients in twentieth century Queensland. While the background to the establishment of the Lazaret is covered in Chapter 3, at this point it is important to have a basic understanding of Hansen’s Disease, the history of its treatment and community perceptions of the disease. Given that Hansen’s Disease is not
immediately life-threatening and is virtually non-communicable, it is unique for the
degree of fear that it creates within the community.

Hansen’s Disease

Hansen’s Disease is a disease process. It is the clinical manifestation of abnormal
signs and symptoms related to the presence of Mycobacterium leprae (M. leprae) in
the body tissues (Hansen 1976; Hansen and Looft 1895; Stanford 1994:94). M.
leprae is an organism similar to the one responsible for causing tuberculosis. It is a
pathogen that resides within peripheral nerve cells (Britton and Hargrave 1993:327).
The disease primarily affects humans although it has been recorded in a small range of
other mammals (Britton and Hargrave 1993; Meyers et al. 1991; Meyers et al. 1994).

Most public perceptions of Hansen’s Disease mirror this description in Graham
Greene’s A Burnt-Out Case:

The bandaged feet lay in straw like ill-wrapped packages of meat.
On the verandah the walking cases sat out of the sun - if you could
call a walking case a man who, when he moved, had to support his
huge swollen testicles with both hands. A woman with palsied
eyelids who could not close her eyes or even blink sat in a patch of
shade out of the merciless light. A man without fingers nursed a
baby on his knee ... (Greene 1963:46-47).

In actuality, the vast majority of people exposed to M. leprae do not become infected.
If infection does occur then the most common presentation is as a sub-clinical
infection with no manifest symptomatology (Britton 1993; Rees and Young 1994)
which nonetheless remains infectious (Baumgart et al. 1993; Stanford 1994). A large
number of these sub-clinical infections spontaneously abort (Noordeen 1991). Most people are immune to the disease and the majority of those that become infected may never be aware of the fact.

There are basically three forms of the disease:

1. **Paucibacillary** - there is a strong immune response and the disease is restricted to skin patches and nerve trunks (Britton and Hargrave 1993:327; Duncan 1993:458);

2. **Multibacillary** - this is characterised by the absence of any specific immune response and consequently the disease is diffuse and generalised (Duncan 1993:458) with extensive skin lesions and dermal nerve involvement (Britton and Hargrave 1993:327); and

3. **Borderline** - between the two immunologically stable polar extremes of the disease there is a spectrum of immunologically unstable intermediary or borderline forms. The majority of patients with the active disease are located within this borderline part of the spectrum (de Soldenhoff 1994:55). Over time there is a tendency for borderline patients to move along the spectrum towards the multibacillary end (Britton and Hargrave 1993).

A major reduction in the incidence of Hansen’s Disease has occurred this century. This is due to the chemotherapeutic breakthroughs that have occurred in the last 120 years. Until the 1930s Chaulmoogra Oil was the only medication available for the treatment of the disease (Jacobson 1994; Trautman 1994). It was administered either orally or by injection
and was extremely unpleasant to take. It had inconsistent results (Jacobson 1994:317).

Chaulmoogra Oil was the standard treatment at the Peel Island Lazaret until the late 1940s. The oil was obtained from Chaulmoogra Trees planted at Cairns and Townsville in Queensland's north (Fisher 1994:67).

From the 1940s the sulfonamide family of antibiotics were used in the treatment of Hansen's Disease (Levin and Law 1989). Promin (glucosulfone sodium) was the first sulfone tried in Hansen's Disease and obtained excellent results (Jacobson 1994:318). Other sulfone drugs were quickly developed. Dapsone, the parent compound, was not used due to fears of toxicity. It was re-evaluated in the late 1940s and it was found that a low, relatively non-toxic dose could be effective (Jacobson 1994). It was the introduction of Dapsone into the treatment regime at the Peel Island Lazaret that led to the dramatic decline in patient numbers in the 1950s and the eventual closure of the Lazaret in 1959. Dapsone had the advantage of being relatively cheap to produce and this allowed for therapy to become widely available (Jacobson 1994:318). But sulfones also had a number of disadvantages: bacterial clearance was slow; if treatment was ever discontinued the disease had a tendency to relapse; reactions were frequent and severe; and Dapsone monotherapy led to the development of sulfone (or Dapsone) resistant *M. Leprae*. By the early 1980s 'over 10% of patients ... had developed dapsone resistance and 25% of new cases had primary dapsone resistance' (Becx-Bleumink 1994a:61). To combat the incidence of Dapsone resistant *M. Leprae* the WHO introduced Multi-Drug Therapy (Becx-Bleumink 1994b; Pattyn 1994:85; WHO 1997).
History of Hansen's Disease

Hansen's Disease and the fear it engendered within Western Christendom have been recorded since biblical times, although a good deal of doubt exists as to the precise identification of diseases described in the Bible (especially in Leviticus; see Browne 1985; Kaplan 1993; Lloyd Davies and Lloyd Davies 1989). The earliest skeletal evidence of the disease comes from four second century BC skulls excavated at Dakhleh, in Egypt (Browne 1985:1). Interestingly Watts (1997:47) found that no archaeological evidence of it in skeletons in Palestine from the 6th and 5th centuries BC, the time that the Book of Leviticus is believed to have been written. The earliest written records describing the disease are from India and date to about 600 BC. According to Browne (1985:1) the disease spread from India to China around 500 BC and then to Japan. Hansen's Disease probably arrived in Europe in 326 BC when soldiers of Alexander the Great returned from the Indian campaign (Browne 1985:2) and then spread slowly around the Mediterranean (Manchester and Roberts 1989:266).

Over time hospitals became established for patients of the disease. Roman Christians established a hospital for Hansen's Disease patients in the fourth century AD and in 372 AD St. Basil established one in Caesarea (Mercer 1915 in Browne 1985:4). In 583 AD the Council of Lyon empowered local officials to control the activities of people with the disease (Catalano 1979:96). By the sixth century lazar houses were reported in Paris and in the seventh century the King of Lombardy decreed the isolation of sufferers (Catalano 1979:96). In 757 AD laws were enacted, further restricting the freedom of patients. During the 921 AD Viking raid on Armagh (in Ulster) the 'houses of prayer where the
men of God prayed and lepers stayed' (Richards 1977:4) were spared. Hansen's Disease is mentioned in the tenth century laws of the Welsh king Hywel Da (Browne 1985:5; Richards 1977:4).

While the role of returning crusaders in spreading the disease is uncertain, it spread throughout northern Europe in the 12th century. Whether it reached epidemic proportions or not is unclear and it may have been fear of the disease rather than the disease itself that reached epidemic proportions (Douglas 1991:724). The Black Death (1349) led to a dramatic decline in Hansen's Disease numbers as the *M. leprae* organism died with its host. The increase in the incidence of tuberculosis, and a subsequent cross-immunity due to the closeness of the related bacteria may also have been a contributing factor (Manchester 1983, 1984). In fact, 'by the fifteenth century the rarity of lepers is even more impressive than the dereliction of their hospitals' (Richards 1977:83). Richards (1977:97) records a 'medieval ebbing of leprosy, [an] explosion in the nineteenth century, [and] its extinction in the twentieth century'. This view is likely to be eurocentric and the 19th century explosion is likely to have been caused by the recognition of Hansen's Disease on the frontiers of colonial expansion (Smith Kipp 1994:167). The extinction of the disease is not strictly correct as new cases are still reported amongst the Australian population (*Courier Mail* 1999; Moodie 1973:154) and internationally approximately 500,000 new cases are detected annually.
Hansen’s Disease as Sin

Since biblical times people with Hansen’s Disease have been treated differently from the rest of society. The anthropological concept of pollution is a useful explanatory tool. Pollution refers to the ideational and physical aspects of the impure, unclean and defiled parts of society. It is only by the exclusion of the unclean that the purity (whether real or imagined) of the society can be maintained. The Old Testament Books of Leviticus and Deuteronomy present laws defining those things that are clean and unclean in ancient Hebrew society. For example:

And the swine, because it divideth the hoof, yet cheweth not the cud, it is unclean unto you: ye shall not eat of their flesh, nor touch their dead carcase (Deuteronomy 14:80);

The carcase of every beast which divideth the hoof and is not clovenfooted, nor cheweth the cud, are unclean unto you: every one that toucheth them shall be unclean (Leviticus 11:26); and

And the priest shall look on the plague in the skin of the flesh: and when the hair in the plague is turned white, and the plague in sight be deeper than the skin of his flesh, it is a plague of leprosy: and the priest shall look on him, and pronounce him unclean (Leviticus 13:3).

The association of modern Hansen’s Disease and the ‘leprosy’ of the Bible is said by many commentators to have occurred by mistranslation (or misinterpretation) of the Hebrew biblical text to Greek and then to Latin (e.g. Brody 1974; Ell 1994; Lewis 1987; Lloyd Davies and Lloyd Davies 1989; Richards 1977; Wilkinson 1978). Many modern diseases fit the signs and symptoms presented in Leviticus but the major deformities of Hansen’s Disease are not mentioned (Lewis 1987:596).
Douglas suggested that the biblical laws presented in Leviticus and Deuteronomy were based upon the idea that ‘to be holy is to be whole, to be one; holiness is unity, integrity, perfection of the individual and of the kind’ (Douglas 1966:54). Therefore, deviation from the normal would lead to a definition of uncleanness. Skin diseases and deformations are obvious physical markers of deviation from an ideal of a human made in God’s image.

The ultimate deviation from the norm is death. ‘The principle that death creates uncleanness may have been more fundamental ... [f]or the uncleanness of death is an expression of the basic opposition of life and death’ (Bulmer 1989:312). In Jewish tradition Hansen’s Disease is seen as a punishment for slander (Abrahms 1993), and in Numbers 12:9-15, God, as a punishment for Miriam’s speaking out against authority, inflicted Hansen’s Disease on her, and

Miriam’s leprosy is likened to the flesh of the dead. The dead bring uncleanness. According to the Mishnah’s list of the different degrees of uncleanness, the uncleanness of the leper is exceeded only by the uncleanness of bone from a corpse, and by the uncleanness of the corpse itself (Lewis 1987:602).

The physical changes wrought by Hansen’s Disease can be said to make the infected person resemble a corpse. Consequently they were to be put outside the camp so that they could ‘have no contact with holy things, nor defile clean people by contact’ (Lewis 1987:602).

An important aspect of defining uncleanness in a society is the exclusion of the unclean element and the creation of boundaries that mark the edge of the pure area. Any polluting
elements must be kept away from the pure (or sacred) centre. Once an element has been
defined as unclean it can attract any number of unclean associations. For example, the idea
that ‘Jews seek such supernatural means as human blood to cure themselves of a terrible
affliction seems to have arisen alongside the claim that they are sufferers and carriers of
leprosy’ (Almog 1991:795; see also Watts 1997:56).

By medieval times the portrayal of skin disease and in particular Hansen’s Disease had
changed from one of an uncleanness that could be mediated by ritual to a ‘punishment
meted out for moral failing, especially for loose, wanton and lustful living’ (Richards
1977:6; see also Lascaratos 1996). This was the position promoted by the Church. For
example, when Hansen’s Disease sufferer Baldwin IV was crowned king of the Latin
Kingdom of Jerusalem in 1174, ‘Pope Alexander III sent out an encyclical, Cor nostrum,
in which he deplored the coronation of a sinner’ (Douglas 1991:724; see also Mitchell
1993). The Church had a serious theological problem when ‘Christian warriors engaged
in a Crusade that had attracted episcopal blessing, had somehow contracted a disease
widely regarded as divine punishment for sin’ (Browne 1985:5; see also Moorehead
1985).

Once defined as unclean then any number of unclean attributes can be used to reinforce the
original attribution. By these medieval times the boundaries had been established to such
an extent that sequestered institutions had been established to house the unclean and
ensure their enforced separation from society.
Another explanation for this medieval exclusion of a particular section of society comes
from Douglas (1991:732) who argues that during the twelfth century the meaning of
the disease changed in England and France and that its association with sin was a
mechanism by which societal control was maintained by the Church during a period of
social upheaval:

In the course of the next fifty years the accusation of leprosy
changed its target. New wealth combined with centralization threw
up masses of poor. After 1170 vagabonds, beggars and heretics
were the category charged with leprosy, while the rich and powerful
seem to have suddenly become practically immune. Instead of being
deposed from office (for they had none) the new class of lepers
were segregated into leprosariums, as part of the successful attempt
to create order that resulted in the highly structured society of the
thirteenth century ... The idea of the disease was transformed.
Lepers were now held to be highly infectious, the disease was
thought to be transmitted by sexual penetration. Endowed with an
inordinate sexual appetite, lepers were incestuous, lepers were
rapists, lepers sought to spread their condition by forced sexual
intercourse with healthy persons. Segregated for the public good,
they were not allowed to move freely in the streets, they were not
able to prosecute at law, nor to inherit land nor to transmit land
rights that they might otherwise have gained by inheritance. They
were effectively stripped of citizenship.

It would seem that the discrimination against lepers was a solution
to the problem created by masses newly disadvantaged by the
individualism eroding the feudal system. Landless persons whom no
one wanted to know about were tidied away in leprosariums

Douglas' interpretation is supported by Watts (1997:64) who states that we are now
aware of the ways:

an emerging, still insecure elite built up a stereotype (the Leper
construct), then identified deviants to fit it and had them taken care of
by a Leprosarium Experience which, by chance, left few skeletal
remains (Watts 1997:64).
The association of Hansen's Disease and sin is not solely a Western phenomenon. In Japanese Shintoism 'the same word did duty for both leprosy and sin ... [and in] many ancient civilisations (China, Egypt, India) there seems to be an association between sin and skin disease' (Browne 1985:3; but see Dols 1983). The correlation between skin disease and sin may well be a universal.

When the cause of harm in a society is hidden (e.g. witchcraft, disease carrier) and not easily recognised by external appearances then it becomes relatively easy to accuse and exclude people on the fringe of society (Douglas 1991). In Queensland in the 19th century newspaper articles made statements such as:

all Asians [sic] and Polynesians [were] simply saturated with leprosy germs ... [and] the disease did not always manifest itself openly upon these aliens and ... scores of leprous Asians [sic] might roam the city and country broadcasting the disease without fear of detection (The Worker newspaper 1895 cited in Evans et al. 1993:302).

Ideas of the licentiousness of Hansen's Disease patients still pervaded community thought at the time of the establishment of the Peel Island Lazaret. When five female patients were sent to the Stradbroke Island Lazaret in Moreton Bay in the early 1900s there was a public outcry about Hansen's Disease patients engaging in sexual relations (Blake 1993:3).

The preceding discussion on Hansen's Disease and the way it has been treated and viewed throughout time is necessary so that a full appreciation can be gained of the type of societal reasoning behind the establishment of a Lazaret in twentieth century.
Queensland. Because Hansen's Disease was defined as a pollutant, those people infected, or believed to be infected, had to be segregated and boundaries established around their polluting presence.

In summary then, there are several reasons why these pollution concepts were so strong in Queensland at the turn of the century:

- The increasing numbers of people in the tropical world diagnosed with the disease in the second half of the 19th century (Smith Kipp 1994);
- The attribution of the spread of Hansen's Disease to non-Europeans, particularly Chinese and South Sea Islanders (Bancroft 1892; Evans et al. 1993:214-215; Ree 1991:420). 'A stereotype which depicted the Melanesian as a lascivious murdering savage became popular in the colony from the late 1880s onwards' (Evans et al. 1993:208). A large part of this racial determinism was a fear of 'racial contamination' (Evans et al. 1993:213). 'The working classes of Queensland have always objected to the presence of coloured aliens and successive governments have legislated against the indiscriminate immigration into the colony' (Critchell 1911:740);
- The disease is surrounded by a complex history and mythology that is unique in Western cultures in its ability to engender fear and adverse social responses (see for example de Mallac 1992); and
- The long-held, historic association of Hansen's Disease and unclean behaviour (see above);
Associated factors can be added to these principal causes:

- The support for Hansen's Disease missions in Asia and Africa 'became a cornerstone of religious and philanthropic revival in nineteenth century Britain' (Gregory 1995:4);
- The long standing practice (since at least the 7th century) of isolating patients and the recursive belief that this should continue (de Mallac 1992:1);
- The death of Father Damien in Hawaii in 1889 demonstrated that the disease was infectious and not hereditary and hence anybody was susceptible (Gregory 1995:4); and
- The establishment of Hansen's Disease as endemic in Queensland (Britton and Hargrave 1993:330).

These historical data frame the outward perceptions of the disease and underlie the paternalistic actions of the government in respect to Peel Island. Queensland was not alone, however, in enforcing isolationist policies in the management of Hansen's Disease patients; Western Australia, the Northern Territory (Cook 1927) and the United States of America among many others introduced similar legislation.

Nonetheless, the laws of Australian states were more rigid than those of Malaya, the Philippines and some West Indian countries (Saunders 1990:170). In Chapter 3 I give an account of the establishment of the island-based Lazaret system adopted in Queensland to control Hansen's Disease. I now turn to outline the specific questions I address in this thesis, where the focus is not on history but historical archaeology.
Questions

The broad areas of concern in the thesis have been presented, namely historical archaeology, paternalism, the twentieth century and health institutions. In particular I am asking the following set of questions:

1. What do the (until now) voiceless people of the Peel Island Lazaret have to say about their lives within a government institution?

2. What are the material and written evidences for paternalism at the Lazaret?

3. What are the characteristics of paternalism (and disciplinary power) as expressed at the Lazaret?

4. What were the social relationships between different identifiable groups at the Lazaret and how did they manifest?

5. What role did concepts of pollution play in creating and maintaining the external and internal boundaries at the Lazaret?

6. How can the evidence from the Lazaret inform on health care delivery in Queensland in the twentieth century?

I now turn to the methodology employed to address these questions and to gain insights into the creation and maintenance of the boundaries around and within the Peel Island Lazaret.
METHODOLOGY

Historical archaeology is not just about digging holes in the ground. It is a multidisciplinary approach to the study of the modern world. Consequently it involves the excavation and analysis of any and all possible records pertaining to a place. The documents of life at the Peel Island Lazaret include the archaeological record, accounts written by former staff and patients, official and unofficial histories, annual reports, contemporary newspaper articles and pamphlets, and patient files (see Chapter 3 for a detailed discussion).

The archaeological methods are made explicit in the opening sections of Chapters 4, 5 and 6. In brief, a multistage field project was designed to examine the questions outlined on page 26. Fieldwork was conducted over three seasons between 1993 and 1995. Archival research was undertaken between 1992 and 1997. Artefact recording and data entry occurred between 1994 and 1996. All data were entered onto a Microsoft Access 2 database that I designed specifically for this project. I use both quantitative and qualitative methods to examine the different data sets.

The first stage of fieldwork was a survey of most of Peel Island to determine the location and extent of Lazaret materials (see Chapter 4). Stage Two was the excavation of a number of places selected on various criteria discussed in Chapters 5 and 6 and also related to conditions imposed by the Queensland Heritage Council and/or the conservation plan (see Blake 1993). Areas selected for excavation
included patients' huts from the male and female compounds, staff areas (see Chapter 6) and one of the hospital dumps (see Chapter 5).

The process of document examination is both informed by and informs on the ways in which historical archaeology has dealt with questions relating to power, inequality and the creation of group boundaries. The methodology for use of the documents and the relationship between the documents and the archaeology are discussed in detail in the following section of this chapter.

Documentary Method

In 1982, Binford argued that the 'material consequences of an occupation represent a document regarding an organisational aspect or phase of operation of the cultural system under study' (1982:5). Botscharow (1989:50) also described the archaeological site as a 'text in an unknown language'. Post-processualists perceive artefacts and sites as fundamental documents (Hodder 1989b; Richardson 1989; Shanks and Tilley 1987b; Tilley 1989, 1993). Although all these authors were discussing archaeology in general their statements align well with the concept that historical archaeology is a multidisciplinary study of the modern world (Orser and Fagan 1996). Historical archaeologists use all available documents (archaeological or otherwise) to construct their interpretive stories of the past. As Noël Hume (1969:19) stated: 'digging in the documents and in the earth must be understood to be part of the same research'. I now examine the character of these diverse evidentiary
documents and the manner in which historical archaeologists read these documents and conclude by describing a synthetic model that I apply in this dissertation.

Records

Archaeology is arguably the most scientific of the social sciences, if not the most social of the natural sciences. In the same way that the discipline of history is facing a post-modernist methodological crisis because it lies somewhere between the social sciences and humanities (Windschuttle 1994), so too does archaeology (Cowgill 1993) as it is situated somewhere between natural science and social science (McGuire 1992). For almost all archaeologists this is the site of the major methodological dichotomy within the discipline (Patrik 1985). These two extremes are characterised as Binfordian processual archaeology and the post-processual or contextual archaeology of Hodder.

The main method used in processual archaeology is that of middle-range research. Post-processual archaeology advocates the use of hermeneutics to gain insights into the meaningful contexts of archaeological data. While these two methodologies are generally considered to be incompatible, I accept Kosso’s (1991:625) argument that ‘middle-range theories are [in fact] hermeneutic tools’ and that a methodological synthesis of the two extreme theoretical and methodological positions within archaeology is the way forward for the discipline. Consequently, in this study of Peel Island I utilise this synthesis to advance our understanding of the past.
People create two records of their existence at a place, the archaeological record and the historical record. At this stage I am not considering natural processes, such as the environmental record or the taphonomic record. As both Deetz (1988a) and Young (1988) contend, all archaeologists are engaged in the pursuit of history (for earlier versions see Dymond 1974 and Piggott 1966). This not only applies for culture historians, but also processual archaeologists (Deetz 1988a:14) and post-processual archaeologists (Hodder 1987). In practical terms, all prehistorians would include ethnohistory and oral histories collected in both the past and the present as components of the historical record of the place (Kepecs 1997:193). All these documents are written at different times but they are all interpreted in the present.

Historical archaeologists have a great wealth of historical sources from which to gain information concerning both the archaeological place and the cultural system under study. These records include documents written at the time of the establishment of the archaeological record and historical accounts written later. It is popularly held that historical archaeological interpretation is made easier by reference to the historical record. Contrary to this conception, the plethora of disparately constructed histories makes the job of unravelling the relationship between the differing records of the past that much more complex. Below I present three models that can be used to characterise the relationship between these different records: the Handmaiden Model, the Middle-Range Model and the Middle-Range as Hermeneutics Model. Other models exist such as the Beaudry et al. (1991) 'history from the inside out' model.
Handmaiden Model

Traditionally archaeologists have considered an historical site as an opportunity to expand historical knowledge (i.e. fill in the gaps), or have used the historical record to answer specific taphonomic or analytical problems that have arisen from the archaeology (Leone and Potter 1988). This gives an epistemic primacy to the historical record and subjugates historical archaeology to a role of ‘handmaiden of history’ (Noël Hume 1964). This may be a valid approach to obtaining information on a specific site or artefact but it can hardly be considered appropriate within a broader goal of the advancement of knowledge. So, although some historical archaeologists continue to consider the historical record as a more valid account of the past, this handmaiden approach is far from ideal. It allows no theoretical rigour for archaeological modelling.

Middle-Range Model

Any examination of the historical archaeological record that intends to go beyond answering historical particularistic questions to address questions derived from theory must meet the same requirements as any ‘manifest data’ used to test ‘theorised entities’ in any scientific pursuit (Kosso 1993:163). As Kosso states:

Evidence in archaeology, since it is an informational link between the unobservable past and observable data in the present, must be accountable to justification that the link is secure and accurate (Kosso 1993:163).

To achieve this justification it is imperative that the archaeological record and the historical record are viewed as having equal weight. The archaeological data must not be ‘sacrificed’ to other data sets (South 1994:170). Archaeology is not just undertaken to
answer specific historical questions. Both records should be considered as epistemologically separate. Although they may both relate to the same site they should be considered as two separate text groups written by different people, at different times and for different reasons (Leone and Crosby 1987:399). Both document sets are independent of each other; they tell different stories about the same place and, most importantly, one text does not possess an inherently higher status than the other.

Binford (1987:506) used ethnoarchaeological analogy as the 'basic element' in the establishment of frames of reference for understanding the organisation of behaviours that are recorded archaeologically:

Archaeologists must face the fact that they do not study the past, they create it. What they study is the archaeological record. The created past is only as correct as the understandings of the properties of the archaeological record, and the processes that brought those properties into being. The development of theoretically guided middle-range research is the key to the inferential problem (Binford 1989:51).

The organisational frameworks highlight 'the fact that different people may do similar things but in different ways' (Leone and Crosby 1987:398).

The development of analogous frames of reference and other middle-range methods can be applied to historical archaeology if the historical record and the archaeological record are considered as separate entities. From analogies drawn from the historical record a number of organisational predictions can be generated. When these predictions are contrasted with the actuality of the archaeological record then certain discrepancies or ambiguities will exist. These ambiguities should not be dealt with by dismissing them as
anomalous or by searching the historical record for any tenuous means to make them fit the record (Leone and Crosby 1987), but rather they should be viewed as:

a caution or alert flag signalling some limitation in our knowledge ... [and] if the astute researcher heeds this flag and pursues the growth of knowledge in the implicated area, the resulting understanding will contribute to the growth of our field (Binford 1987:506).

Leone and Crosby (1987), Leone and Potter (1988) and Kosso (1991, 1993) have all demonstrated the application of this method to historical archaeology. For example, Leone and Potter (1988:15-16) described the application of this adaptation of middle-range theory to the William Paca Garden in Annapolis, Maryland. The documents in this case were the works of twentieth century garden scholars and eighteenth century gardening books from which a descriptive grid of garden attributes was produced (Leone and Hurry 1998:43). From this descriptive grid a series of expectations were generated about the Paca garden. The archaeological data did not match the expectations from the descriptive grid. Ambiguity existed between the documentary record and the archaeological record in the form of the three-dimensionality and optical illusionary nature of the garden. Solving this ambiguity gave new insights into analysing the documents and produced new research directions in subsequent garden archaeology.

Middle-Range as Hermeneutics Model

The historical and archaeological records are not constructed wholly by natural processes but rather by an interaction of natural, symbolic, meaningful and intentional actions (Kosso 1991:621). It is necessary therefore to move beyond a wholly scientific approach. As Beaudry et al. (1991:178) note: "There is certainly merit in this procedure [middle-range
model], but it fails as a method for documentary analysis because it does not move beyond the etic'. To move beyond the scientific approach requires an understanding of the nature of the different records.

The Archaeological Record

The archaeological record is written by the participants of the culture (or sub-culture) under study, who continuously interact with, and imbue meaning to, material culture items throughout the period of their occupation of the place. The archaeological record supplies data in the form of artefacts and arbitrary assignments in the form of the stratigraphic record, excavation units, features and structures and the interrelatedness of each of these categories with the other and with landscape modifications.

The Historical Record

The historical record of a place or time consists of many components. This is because it operates at a number of different levels ranging from the specific to the general. Most historical archaeologists do not make a distinction between the documentary record and the historical record (e.g. Prangnell 1991). As it is essential to recognise that the records of the place are separate entities, I divide the historical record into two separate records: the Documentary Record and the Historical Documentary Record.

The Documentary Record (DR)

The Documentary Record was written at the time of the occupation by people who may or may not have been present at the place. It may consist of such things as photographs,
diaries, inmate files, shopping lists and probate inventories. It contains both 'chronicles' and 'records' as defined by Kippen (1993). The DR can be subdivided into that part that was created by the authors of the archaeological record, which I call the **Insiders’ Documentary Record** and the documentary record created by people who were not responsible for the creation of the archaeological record, which I call the **Outsiders’ Documentary Record**.

Examples of the Outsiders’ Documentary Record are newspaper articles, letters from friends and relatives, minutes of support organisations and annual reports. Because these contemporary records are emic views of either the place or time they can supply raw historical data and can be used to generate predictions on the archaeological record.

The Historical Documentary Record (HDR)

A second group of historical documents involves those histories that are written sometime after the creation of the archaeological record and attempt to examine or explain elements of the organisation of the past culture. These can include narrative histories, revisionist histories, deconstructed histories, interpretation, misinterpretation, oral history, myth or gossip. This group of documents I term the **Historical Documentary Record**. This record may be far removed from the creators of the archaeological record both in person and time but this does not always have to be case. This thesis is itself an example of the Historical Documentary Record. As the HDR represents an etic perspective of the place, models of social and cultural organisation can be generated. This is the same process as Leone and Potter (1988) followed when using twentieth century gardening scholarship to generate their descriptive grid (see previous section).
Own Cultural System

The different records can only be read through the filter of our own culture. It is our culture (European, British, Australian, scientific etc.) that supplies ‘our’ context to archaeological interpretation (Hodder 1992:83). Archaeologists carry their own cultural understandings with them, and it is from this base that the negotiation of the meaning of archaeological data commences (see McGuire 1992:251-252). It is only possible to interpret the past in terms of our understanding of the present. Hodder (1989a:75) argues that our understanding of a past culture ‘always has its own context in the present.

Archaeology is not only a reconstruction of the past, but also its construction’. I disagree; the entire process is construction. Therefore any models generated by reference to the archaeological record or the documentary records occur within a hermeneutic circle (or spiral) (Hodder 1992:239). Our theories of the past are generated within our cultural understandings. As Hodder states:

Hermeneutic science recognizes that we can only understand the human world through asking questions of it. Nothing has meaning except in relation to a question ... Every question is determined by an interest that underlies it, and every question ‘prefigures’ a certain answer. Interpretation of the past is therefore bound into a question and answer procedure which is rooted in the present. The ‘hermeneutic circle’ results, in which no interpretation is possible until interpretation has begun (Hodder 1986:151).

Windschuttle explains:

Hermeneutics is the theory of interpretation. It began as the field of interpreting religious texts such as the Bible but was later extended to history and sociology. It holds that the proper way to study human affairs is not to examine the causes or to measure the incidence of human behaviour but rather to interpret the meanings of social actions from the point of view of the agents performing them (1994:205).
As both history and archaeology are involved in a fourfold hermeneutic (Shanks and Tilley 1987a:108), archaeological work involves:

1. the hermeneutic of working within the contemporary discipline of archaeology;
2. the hermeneutic of living within contemporary society as an active participant ...;
3. the hermeneutic of trying to understand an alien culture involving meaning frames radically different from his or her own;
4. the hermeneutic involved in transcending past and present (Shanks and Tilley 1987a:108).

Discussion

To gain the insights hermeneutics allows requires that assumptions are made that act as a starting point. "All aspects of archaeological knowledge will require some initial knowledge of the intentions and the meanings of things as a way to break into the hermeneutic circle" (Kosso 1991:624). Bauman (1978 in Shanks and Tilley 1987a:104) calls this assumption a 'guess' and Shanks and Tilley (1987a:104) argue:

> One cannot understand anything about the meaning of material culture patterning in the past (or the present) unless one is willing to make conceptualised interventions by means of using social, ethnographic or other starting points about the manner in which the past social totality was constituted. If these conceptualised interventions are more or less correct we will gain insight and understanding. If not we will be left with an uninterpretable mass of observations.

In other words, if we do not 'guess' our starting point in the cycle correctly then we cannot correctly interpret our data. It would seem appropriate then to find a way of ensuring that the starting point for the interpretive cycle has some rigour and justification for its selection. As Binford puts it:
The scientist must accept the responsibility for testing both the accuracy and the relevance of the prior knowledge [of the past] used to infuse meaning into the patterning documented in the archaeological record ... [and] the crucial question becomes, Where do we obtain this prior knowledge and how do we evaluate its accuracy and relevance to what we see in the archaeological record? (Binford 1989:38-39).

Kosso (1991:625) claims that the interaction of theory and observation, as for example in middle-range theory, operates in a similar way to the circle between the present question and the past answer of the hermeneutic circle:

The content and justification of theories are strongly influenced by observations, and in turn the informational content and justification of observations are influenced by theories. This is exactly the structure of the hermeneutic circle. And middle-range theories participate on both sides of this dialogue between theory and observation. Middle-range theories are hermeneutic tools (Kosso 1991:625).

Hermeneutic circles exist in our creation of models based on the Historical Documentary Record and the archaeological record. I contend that the organisational predictions upon which to test the observations of the archaeological record should be generated both from the data obtained from the documentary record and the models developed from the reflexive interaction of our own cultural understandings and the Historical Documentary Record. Juxtaposing the models created from these interactions will lead to ambiguities that will require explanation which will need to be developed in a hermeneutic cycle with understandings from our own cultural system.

In summary, the historical record comprises two distinct records: the Documentary Record and the Historical Documentary Record. The Documentary Record can be further subdivided into the Insiders’ Documentary Record and the Outsiders’ Documentary
The archaeological record and the Insiders' Documentary Record were both created at the time and place of the occupation. The Outsiders' Documentary Record was temporally associated, but geographically distant and the Historical Documentary Record and our own cultural system are both temporally and possibly geographically isolated from the creation of the archaeological record.

The primary motivation for concentrating on the separate origins of each record is to validate the objectivity of the process. ‘Evidence is objective if its gathering is independent of that for which it serves as evidence ... but the independence relevant to objectivity in science is an epistemic independence between theories’ (Kosso 1989:245-246). Hence the need for middle-range or accounting (Kosso 1993) or warranting (Trigger 1995) theories to bridge the gap between the theories generated from the Historical Documentary Record and evidence generated from the archaeological record. Unlike Schiffer (1988) who stated that middle-range theories can only be middle-level theories, both Binford and Kosso (1993) argue that any theory or suite of theories can act as middle-range theories.

In sum, three different methods of dealing with the historical record have been discussed. The first gives all precedence to the written record of the place and only allows archaeology a role as an adjunct to history. The second method allows an equal voice to the historical and archaeological record though it fails to appreciate the non-scientific, contextual aspects of interpreting the archaeological record. The third method is a synthesis of the application of middle-range theory to historical archaeology and the
demands for a more contextual archaeology that recognises the role of the present in creating the past. As Plog states:

archaeologists are under no obligation to maintain the ritual purity of particular philosophical doctrines - however sacred [and] useful advice can come and often does come from colleagues who hold little other than contempt for one another's ideas (1982:18).

The synthetic method offered here allows for the transformation of assumptions and theories 'in the practice of dealing with the patterned remains' (Hodder 1992:238).

If we accept these records as distinct epistemic entities, we can determine the unique domain of each, how they interrelate, how we can use each to further our understanding of cultural processes or events and how questions of reflexivity in data collection affect what we interpret as a record. By considering the juxtaposed understandings gained from a reflexive interaction of our own cultural system and models generated from the archaeological record and the Historical Documentary Record as a hermeneutic device it should be possible to gain new insights into both the past and present social systems.

The various documentary records of the Peel Island Lazaret are presented in Chapter 3 and are organised as described in the synthetic model I have just presented. In Chapters 7 and 8 the methods of using the documentary and archaeological records in this way will be applied.
OUTLINE OF THE THESIS

The thesis is organised into three sections. The first section (Chapters 1 and 2) defines and describes the characteristics of institutions, power and paternalism and describe some of the ways Australian and North American historical archaeologists have attempted to analyse these issues. The second section (Chapters 3 to 6) specifically presents the data obtained from the various records of the Lazaret. Chapter 3 presents the data obtained from the documentary records using the methodology described above. Chapter 4 presents an introduction to the physical evidence from the Lazaret including the aims, methods and results of an archaeological survey of Peel Island. Chapter 5 contains the aims, methods and data obtained from the excavation of a large dump site (Site D1) located in close proximity to the Lazaret. Chapter 6 presents the aims, methods and results of the excavation of four living areas (Sites 34, 39, 71 and 80) at the Lazaret. The final section of the thesis (Chapters 7 and 8) discusses the data in light of the questions and methods presented above.
CHAPTER 2

INSTITUTIONS, POWER, PATERNALISM AND HISTORICAL ARCHAEOLOGY

An Englishman called John Stuart Mill had said something on the subject (Maxim Gorky 1988 My Universities).

The Peel Island Lazaret was a modern institution designed specifically to remove certain individuals from the general community and to control the behaviour of its inmates. In Goffman’s (1961) terms it was a ‘total institution’. One of the many characteristics of total institutions is the paternalistic system that exists within it. As this thesis concerns the archaeological examination of the physical manifestations of paternalism it is pertinent to describe the characteristics of total institutions, power and paternalism and the methods and explanatory models used by historical archaeologists to address paternalism and aspects of power.

INSTITUTIONS

Characteristics of life at the Peel Island Lazaret mirror many of those characteristics identified by Goffman (1961) as belonging to a total institution. An institution can be defined as a place ‘in which activity of a particular kind regularly goes on’ (Goffman
1961:3). People in these places share a 'cluster of values, norms, statutes, roles and expectations' (Robertson 1977:564). A total institution however is a place of residence and work where a large number of like-situated individuals, cut off from the wider society for an appreciable period of time, together lead an enclosed, formally administered round of life. Prisons serve as a clear example, providing we appreciate that what is prison-like about prisons is found in institutions whose members have broken no laws (Goffman 1961:xii).

A number of institution types meet Goffman's (1961:4-5) definition of a total institution including orphanages, TB sanatoria, leprosaria, psychiatric hospitals, prisons, POW camps, concentration camps, boarding schools, army barracks, ships, work camps, colonial compounds, abbeys, monasteries and convents. These are also the types of places that Foucault (1991) analyses in *Discipline and Punish: The birth of the prison* (see later this chapter).

Goffman described in detail the relationship between the institution and the inmate. His work is descriptive rather than explanatory and has been criticised on a number of levels, primarily for a methodology that sought out similarities rather than differences and for a lack of definition of terms (see Goodall 1992:14). Nonetheless, the work remains an important study of relationships that exist within institutions and, as his work is descriptive of life within institutions, it can act as a starting point for the examination of power and disciplines presented by Foucault.

None of the characteristics of total institutions are unique to a particular type of institution and no single institution will possess them all. Although Goffman identified dozens of
characteristics they can all be grouped into the eight main categories below (Goffman 1961:6-23):

1. The central feature of a total institution is that all aspects of life (work, sleep and play) are conducted in the same place, to a tight schedule, with a large number of other people who are all treated alike by the same single authority. There are large blocks of managed people (the inmates) and a small supervisory staff;

2. Two different socio-cultural worlds develop within the institution, the world of the inmates and the world of the staff. Movement of information between the two groups is restricted and a large social distance is often formally prescribed;

 Each grouping tends to conceive of the other in terms of narrow, hostile stereotypes, staff often seeing inmates as bitter, secretive and untrustworthy, while inmates often see staff as condescending, highhanded and mean (Goffman 1961:7);

3. Admission procedures form a ritual that results in the loss of roles normally practised by the new inmate. ‘It can be characterized as a leaving off and a taking on, with the midpoint marked by physical nakedness’ (Goffman 1961:18);

4. Relationships with the outside world are limited for inmates. Staff often work a roster system that allows them to leave the institution and remain socially integrated with the outside world. For inmates, however, normal social relationships, such as family and friendship networks, break down and normal familial relationships cannot be maintained;

5. Life inside the institution becomes routinised. All inmates are required to undertake the same activity at the same time. Activities are strictly scheduled, usually around
staff time requirements, such as meal times. One activity leads into another and the whole sequence is ‘imposed from above by a system of explicit formal rulings’ (Goffman 1961:6);

6. Work practices do not follow the pattern outside the institution. Inmate work practices result in extremes of boredom (if there is too little work or the work is repetitive) or in physical or psychological punishments. A type of slavery might develop whereby an inmate’s entire time is ‘placed at the convenience of the staff’ (Goffman 1961:10). In all cases this kind of regime leads to demoralisation of the inmate;

7. Contaminative exposure can occur. The inmates’ thoughts, feelings and their body can become exposed to people and things that the inmate would, in the outside world, define as alien and contaminating. For example, the inmate may be forced to talk about psychological problems and may suffer exposure to insanitary conditions, such as having to share bathwater or eating utensils; and

8. A paternalistic system develops (or was planned originally) that caters for all the essential needs of the inmates. The institution provides food, accommodation, clothing, medicine, work and leisure activities. Almost always these are of an inferior quality to that which would be obtained outside the institution. ‘The institution issue [clothing] provided as a substitute for what has been taken away is typically of a ‘coarse’ variety, ill-suited, often old and the same for large categories of inmates’ (Goffman 1961:20).
There is also a ninth category that Goffman does not deal with particularly well which concerns the use of space to control and define behaviours. Certain places within the institution are designated as staff places and others are inmate places. Access to each occurs only under particular and predetermined circumstances. For example, access to punishment cells follows disruptive behaviour and access to treatment areas is restricted to specific times and specific purposes.

In the terms of this study the two most important characteristics of total institutions are the control of space and the paternalism displayed by both the distanced controllers of the institution and by the staff towards the inmates. By ‘distanced controllers’ I mean those individuals and/or organisations with a decision-making capacity that affect the lives of inmates but who remain geographically and emotionally separate from the institution. These distanced controllers may include government ministers and agencies, mission societies and large corporations. They are often ‘faceless’ bureaucrats who make decisions concerning funding and other essentials and rarely have first hand experience of the institution.

POWER

Having described some of the characteristics of the total institution I now turn to an examination of the characteristics of ‘power’. I address this issue because paternalism is one form of the expression of power and the social relationships of paternalism are the relationships of power. There are many definitions of power. Weber’s (1947:139) oft-
quoted classic definition is that power is the ability to impose one’s will upon others despite their resistance. Others have variously defined power as being ‘taken into account by others, not only because they may want to, which is nice, but because they have to, which is nicer’ (Wildavsky 1987:260) or as ‘a special case of influence involving severe losses for noncompliance’ (Dahl 1970:32). A generally accepted definition is that ‘power is the ability of individual A to make individual B do something that B would not otherwise have done’ (Ransom 1997:11).

However, understanding power in our society is not so straightforward. There are generally two questions asked about the function of power: how does it function and what makes the use of power legitimate? (Ransom 1997:11). Weber was particularly interested in legitimate power: he called it authority (Albrow 1970:39-40). Earlier philosophers also attempted to determine the conditions under which legitimate power developed. Thomas Hobbes (Leviathan) and John Locke (The Second Treatise of Government) postulated that a ‘state of nature’ existed in which there was no government. Individuals entered into a social contract in which they agreed ‘to establish governments to protect their interests in preserving their lives and properties’ (Ransom 1997:12). Therefore the origins of power are stated publicly and power exercised in this way is legitimate power. The exercise of governmental power has been widely studied (e.g. Barker 1990; Beetham 1991; Strange 1996; Thornton 1966). The exercise of governmental power deals only with formal power.
John Stuart Mill (On Liberty) dealt not only with governmental (formal) power but also with societal power. Mill recognised that there are some forms of power that cannot be dealt with governmentally:

when society itself is the tyrant - society collectively over the separate individuals who compose it - its means of tyrannising are not restricted to the acts which it may do by the hands of its political functionaries. Society can and does execute its own mandates (Mill 1964:68).

An example of non-governmental power is that ‘there is no way to legislate against popular disapproval of minority viewpoints and lifestyles and ostracism or discrimination as weapons against non-conformity’ (Ransom 1997:12-13). Power exists that is not subject to legislative restriction. Mill called this societal power.

The conceptualisation of power that I use in this thesis is Foucault’s ‘disciplinary power’. Foucault followed the Frankfurt School in accepting that political power is not the most important form of power for theorists to consider and that not all forms of power have ‘the form of sovereignty’ (Ransom 1997:14). The Frankfurt School theorised that nonformal social power and state power interacted with each other through ‘a kind of widespread bribery and an active suppression of oppositional ideological elements’ (Ransom 1997:13).

Foucault (e.g. 1980, 1991) wrote widely on power and its relationship with knowledge. The use of power is based on three simultaneous operations: knowledge creation; rule establishment; and subjectivity (Ransom 1997:101). A domain of knowledge is created by
discourse. Foucault often used idiosyncratic meanings for words like 'discourse' and 'archaeology'. To him discourse is the writing of specialist and technical knowledge by specialists in a field (Foucault tends to concentrate on psychiatrists) who create their field and its dominant ideas. On the basis of this knowledge, rules are established that define what will and will not count as knowledge. Because the human sciences (Foucault's term for the social sciences) have people as their object of study these rules become applicable to people (in groups or individually). 'The knowledge and the rules that regulate both it and its objects establish a field of activity within which individuals recognise themselves as subjects' (Ransom 1997:101). Power is not exercised by those in power rather it is mediated by the subjects themselves (Fox 1993:28). 'It is not necessary to use force to constrain the convict to good behaviour, the madman to calm, the worker to work, the schoolboy to application, the patient to the observation of the regulations' (Foucault 1991:202). So it does not matter who is doing the supervising and whether they are actually present, the subject will maintain the power relationship. In this sense power makes the individual who they are (Miller and Tilley 1984:6).

Foucault was interested in the 'how' of power (Ransom 1997:11). He was neither concerned with questions of sovereignty and legitimacy (Rouse 1994:92) nor was he concerned so much with questions of consent and coercion. Foucault saw power working through disciplines. Discipline is located and exercised in a wide variety of institutional forms such as factories, schools, hospitals, prisons and military organisations (Miller et al. 1989:14). There is debate about the applicability of Foucault's analysis externally to these institutions (Sibley 1995:85).
Foucault’s 1977 classic analysis of discipline (Discipline and Punish 1991) originates from his analysis of Bentham’s Panopticon. The panopticon was a prison or other institution built on the principle that the inmate is separated from others but that all inmates are aware that they are observable at all times. The major effect of the panopticon is to ‘induce in the inmate a state of conscious and permanent visibility that assures the automatic functioning of power’ (Foucault 1991:201).

There are five principles of discipline as listed below:

1. **Spatialisation** (Foucault 1991:141-149). Individuals are distributed in space in a way that emphasises particular similarities and differences. Most often the spatial distribution is done by enclosing individuals within a space. By these procedures, one ‘knows one’s place’ in the general economy of space associated with disciplinary power (McHoul and Grace 1993:69). According to Foucault (1986:23), ‘we live inside a set of relations that delineates sites [spaces] which are irreducible to one another and absolutely not superimposable on one another’;

2. **Minute control of activity** (Foucault 1991:149-156). Time and labour are extracted from individuals. This control of activity is generally maintained by timetabling. ‘It is a matter of breaking down a set period of time into ever more available moments’ (McHoul and Grace 1993:69). The duration and repetition of events are specified and controlled;

3. **Repetitive exercises** (Foucault 1991:152). Activities are broken down into repetitive exercises. Through routine these behaviours become automated. The same stimuli produces the same response every time. ‘The body does not automatically align itself
into a clockwork composition of actions: it has to be trained to do so’ (McHoul and Grace 1993:69). Behaviour becomes ‘routine, repetitive, subject to codifiable rules and accessible to surveillance and calculation’ (Miller et al. 1989:14);

4. *Detailed hierarchies* (Foucault 1991:170-177). There exists a complex chain of authority and training and each level within the hierarchy keeps watch over the levels below it; and

5. *Normalising judgment* (Foucault 1991:177-194). Disciplinary power works by defining normal. Disciplinary power normalises. The rules established from the knowledge created by discourse define normality. Once normal is defined then the judgments of specialists continually assess individuals against this benchmark of normality and define deviance from the benchmark as abnormality: ‘power does not simply manipulate naively given differences between individuals and social groups, it actively *produces and reproduces difference* as a key strategy to create and maintain modes of social and spatial division’ (Soja and Hooper 1993:184-185, original emphasis)

Foucault summarised the mechanics of discipline in one sentence:

This enclosed, segmented space, observed at every point, in which individuals are inserted at a fixed place, in which the slightest movements are supervised, in which all events are recorded, in which an uninterrupted work of writing links the centre and periphery, in which power is exercised without division, according to a continuous hierarchical figure, in which each individual is constantly located, examined and distributed among the living beings, the sick and the dead – all this constitutes a compact model of the disciplinary mechanism (Foucault 1991:197).
The mechanisms of discipline allow for the control of people by means of hierarchical observation, the normalising judgement of professionals (such as teachers and doctors) and the compilation of documents and case histories. There is systematic collection and organisation of information that may be stored and used to monitor populations (Miller et al. 1989:14). This is very similar to the characteristics of total institutions described earlier (Goffman 1961).

Although Fox (1993:63) claims it is difficult to reconcile the discipline of panopticism with Goffman’s analysis of total institutions, the eight categories of total institutions identified from Goffman’s work can easily be explained by the exercise of disciplinary power. Table 1 presents the eight categories of total institutions and the aspects of disciplinary power to which they relate.

This development of a paternalistic system is the next topic for attention. Having described these characteristics and principles of institutions and power I now turn my attention to a hierarchical, visible and yet subtle application of power: paternalism.
<table>
<thead>
<tr>
<th>Characteristics of Total Institutions</th>
<th>Mechanisms of Disciplinary Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>All aspects of life occur in the same place to a tight schedule</td>
<td>The application of ‘spatialisation’, ‘minute control of activity’ and ‘detailed hierarchies’.</td>
</tr>
<tr>
<td>Two different social and cultural worlds develop</td>
<td>The application of ‘spatialisation’, ‘minute control of activity’ and ‘detailed hierarchies’. Separate social worlds are created as inmates only have access to inmate space and the detailed hierarchy will not allow transgressions of the relationship between different layers of the hierarchy.</td>
</tr>
<tr>
<td>Admission procedures form a ritual</td>
<td>The application of ‘minute control of activity’, ‘detailed hierarchies’ and ‘normalising judgment’. By forcing inmates to strip during admission their bodies are exposed to the ascription of abnormality. The procedure acts to reinforce the hierarchical relationship and provides evidence for the inmate that even their bodily activity is controlled.</td>
</tr>
<tr>
<td>Limitation of inmate relationships with the outside world</td>
<td>The application of ‘spatialisation’ and ‘normalising judgment’. Access to the outside world will only be granted (e.g. by parole or day leave) once inmate behaviour approximates the behaviour of normal people.</td>
</tr>
<tr>
<td>Life in the institution becomes routinised</td>
<td>The application of ‘minute control of activity’ and ‘repetitive exercises’. Repetitive exercises cause automatic reactions. The control of time and space and automated reactions lead to routinisation of life.</td>
</tr>
<tr>
<td>Work practices differ from outside</td>
<td>The application of ‘minute control of activity’ and ‘repetitive exercises’. Often work tasks can be imposed for the sake of the task itself (e.g. the breaking of rocks by prison inmates).</td>
</tr>
<tr>
<td>Contaminative exposure can occur</td>
<td>The application of ‘normalising judgment’. The ascription and maintenance of the definition of abnormality to and by inmates results in behaviours that would also be classified as abnormal. As inmate behaviour or personality ‘improved’ towards a pre-defined normal, less contaminative exposure would occur.</td>
</tr>
<tr>
<td>Development of a paternalistic system</td>
<td>The result of the exercise of all five principles of discipline.</td>
</tr>
</tbody>
</table>
PATERNALISM

In this section I examine the character of paternalism and the relationship of the agents and objects of paternalism. Although this thesis centres on an analysis of the application of paternalism within a health institution, this is not a discussion of paternalism within the meanings applied by medical ethicists. It is not merely 'the practice of applying or withholding medical treatments solely by reference to the perceived medical consequences' (Pollard 1993:70). Pollard (1993) sees paternalism as a question of medical treatment and not as a social interaction between actors of differing ascribed social value. Medical paternalism is in itself a narrow example of the wider application of paternalistic principles. The relationships of medical paternalism are created by the definition of 'normal' produced by medical discourse and maintained by subjectivity.

For the purposes of this research and at a very broad level, paternalism may be viewed as an extension of the traditional patriarchal family authority from the home into the larger social spheres of political and economic control. This has been described as a reconstitution of the father's dominion over a set of powerless societal children (Scranton 1984:238). This traditional patriarchal authority is based on a father-child relationship in which:

the father authoritatively dictated all the behaviours and significant life-decisions of his children within a moral framework that credited the father with an unassailable understanding of the needs and best interests of his children (Jackman 1994:10).
The patterns of power established within families interact with patterns of power in the wider social body.

The term 'paternalism' as used to characterise and describe particular interactions between individuals or between institutions and individuals or groups makes its appearance only in the latter part of the nineteenth century. Its origins, however, are firmly embedded in the development of liberal society and an increased emphasis on the individual that started to emerge in the sixteenth century. Kleinig (1984:3) argues for the origins of paternalism in medieval patriarchies that could be characterised as a 'social order in which the pattern of individual life is determined by considerations relating to the social whole'. If this is the case it helps to explain why paternalistic relationships were able to be maintained within industrial capitalism. Medieval patriarchs became the merchant capitalists who became the industrial capitalists and they maintained some of the traditional social relationships with the lower classes.

John Stuart Mill's classic 1859 essay On Liberty (1964) established the parameters against the exercise of formal power by government involvement in the lives of individuals. For Mill individuality is the most important element in human well-being (Nuyen 1983:30). Mill wrote:

A person should be free to do as he [sic] likes in his own concerns (1964:159)

and

that the only purpose for which power can be rightfully exercised over any member of a civilised community, against his will, is to prevent.
harm to others. His own good, either physical or moral, is not sufficient warrant (Mill 1964:73)

and

the only freedom which deserves the name, is that of pursuing our own good in our own way, so long as we do not attempt to deprive others of theirs, or impede their efforts to maintain it. Each is the proper guardian of his own health, whether bodily, mental or spiritual (Mill 1964:75).

Critics of Mill and/or of a utilitarian view of the individual as the prime element of society either ignore On Liberty or downplay it as a mere eccentricity of its author (Narveson 1967:157). Most philosophers agree that it is unreasonable not to accept some paternalism at all, although Nuyen (1983:37) concludes: ‘there is absolutely no case for paternalism’.

Much of the debate on paternalism relates to the appropriateness of, or justification for, paternalistic intervention, often in very specific instances such as ‘legal requirements that motorcyclists wear helmets ... [or] ... Legal requirements prohibiting self-medication’ (VanDeVeer 1986:13). Opponents of paternalistic intervention base their opposition on concerns over the preservation of individual autonomy: ‘The wrongness of paternalism comes down to the fact that it denies choice, and must derive from the value that can be attributed to autonomy’ (Archard 1994:289).

The term ‘paternalism’ has an indefinite meaning in common usage (Jackman 1994:10). It can be taken to imply a certain level of benevolence or empathy between the powerful and
the powerless. This, however, is seldom the case. Papandreou (1972:6) sees paternalism as ‘the autocratic, big brotherish aspect’ of decision making by a managerial elite and Jackman (1994) states that it only has the appearance of benevolence.

There are as many different definitions of paternalism and ways of categorising paternalistic behaviour as there are authors on the subject. Dworkin (1983b) and Feinberg (1983) divide paternalistic behaviour into hard and soft categories depending on the competence of its object. The soft view is that paternalism is sometimes justified if the object of the behaviour is in some way incompetent and unable to make rational decisions concerning their own well-being (Dworkin 1983b:107). The hard form holds that paternalism is sometimes justified even if the object is fully competent.

Jackman (1994) argues that all paternalistic relationships are exploitative though Douglas (1983:197) distinguishes between cooperative paternalism and conflictful paternalism depending upon the closeness of the relationship between the paternalist and the object of the paternalistic behaviour:

The distant and impersonal relations of bureaucracies foster the opposite of sincerely cooperative paternalism, that is, conflictful paternalism - exploitative relations in the guise of paternalism (Douglas 1983:197).

The definition of paternalism used herein is that it is a set of behaviours that culminates in the ‘exercise of freedom-diminishing control by one person over another’ (Kleinig 1984:xii) justified by reasons referring ‘to the welfare, good, happiness, needs, interests or
values of the person being coerced' (Dworkin 1983a:20). Paternalistic behaviour can be either benign or coercive depending on the motives of the paternalist and the effect on the object. In this way the same paternalists may express both benign and coercive paternalism towards the same object depending upon differing circumstances.

At the core of paternalism was a contemporary belief in an authoritarian, hierarchical and pluralistic society (Roberts 1979:6) in which people had duties and obligations based on their position within that society.

Historically, paternalism required an authoritarian society in which its members accepted as God-given the right of ‘fathers’ to rule. This patriarchy extended from the monarchy through judges, professionals, the military, landowners, industrialists and government officials to within the family itself. Paternalists tended to be authoritarian and supported concepts such as capital punishment, whipping and strict laws defining the duties of servants. Individual paternalists never doubted the ‘sacred nature of paternal authority’ (Roberts 1979:3).

Hierarchical society was seen as necessary for the good of all. Without inequality the poor would have no incentive to work and the rich would not have the time or (vested) interest to govern wisely. Central to this hierarchical view was the concept of dependence. Those of lesser societal rank or value or those deemed incompetent in decision making must be dependent on those above them ‘just as children are dependent on those above them in the hierarchy of the family’ (Roberts 1979:3).
Control within society was therefore based on a perceived ‘divine right’ of rule by an authoritarian hierarchy. However, society was also pluralistic. It comprised a series of overlapping hierarchies within family, religious, political and economic spheres which meant that duties and dependencies within the society were not uniform (Roberts 1979:3). For example, the institutional superintendent who exercised paternalistic authority over his inmates was also dependent upon the patronage of higher government authorities.

There are three dimensions to the social relationships expressed within paternalism - context, content and affect (Scranton 1984:236). Contextually, paternalism is most often found (though not universally) in the early stages of the establishment of an industry or an institution or in institutions established during the early phases of an area’s development. This is not to say that paternalism in these early stages is universal. Other economic, political, industrial or religious institutions may exist and been run along different lines. In the industrial setting, modernisation theory predicts the gradual replacement of paternalism by ‘rational-bureaucratic, ‘modern’ industrial authority’ (Padavic and Earnest 1994:389).

The content of paternalism as a practice involves overlapping spheres of provision, protection and control (Scranton 1984:237). Paternalistic institutions provide more than health care and paternalistic industries provide more than wages. Provision has often included housing, board, food or stores for food, work, support or creation of churches, libraries and recreational facilities (Scranton 1984:237). Industries and institutions could become multi-generational communities (of bosses and workers or staff and patients) where the paternalist or agents of a paternalistic government could supply all the needs of
life as they determine. This may also include medical assistance and pensions (Pollard 1964:521).

Protection involves the paternalists being responsible for the moral health of their charges. In the past they often attempted to reduce or control the immoral effects of alcohol and irreligion. Protection also often extended to control of the sexual conduct of the individuals.

Control in paternalistic institutions (whether private industries or government facilities) follows from the institutionalisation of these paternalistic practices and the application of discipline. Control includes policing, either formally or informally, the establishment of standards of behaviour such as timeliness and diligence, acquiescence to the hierarchy's leadership in moral activities and the power to punish individuals or groups for violations (Scranton 1984:237-238). Control does not necessarily involve coercion. It is possible for paternalists to attempt to change the behaviour of people in their desired direction by supplying subsidies or offering incentives for the object to engage in a particular behaviour (see Archard 1994).

The affective dimension of paternalism is a more elusive quality to describe. Psychological bonds may perform a function in the social dynamics of paternalism. The affective reality of paternalism varies according to the motives, experience and personality of both the paternalists and the objects. For the paternalists the affective rewards of paternalism could be substantial. They may become 'parents' on a scale that reinforces their own self-esteem.
and could on occasion reinforce their sense of religious or historical vocation (Scranton 1984:328). The objects of the paternalistic control are provided with a high degree of stability and security whilst the reinforcement of the hierarchical system ensures that they are aware of their responsibilities, obligations and position.

To illustrate the concepts of paternalism that I have just discussed I present an example of the context and content of a paternalistic industrial complex: the Bremer Mills Estate.

Bremer Mill: Case Study

The Bremer Mills Estate is an example of the context and content of paternalism within industrial capitalism. In 1850, eight years after the opening of the colony of Queensland to private interests, Joseph Fleming bought the first block of land that was to become the Bremer Mills Estate. The Bremer Mills was an industrial establishment located on 640 acres (1 square mile) with a three nautical mile frontage to the Bremer River, near Ipswich, southeast Queensland. The estate operated from 1851 to 1862 and produced enough flour to supply Brisbane and Ipswich (Whitmore 1991). It consisted of a steam flourmill, a steam sawmill, a melting down works (rendering plant) (Queensland Times 11/3/1862), a seven-room house with detached kitchen, serving quarters and store, stabling for 20 horses, a superintendent’s house, cottages for 300 workers and their families, a church and school house, a fruit and flower garden, wharves and tramways (Prangnell 1992).
Fleming considered himself a religious leader and was a member of Queensland’s first parliament (appointed in 1860) and a strongly paternalistic capitalist (Nairn et al. 1972:186). Fleming lived on the Estate with his family and the 300 workers and their families. A workforce of 300 men represented 2.4% of the entire male population (over the age of 10) in Queensland in 1861 (Caldwell 1987:30). He supplied this large workforce and their families with cottages for accommodation, regular and paid work, religious opportunities, recreational activities and schooling. Fleming felt a religious responsibility for the well-being and protection of his workforce (Prangnell 1992).

The flood of 1857 devastated the Estate, yet the Moreton Bay Courier records:

Our informant was unable to ascertain the total loss sustained by Mr Fleming; as he seemed more impressed with the workmen’s than with his own losses, to which latter he scarcely alluded ... [and] as Mr Fleming is deservedly esteemed for his enterprising spirit and kind treatment of his workmen, his loss is deeply regretted by all who know him (Moreton Bay Courier 30/5/1857)

The enterprise never recovered from the flood. Fleming was unable to repay his mortgages and the Bank of Australasia took possession of the property (ANZ Bank Group Archive A/10/11: 56 of 1862). Over the next four decades numerous efforts were made to sell the land, plant and machinery. These efforts proved unsuccessful, however, and local inhabitants used the buildings as sources of stone and brick (Prangnell 1992). The land is now owned by the Ipswich City Council who have built a water treatment works on the site.
From an international perspective, the development of capitalism in Australia was unique:

In no other country were the elements of the social relations of the system transplanted by force of arms over such vast distance, in the embryonic form of a military prison, which initially contained no capitalists, no free labourers, and no peasants. Yet within a generation the colony was essentially capitalist, free labourers were on the increase, there was an incipient peasantry, and the original inhabitants had been dispossessed (Buckley and Wheelwright 1988:1).

Industrial ventures were new to Queensland in the 1850s. Prior to this time agricultural practices dominated, and land this close to Brisbane was only opened for settlement from 1842 onwards. The Estate existed in the context of the original opening-up of the area and the early development of industrial capitalism. The Bremer Mills Estate therefore provides an example of the content, affect and context of paternalism.

Having discussed the characteristics of total institutions, disciplinary power and paternalism, I now examine the methods used by historical archaeologists to address power relationships, and paternalism in particular.

HISTORICAL ARCHAEOLOGY

This thesis is concerned with 'archaeology's intermediate objective': the reconstruction of past lifeways (Thomas 1990:355). In particular, it deals with reconstructing the unequal social relationships that existed within an institution ostensibly maintained to serve the
good of the community and the inmates. In this section I examine the approaches to the archaeology of inequality used by Australian and North American historical archaeologists. Historical archaeology in Australia and the United States of America has been able to offer insights into the patterning of cultural practices and the inequity that has existed between social groupings.

Australian Historical Archaeology

Once, in a BA thesis, I wrote that historical archaeology in Australia had become 'almost exclusively restricted to the study of the particular' (Prangnell 1991:9). Little seems to have changed, as these sentiments were echoed six years later by another BA student: 'historical archaeology in Australia has been typified by an atheoretical “descriptive site catalogue” approach' (Quirk 1997:2). When Australian historical archaeologists have been concerned with more than particularistic components of individual sites they have concentrated on the effect of the colonial experience (e.g. Birmingham and Jeans 1983), the application of World Systems Theory (e.g. Jeans 1988) and architectural and industrial heritage (e.g. Birmingham *et al.* 1983; Connah 1988).

One area of power relationships that is being addressed within Australian historical archaeology is that of gender (Anderson 1995; Bickford 1993; Birmingham 1993; Johnston 1993; Lawrence-Cheney 1993; Lydon 1993, 1995; Quirk 1997; Russell 1993). Since the publication of Connah's *Of the Hut I Builds* (1988) (re-issued in 1994 as *The Archaeology of Australia's History*), considered the leading text on Australian historical archaeology, in which women were virtually non-existent (see Anderson 1995 for a
critique), there has been a concerted effort to address gender issues in the historical
archaeological record (Little 1995:95). 'Gender in Archaeology' conferences have been
organised and proceedings published (du Cros and Smith 1993; Balme and Beck 1995).
Analysis of gender appears currently to be the most theoretically active component of
Australian historical archaeology.

During the 1980s there was a tendency towards introspection on the part of Australian
historical archaeologists (Bairstow 1984a; Birmingham and Murray 1987; Connah 1983,
need for Australian historical archaeology to build theory that took into account the
Australian context. She saw no necessity, however, for historical archaeology to have
imposed upon it definitions, boundaries or any 'rigid theoretical framework'. A major
contribution to come from this period of introspection was the idea that historical
archaeology had 'its own legitimate problems, data base, techniques and methodology'
(Birmingham and Murray 1987:21). Note that having theoretical underpinnings was not
mentioned.

Australian historical archaeology appears to have been predisposed to the study of three
main areas: architectural expression, colonial economics and industry. Even when the
places under study can offer insights into social relationships the studies concentrate on
describing the structures and artefacts. In Australian historical archaeology it is not just
'those of little note' who are voiceless, almost everybody is voiceless. The buildings do
the talking. There is one main reason for this situation; historical archaeology is primarily
practiced in Australia as part of the heritage industry (Murray and Allen 1986) (see for example Bickford and Sullivan 1984). ‘A community comprising consultants, government cultural resource managers and a handful of academics has formed’ (Lydon 1995:73). This means that short-term site specific and industry-contracted studies are the norm; little scope exists for extended study of individual sites or for intersite comparison.

Studies that concentrate on architectural structures include Bairstow and Davies’ (1987) examination of the Coal Mines Historic Site, an outstation of the Port Arthur penal colony. Their stated objectives were to correct and expand the historic resource inventory, to define the extent of the site and to provide information for management plans (Bairstow and Davies 1987:5). Although the study goes into great detail comparing the content of the written records and the archaeological elements, the information is used in no other way.

Another example of a contracted architectural study is McIlroy’s (1989) excavation of two penitentiaries on Sarah Island located in Macquarie Harbour in southwest Tasmania. Up to 400 convicts were incarcerated and isolated on an island only 150m by 600m in size (McIlroy 1989:1-2). Although this Island was considered by the convicts as a place of ultimate dread (Connah 1988:57) the archaeology was restricted to assessments of the remaining architectural elements. This met the client’s brief but left so much unsaid.

Many other examples of architecture or structure based historical archaeology can be found (e.g. Blackman 1988; Connah et al. 1978; McGowan 1985; Proudfoot et al. 1991;
Sanker 1979a). The excavation and analysis of the First Government House in Sydney (Proudfoot et al. 1991) is an exceptionally important study that allows new insights into the early colony at Sydney Cove. It does go beyond the architectural and structural to discuss industrial and domestic technology and the role of the Governors' wives in the early colony, but concerns over the placement of drains and privies seem to predominate.

Examples of studies that concentrate on the colonial economy are Allen (1978), Murray (1988) and Birmingham and Jeans (1983). Allen (1972, 1978) produced the first historical archaeology PhD thesis in Australia with his study of colonisation at Port Essington in the Northern Territory. In this early work Allen goes beyond the particularistic study of the site and addresses questions of a more theoretical nature. 'By virtue of its late colonisation, Australia provides an excellent area for examining problems of colonialism which seem likely to be universal to all periods' (Allen 1978:145). Murray (1988:105) followed this lead:

If historical archaeologists seek to understand the process of colonisation from an archaeological perspective then it behoves them to sharpen the focus of theory building by the extended archaeological analysis of particular cases within a broad comparative framework.

From the early 1980s onward the major theoretical model used by Australian historical archaeologists for examining colonial expression has been the Swiss Family Robinson Model (Birmingham and Jeans 1983). Birmingham and Jeans developed the model during the period of introspection in the early 1980s mentioned earlier. They perceived the need for historical archaeologists 'to take a long hard look at Australian historical interpretation and their own possible role' (Birmingham and Jeans 1983:4).
The Swiss Family Robinson Model supplies a theoretical exemplar for the study of the processes of colonisation. The model is drawn from Wyss' early nineteenth century novel of the same name. The Robinson family become stranded on a foreign shore and proceed to recreate their image of their European homeland with the materials salvaged from the shipwreck and the exotic materials at their disposal. In this model Birmingham and Jeans (1983:6-8) identify three phases of colonisation:

1. *Exploratory Phase* - A short-lived phase of exploration of the biophysical environment. There is total dependence on the resources the colonists brought with them;

2. *Learning Phase* - A longer, trial and error stage in which the colonists learn to adapt their home grown-production techniques to the new environment; and

3. *Development Phase* - Industries are established and become part of the world economy.

The Swiss Family Robinson Model concentrates on the economic and technological aspects of colonisation. Birmingham and Jeans (1983:11) admit that it 'has less to say about its social aspects'. At the time of its initial presentation the Swiss Family Robinson Model provided a much-needed theoretical framework for historical archaeology. In the 1990s, however, it has received much criticism, especially from feminist archaeologists (e.g. Lydon 1995:74-75; Quirk 1997:13-14). Criticism centres on the model's androcentrism, its focus on economic and technological development at the expense of social analysis (Lydon 1995:74) and on its concentration on those who are already well
recorded in the documentary record (Quirk 1997:14). The last word on the Swiss Family Robinson Model goes to Egloff (1994:1):

rather than offer a framework, perhaps the Swiss Family Robinson model provides a mental strait-jacket which has promoted studies of colonialism and frontierism ... at the expense of approaches which are more relevant to the scholarship of today.

The most particularistic and descriptive studies have been those of industrial sites. Types of industrial sites that have been subjected to archaeological investigation include breweries (Bairstow 1985), mines (Bell 1987; Davey 1986; Kennedy et al. 1981; Kerr 1995; Lane 1982; McGowan 1996; Pearson 1995), iron smelters (Jack and Cremin 1994), water treatment works (Sanker 1979b), water and wind mills (Alfredson 1989; Bignell 1988; Connah 1996; Godwin 1983; Hall et al. 1996; Jack 1983; Pearson 1997; Prangnell 1991; Whitmore 1989), salt works (Rogers 1984; Sanker 1984), potteries (Birmingham 1968, 1976; Wade 1979) and lime kilns (Harrington 1996; Pearson 1981, 1986).

In 1970 and 1971 Birmingham (1976, 1992) undertook excavations at Wybalenna on Flinders Island in Bass Strait. Wybalenna was the site of resettlement for Aboriginal people removed from Tasmania during the period 1837 to 1867. Birmingham (1992:176) employed the Leone and Potter (1988) and Paynter and McGuire (1991) (see below) model of dominant ideology and resistance (Schulyer 1996:95). The model she developed held that the British as the dominant agency used all means at their disposal to impose nineteenth century European ideological structures on the Tasmanians, while the Tasmanians in turn pursued a policy of limited accommodation and overall resistance (Birmingham 1992:176).
Birmingham (1992:175-196) analysed the distribution of cottages, traditional Aboriginal artefacts and European artefacts, the evidence for European activities such as floor sweeping as opposed to the evidence for Aboriginal activities such as midden deposition to assess the level of acceptance of, or resistance to, the superimposed European ideology enforced upon the settlement. To assess the level of ideological acceptance and/or resistance Birmingham (1992:177) worked from four assumptions concerning the meaning of the artefact patterning:

1. The greater the presence of earned European goods in a household site the greater the acceptance of European ideals;
2. The more visible the exhibition of European behaviour patterns the greater the acceptance of European ideals;
3. The greater the presence of traditional Aboriginal artefacts the greater the level of resistance to the dominant ideology; and
4. The more visible the exhibition of Aboriginal behaviour patterns the greater the resistance to European ideals.

The study showed that different households dealt differently with the 'pressures of ... [the] Europeanisation program' (Birmingham 1992:189). One household apparently embraced many European consumables and behaviours whilst the members of an adjacent household maintained a much more traditional lifestyle. Consequently, one is defined as having a higher level of acceptance of European ideology whilst the other is portrayed as having a higher level of resistance. The major problem with this analysis of Wybalenna is that
Birmingham does not make explicit her understanding of resistance and power. These terms are not defined. It is assumed that 'power' is 'power' and 'resistance' is 'resistance'.

Casella's (1996) project at the Ross Female Factory in Tasmania is another study designed to examine archaeological evidence for resistance to power: 'I seek to explore possible interpretations of power negotiations ... to imagine some social meanings for everyday objects' (Casella 1996:259). The female factory was located at the inland town of Ross. The Female Factory system existed from 1849 until 1854 (Parks and Wildlife Service Tasmania n.d.) and was used to house female convicts. The site had been used previously to house male members of chain gangs.

Casella uses Scott's (1985) analysis of resistance to understand the 'everyday' actions of resistance by the inmates of the Female Factory. Scott (1985:289-303) defines class resistance as

Any act(s) by member(s) of a subordinate class that is or are intended either to mitigate or deny claims (for example, rents, taxes, prestige) made on that class by superordinate classes (for example, landlords, large farmers, the state) or to advance its own claims (for example, work, land, charity, respect) vis-à-vis those superordinate classes (Scott 1985:290, original emphasis).

This definition is based on the intentions of the resistors rather than the outcomes of their resistance. When Scott's emic perspective fails because the resisting people cannot explicitly articulate their intention, he adopts an etic analysis: 'in one sense, of course, their intentions are inscribed in the acts themselves' (Scott 1985:301). Using this definition
allows a large number of activities including theft and vandalism, to be defined as resistance.

As an example of the application of this definition of resistance Casella examines the meaning of vandalism to night-lights in the Female Factory. She concludes that ‘recalling Foucault’s discussion of surveillance as an act of power ... prevention of that surveillance would necessarily and contextually be an act of resistance to that disciplinary process’ (Casella 1996:262). The vandalism may be acts of everyday resistance. Foot dragging, pilfering, feigned ignorance, slander and arson are examples Scott (1985:29) gives of everyday resistance.

The invocation of Foucault’s disciplinary power by Casella seems inappropriate, though, because of the normalising and subjective nature of disciplinary power. The resistance described by Casella is resistance to only one disciplinary technique utilised by a formal (legitimate) power structure. For Foucault, power is local and the foci of power relations are located in all social interactions not just those that are formally constituted. Therefore resistance is inherently part of the power relationship. Casella sees the component parts of discipline merely as separate techniques that may or may not be applied by the powerful in any disarticulated manner.

Others, however, would agree with Casella. According to McHoul and Grace (1993:86) ‘for Foucault, resistance is more effective when it is directed at a ‘technique’ of power rather than at ‘power’ in general. It is the techniques which allow for the exercise of
power and the production of knowledge; resistance consists of ‘refusing’ these techniques'. In the world of normalising power relationships it is ‘the mundane and everyday acts of resistance that potentially produce profound effects’ (McHoul and Grace 1993:86).

These two examples coupled with the growth of an engendered historical archaeology serve to demonstrate that Australian historical archaeology1 is grappling its way towards an archaeology of social relationships. For many years Australian historical archaeologists have turned to North America for the lead in archaeological method, theory and application. I will now do the same.

North American Historical Archaeology

American archaeologists draw on basically three dominant themes to construct their stories of the past: culture history; cultural ecology; and political economy (Paynter and McGuire 1991:1). With the move away from the positivist archaeologies of the 1960s and 1970s a number of context-based claims for the direction of the discipline have been made. These contexts include consumer studies (e.g. Cook *et al.* 1996; Penderney 1992; Spencer-Wood 1987), the application of middle-range theory (e.g. Leone and Crosby 1987), applied critical theory (e.g. Leone 1995; Leone and Potter 1992; Leone *et al.* 1987), the study of capitalism (e.g. Johnson 1996; Leone 1988, 1995; Orser 1988a, 1988b, 1996; Paynter 1988), the globalisation of the discipline (e.g. Falk 1991; Orser 1994, 1996, 1997;

1 Albeit one of the practitioners (Casella) is an American working in Australia.
Orser and Fagan 1995) and the examination of social inequality and power (e.g. McGuire and Paynter 1991; Paynter 1982).

I addressed the application of middle-range theory in Chapter 1 and in the present chapter I have discussed the nature of power. Paynter and McGuire (1991) espouse the use of a political economy model in historical archaeology. The political economy approach 'emphasises the struggles among members of society over the exercise of social power' (Paynter and MacGuire 1991:1). They are concerned with archaeological investigation of all aspects of power, whether formal or social. They describe three themes within the analysis of power:

1. *The heterogeneity of power.* Power relationships are composed of more than the formal power described by Weber: 'Agents exercise heterogeneous power from a multiplicity of bases' (Paynter and MacGuire 1991:6). It is not just the relationship of the elite and sub-elites. Therefore power relationships are exercised through the construction of meaning, socialisation processes and reproduction of the material world (Paynter and MacGuire 1991:6-7);

2. *Disciplinary power.* This is the structuring of domination into everyday existence such that power relations are maintained through normalisation and subjectivity (see earlier discussion); and

3. *The dialectic of domination and resistance.* Dominance can be defined as the condition in which a set of ideas or practices, usually favourable to a particular minority within a society, appears to hold sway over the whole of that society and act to reproduce this same condition (Miller 1989:63).
This process usually involves unequal access to resources. Just as there is heterogeneity of dominance there is heterogeneity of resistance. Resistance is the social and cultural opposition to the exercise of dominance (Paynter and MacGuire 1991:1) and may be in the everyday resistance described by Scott (1985) (see above).

Some researchers have targeted power relationships directly (e.g. Ferguson 1991; Leone 1984). However, many North American historical archaeologists have tended to access power indirectly by concentrating on the development of models related to the description and explanation of differing group identity and status within specific economic systems, namely capitalism and the slave plantation system. Prior to the paradigmatic shift towards post-processualism, historical archaeologists based these models on the recognition of artefact patterning (e.g. South 1977, 1978; for a critique of the use of patterns see Orser 1989). This allowed them to focus on developing methods for the recognition of groups of different status within the historical archaeological record. Since then questions of social organisation and the mechanism of social control have been addressed (e.g. Baugher and Venables 1987; Garrow 1987).

Studies have addressed the identification of differing ethnic groupings (Kelly and Kelly 1980), for example: Anglo-American (Anderson and Moore 1988; Deetz 1988b; Dyson 1982; Little et al. 1992); Afro-American (Baker 1980; Bower 1980, 1991; Bridges 1980; Ferguson 1980; Geismar 1980, 1982); Spanish-American (Deagan 1983); Affo-Jamaican (Armstrong 1985); Spanish-American Indian (Gregory 1983). McGuire (1982) claimed that historical archaeologists were generally good at developing criteria for determining
the material correlates of different ethnic groups but that they failed to examine important
issues of ethnicity such as 'how ethnic boundaries emerge, are stabilised, and change
through time' (McGuire 1982:161). An example of an approach that addresses these
concerns is Garman's (1994) study of the negotiation of the 'color line' in Newport,
Rhode Island.

Other archaeologists have examined the lifeways of differing groupings within plantation
economies (Singleton 1985, 1995), for example 'planter, overseer, slave' (Lange and
Carlson 1985; K. Lewis 1985; L. Lewis 1985; Moore 1985; Otto 1977; Reitz et al. 1985);
free-blacks and slaves (Adams and Smith 1985; Friedlander 1985; Geismar 1980; Morgan
1983); and postbellum plantation groups (Orser 1991). Other areas of inequality to attract
archaeological attention are differing religious groupings (Deetz 1978; Leone 1977, 1978),
differing consumer groupings (Spencer-Wood 1987, 1991), groups of differing rural and
urban status (Wurst 1991) and groupings within industrial communities (Beaudry 1989;
Mrozowski et al. 1989)

Leone (1995) has recently called for both the application of post-processual thought and
the politicisation of historical archaeology. Not only should historical archaeology
investigate disenfranchised sections of society but it should be aware of its own position
within the capitalist ideology and that historical archaeology should act as a tool for the
arousal of consciousness, thereby becoming an agent of social change:

A conception of historical archaeology that assumes the importance of
class differences, pays attention to community direction, and
investigates the kind of exploitation endemic to capitalism makes
political involvement unavoidable (Leone 1995:263).
The consequence of this is that:

A historical archaeology of capitalism can offer its knowledge to those who want to know how we and they got to be where we are now. But it can also form alliances with the same people, to challenge the oppression that falls unevenly on us all and bring about reforms (Leone 1995:264).

Given the extensive body of North American historical archaeological literature and case studies related to power relationships I will concentrate on the most important example of the archaeology of paternalism and present a case study of the Boott Mill at Lowell, Massachusetts.

Boott Cotton Mills Corporation: Case Study

Boott Mills was an industrial development of the nineteenth century in which the over-riding philosophy of the company towards its employees was one of paternalism. It was located at the confluence of the Merrimack and Concord Rivers at Lowell in northern Massachusetts (Mrozowski *et al.* 1989:301). Lowell was the earliest example of a planned industrial city in the United States, and by the mid-nineteenth century Lowell was a textile producing city of over 20,000 people (Mrozowski *et al.* 1989:298).

The Boot Cotton Mills Corporation was incorporated in 1835 and continued to produce cotton goods until 1957 (Beaudry 1989:20-22). In 1842 the company employed 950 women and 120 men at the Boott, producing over 9 million yards of cloth (Beaudry 1989:21). When the mill commenced most of the workers were
either native-born New Englanders or of Irish ancestry. By the end of the
nineteenth century employees were drawn from French Canada, England,
Scotland, Armenia, Italy, France and Ireland (Orser 1996:87).

In a process reminiscent of the Bremer Mills case (only on a much larger scale) the
Boott Mill industrialists ‘undertook to create and control “the total living
environment for labor”’ (Beaudry 1989:19). The company built factories, offices,
houses, parks and schools. The employees were housed in company supplied
boardinghouses whilst overseers were housed in a block of tenements. A house
for the company’s agent was also constructed ‘in the urban vernacular style typical
of the upper-middle-class townhouses then being built in Boston’s South End’
(Beaudry 1989:23). The boardinghouses were originally separated from the mills
by a canal.

The Mill owners supplied not only housing but also food and recreational facilities
and took ‘charge of the domestic, religious, and educational aspects of workers’
lives’ (Beaudry 1989:29). The company also dictated numerous rules concerning
who could live in the boardinghouses, how the rents would be collected, how the
buildings and yards should appear and about drinking on the premises and in
public (Beaudry et al. 1991:168-169). Boardinghouse keepers were appointed
and retained based on ‘their attentiveness to both the moral and physical needs of
workers under their care’ (Mrozowski et al. 1989:302). The workforce was
separated by sex, nationality and status (Beaudry 1987 in Orser 1996:169). The
landscape of Lowell 'was designed to function as a strict system of moral police' (Mrozowski 1991:90).

Archaeological excavations had been undertaken at Lowell by Schyuler in the 1970s and Gorman et al. in the early 1980s (Mrozowski 1991:90). In the late 1980s a five year multidisciplinary study was undertaken of the Boott Cotton Mills Corporation (Mrozowski et al. 1989:299) which included archaeological excavation of areas of the backlots of a Boott Mill boardinghouse and a tenement. They were excavated by Mary Beaudry and her colleagues from the Center for Archaeological Studies at Boston University (Orser and Fagan 1995:199). Their aims were 'to go beyond economics, chronology, and spatial distribution in the analysis of ordinary residues of life' (Beaudry et al. 1991:174). They were attempting to understand the lives of the millworkers from an emic perspective. Following Glassie (1982) they termed this perspective 'the inside out' (Beaudry et al. 1991:163):

By analyzing cultural texts, written or otherwise, 'from the inside out,' we can begin to reconstruct meaning in the active voice, in the multiple voices of the 'silent majority' whose past discourse through artifacts reveals they were not so inarticulate after all (Beaudry et al. 1991:175).

Use of household ceramics, tobacco and illicit alcohol supplies are used to illustrate the inside out approach.

Although this is probably the most important historical archaeological analysis of a paternalistic system undertaken, the examination was not of the paternalism. The
analysis was very much aimed at an analysis of 'hegemonic discourse' and took
the paternalism and the meaning of the paternalism as a given. The paternalism of
the Boott Mill is mainly used as an illustrative background for the study of other
issues. ‘In effect, they subtracted the oppressive, paternalistic situation from their
analysis’ (Orser 1996:177).

CONCLUSION

The Peel Island Lazaret was a paternalistically run health institution. In this chapter I have
described the characteristics of total institutions and Foucault’s conceptualisation of
disciplinary power. I have also described the characteristics of paternalism and examined
Australian and North American historical archaeologists’ attempts to examine power and
paternalism. In the following chapter I will use the information presented here to examine
the implications for the analysis of the documentary records and the archaeological records
of the Peel Island Lazaret.
CHAPTER 3

THE DOCUMENTS

Fiction there is - and history. Certain critics of no little discernment have considered that fiction is history which might have taken place, and history fiction which has taken place (André Gide 1969 The Vatican Cellars).

In this synthesis of the written records of the Peel Island Lazaret I focus primarily on the evidence for paternalism and disciplinary power rather than presenting a complete history of the Lazaret. Following the methodology, I describe separately the attributes of the paternalistic relationships as they are documented in both the available Historical Documentary Record and the Documentary Record. The documents are used to examine the context, content and affect of paternalism and the mechanisms of disciplinary power.

BACKGROUND

In 1906 an area of 160 acres (c. 80 ha) on the northwest corner of Peel Island was gazetted as a reserve for a lazaret. This gazettal was extended to cover the entire Island in August 1941 (Queensland Government Gazette 30 August 1941:798). The new, multiracial Peel Island Lazaret was opened in July 1907. It operated for 53 years and closed in 1959. Patients with Hansen’s Disease came to the Lazaret from all over
Queensland and from Darwin (during WWII). The existing lazarets at Dunwich and Friday Island were closed when the Peel Island Lazaret was opened and all the patients transferred to Peel Island.

The Lazaret opened with 70 patients and reached a maximum of 84 in 1910. As is typical of most diseases during times of war, admissions fell during the First World War so that by 1919 there were only 41 patients at the Lazaret (Cook 1927:74). This decline can also be attributed to the termination of the indentured labour program in 1906 and the forced repatriation of large numbers of South Sea Islanders. White inmates outnumbered coloured inmates for the first time in 1919. After the First World War a change in the rate of admissions of coloured patients occurred such that by 1930 the ‘coloured compound comprised solely Aboriginal inmates’ (Blake 1993:14). Patient numbers at the Lazaret steadily increased after the 1914-1918 War so that by 1926 there were 76 inmates. A total of 572 admissions were made to the Lazaret over the 52 years of its operation (Blake 1993). Two hundred and fifty patients died at the Lazaret and although no funeral or burial records have been located, it is safe to assume on the basis of the Department of Health and Home Affairs policy of the time that almost all must have been buried in the cemetery located to the east of the Lazaret. By 1919 ‘Queensland had the largest single mental asylum [Woogaroo] and lazaret [Peel Island] in Australia’ (Evans 1969:286).
THE DOCUMENTS

Now I examine the Historical Documentary Record (HDR) and the Documentary Record (DR) of the place for evidence of paternalism and disciplinary power. Figure 3 illustrates the schema discussed in Chapter 2, such that paternalism is examined using the overlapping spheres of context, content and affect (the emotional component) with the subcategories of content being provision, protection and control. The figure demonstrates the position of disciplinary power in this scheme.

Figure 3. Schematic Representation of the Analytical Categories of Paternalism and Disciplinary Power.
To avoid the redundancy of presenting historical information twice (once for each documentary category) the data concerning the nature of the actual documentary sources are presented in tabular form (Tables 2 and 3), following which I present the stories told by the two records.

The Historical Documentary Record

A number of Historical Documentary Records of the Peel Island Lazaret have already been written; most of them are autobiographical and/or anecdotal accounts (see Berthelson and Ross 1996; Gabriel 1961; Gregory 1995; Ludlow 1988, 1991a, 1991b, 1992, 1995a, 1996; Opala n.d., 1996; Ross 1994; but see Blake 1993; Evans 1969; Prangnell 1994). These records supply the general background to the history of the Lazaret. They allow for the identification of themes in the history of the place (Table 2). The HDR is of most benefit in the description of the context of the paternalism and the place. Because these documents were written after the event they tend to give few insights into the daily life and the emotional aspects of the place. No information concerning protection appears to exist in this document set.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of Document</th>
<th>Paternalistic Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berthelson and Ross 1996</td>
<td>Autobiography</td>
<td>Provision Control Affect</td>
</tr>
<tr>
<td>Blake 1993</td>
<td>Conservation Plan</td>
<td>Context Provision Control</td>
</tr>
<tr>
<td>Evans 1969</td>
<td>MA Thesis</td>
<td>Context</td>
</tr>
<tr>
<td>Evans et al. 1993</td>
<td>Thematic History</td>
<td>Context</td>
</tr>
<tr>
<td>Fisher 1994</td>
<td>Biography</td>
<td>Context Provision Affect</td>
</tr>
<tr>
<td>Gabriel 1961</td>
<td>Summary History</td>
<td>Context</td>
</tr>
<tr>
<td>Goodall 1992</td>
<td>PhD Thesis</td>
<td>Context</td>
</tr>
<tr>
<td>Gregory 1995</td>
<td>Summary History</td>
<td>Context</td>
</tr>
<tr>
<td>Horton 1983</td>
<td>Travel Guide</td>
<td>Provision</td>
</tr>
<tr>
<td>Kidd 1997</td>
<td>Thematic History</td>
<td>Context</td>
</tr>
<tr>
<td>Ludlow 1988</td>
<td>Local History</td>
<td>Context Provision</td>
</tr>
<tr>
<td>Ludlow 1991b</td>
<td>Local History</td>
<td>Context Provision</td>
</tr>
<tr>
<td>Ludlow 1992</td>
<td>Local History</td>
<td>Provision Affect</td>
</tr>
<tr>
<td>Ludlow 1995a</td>
<td>Local History</td>
<td>Context</td>
</tr>
<tr>
<td>Ludlow 1995b</td>
<td>Local History</td>
<td>Context</td>
</tr>
<tr>
<td>Ludlow 1996</td>
<td>Local History</td>
<td>Context</td>
</tr>
<tr>
<td>Opala n.d.</td>
<td>Autobiography</td>
<td>Provision Affect</td>
</tr>
<tr>
<td>Opala 1996</td>
<td>Autobiography</td>
<td>Control Affect</td>
</tr>
<tr>
<td>Prangnell 1994</td>
<td>Summary History</td>
<td>Context</td>
</tr>
<tr>
<td>Ross 1994</td>
<td>Summary History</td>
<td>Provision Affect</td>
</tr>
</tbody>
</table>
Documentary Record

Sources of the Documentary Record of the Peel Island Lazaret include Health Department patient files, Health Department administration files, Health Department correspondence files, Works Department administration files, newspaper items, medical journal articles and departmental annual reports. These sources supply data on patient histories, correspondence between patients and government officials, correspondence between staff members and other government officials, public perceptions of the place, the official view of the place, building plans, building and equipment specifications, financial statements of costs, and quotations and tenders for the supply of equipment. Some archival files listed in Table 3 also contain information neither relevant to the Peel Island Lazaret nor to the question of paternalism or disciplinary power (e.g. the greatest single bulk of documents in the Health Department patients’ files are the pathology results slips for swabs taken from patients each month to test for the presence of *M. leprea*).

Table 3. The Documentary Record of the Peel Island Lazaret

<table>
<thead>
<tr>
<th>Document Set</th>
<th>Archival Reference</th>
<th>Type of Document</th>
<th>Paternalistic Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Works Department</td>
<td>QSA WOR/Leper Lazaretto Peel Island Batches</td>
<td>Patients' Letters</td>
<td>Provision</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Affect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Departmental Letters to Patients</td>
<td>Provision</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Affect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Memoranda</td>
<td>Provision</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Affect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Correspondence</td>
<td>Provision</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Affect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Financial Statements</td>
<td>Provision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building Plans</td>
<td>Provision</td>
</tr>
<tr>
<td>Health Department Patient Files</td>
<td>QSA TR1255</td>
<td>Patients' Hospital Files</td>
<td>Context Provision Protection Control Affect</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Health Secretary Correspondence Special Batches</td>
<td>QSA A29448</td>
<td>Lazaret Control</td>
<td>Context Provision Control</td>
</tr>
<tr>
<td>QSA A29449</td>
<td>Peel Island Management</td>
<td>Provision Control</td>
<td></td>
</tr>
<tr>
<td>Health Secretary Correspondence Peel Island</td>
<td>QSA A31756</td>
<td>1927-1940 Correspondence</td>
<td>Provision Control</td>
</tr>
<tr>
<td>QSA A31757</td>
<td>1941-1944 Correspondence</td>
<td>Provision Affect</td>
<td></td>
</tr>
<tr>
<td>QSA A31758</td>
<td>1945 Correspondence</td>
<td>Provision</td>
<td></td>
</tr>
<tr>
<td>QSA A31759</td>
<td>1946-1948 Correspondence</td>
<td>Provision</td>
<td></td>
</tr>
<tr>
<td>QSA A31760</td>
<td>1949 Correspondence</td>
<td>Provision</td>
<td></td>
</tr>
<tr>
<td>QSA A31761</td>
<td>1950 Correspondence</td>
<td>Provision</td>
<td></td>
</tr>
<tr>
<td>Department of Native Affairs</td>
<td>QSA A58972</td>
<td>1923-1939 Card Index of Lepers [sic]</td>
<td>Context</td>
</tr>
<tr>
<td>Home Secretaries Office</td>
<td>QSA COL/322</td>
<td>Correspondence</td>
<td>Provision Protection Control Affect</td>
</tr>
<tr>
<td>Blue Books</td>
<td>QSA Blue Books</td>
<td>Government Employee Records</td>
<td>Context Provision</td>
</tr>
<tr>
<td>Dunwich Benevolent Asylum</td>
<td>QSA Z1167</td>
<td>Funeral Register</td>
<td>Context Provision</td>
</tr>
<tr>
<td>Electoral Roll</td>
<td>QSA Lep/21</td>
<td>Admission Register</td>
<td>Context</td>
</tr>
<tr>
<td>Cook 1927</td>
<td></td>
<td>Government Report on the Epidemiology of Hansen's Disease in Australia</td>
<td>Context</td>
</tr>
<tr>
<td>Diocese of Brisbane 1923</td>
<td>Home Mission Echoes</td>
<td>Magazine</td>
<td>Protection</td>
</tr>
</tbody>
</table>
Table 3 demonstrates that the DR is most useful in understanding the content of the paternalism. Insights into context and affect are also provided but in less detail. The primary understandings of the affect of paternalism must come from this set of documents as they contain the feelings expressed by the people involved at the time, notwithstanding the infrequency with which they were recorded in the official documents.

Context

Historical Documentary Record

The establishment of a lazaret on Peel Island was one component of a general policy by the Queensland colonial, and later State, government to exclude the undesirable elements of its society to offshore islands. Institutions were established on many islands, such as Peel Island, North Stradbroke Island, St Helena Island (in the south), Fitzroy Island and Palm Island (in the north) (Blake 1993; Goodall 1992; Pearn and Carter 1995). The same strategy was used by all other Australian State administrations, as other lazarets were established on islands around the Australian coastline during the same era. These included Little Bay in Sydney; Cossack, Derby and Bezout Island in Western Australia; and Channel Island, Mud Island and East Arm in the Northern Territory (Blake 1993:29; Davidson 1978). All these lazarets were designed to isolate the patients from the rest of society.

The segregation of Hansen’s Disease patients to islands was a common practice around the world. Island lazarets were established on D’Arcy Island, British Columbia (Johnston
1995), Robben Island, South Africa and the Aland Islands in the Baltic Sea (Richards 1977). The most famous lazaret in the world is located on a secluded peninsula at Kalaupapa on the north coast of the island of Moloka’i, Hawai’i. It opened in 1865 and Father Damien arrived in 1873 and oversaw the establishment of a treatment regime at the leprosarium. Robert Louis Stevenson visited Kalaupapa in 1889 and, in words that could relate to any lazaret, wrote:

They were strangers to each other, collected by common calamity, disfigured, mortally sick, banished without sin from home and friends. Few would understand the principle on which they were forfeited in all that makes life dear; many must have conceived their ostracism to be grounded in malevolent caprice; all come with sorrow at heart, many with despair and rage. In the chronicle of man there is perhaps no more melancholy landing than this (Stevenson 1973:53).

A series of lazarets were established on islands around the Queensland coast prior to the opening of the Peel Island Lazaret. These island lazarets were created as a government reaction to the increasing numbers of Torres Strait Islanders and South Sea Islanders with Hansen’s Disease. Almost all the earliest sufferers were of Chinese origin and were deported to China. Evans (1969:203-260; for a statistical analysis see Ree 1991) supplies a complete case-by-case discussion of the treatment of individual Hansen’s Disease patients in Queensland prior to the construction of lazarets at Dunwich and Friday Island.

In 1889 a leprosarium was established on Dayman Island, in the Torres Strait, to receive South Sea Islander and Chinese patients from North Queensland. This island was declared a lazaret in name only. It was mostly uninhabitable and no facilities were made available.
On 10 May 1889, seven men of Chinese origin were 'safely disposed of there' (Evans 1969:209) without provisions or equipment. They built shelters for themselves from grass and driftwood. By June 1892, when the Island was abandoned, 16 patients had been sent there; 13 had died of bronchial infections and two had suicided (Evans et al. 1993:306).

The Dayman Island Lazaret closed shortly after the Queensland introduced legislation establishing lazarets for Europeans at Dunwich, on North Stradbroke Island in Moreton Bay, and for everybody else at Friday Island in Torres Strait.

Queensland was one of only two Australian states to introduce legislation, the *Queensland Leprosy Act of 1892*, that dealt specifically with Hansen’s Disease. The other was the Northern Territory, in 1928 (Hargrave 1980; Saunders 1990:171). The other States dealt with Hansen’s Disease as an infectious disease under their existing Public Health Acts (Saunders 1990:170).

Construction of the Friday Island Lazaret commenced in December 1891 and was completed by May 1892. Prison labour from Thursday Island was used to level a site from the 'stony sloping ground' (Evans 1969:231). The government authorities gave little consideration to the conditions the Hansen’s Disease patients would be forced to endure. Buildings at Friday Island included three galvanised tin huts for coloured patients, a caretaker’s house and an incomplete kitchen. The entire lazaret was surrounded by a 'dismaying and ugly fence made from old railway iron rails, six feet in height, strung together with barbed wire' (Evans 1969:231).
The first patients arrived at the Friday Island Lazaret in June 1892, shortly afterwards followed by the survivor from Dayman Island. The Friday Island Lazaret had an extremely high death rate: '[b]y January 1894, at least twelve had entered the enclosure, and five remained alive. This trend continued, for in October 1902 there were 17 inmates: seven had been admitted, and eight had died since the previous report' (Evans 1969:232-233). The Lazaret closed in June 1907.

On 25 November 1892, a lazaret was established at Adam’s Beach on North Stradbroke Island (Queensland Government Gazette 1892:1010). The Lazaret was located approximately one mile southeast of the Dunwich Jetty. Continuing the policy of housing undesirable elements of society on islands, Dunwich was also home to other government institutions including the Dunwich Benevolent Asylum, the Dunwich Inebriates Asylum and a Quarantine Station.

The Stradbroke Island Lazaret, as it became known, was originally established to house one patient, a young white man (JQ). During the 1880s, and therefore prior to the establishment of the Lazaret, a number of other Hansen’s Disease patients had been housed in tents at the Dunwich Benevolent Asylum. JQ arrived at Dunwich on 18 February 1892, some nine months before the proclamation of the Lazaret. He was brought to the Lazaret towed in a small open boat behind the Government steamer, the ‘Otter’ (Prangnell 1994). He was only the first of many to suffer this humiliation.

1 I do not identify patients by name. Some families still feel the stigma of Hansen’s Disease and Peel Island (see Courier Mail 18 Jan 1999). I use initials to identify each patient. An exception is made of June Berthelson who has published an autobiography specifically dealing with her life as a patient on Peel Island. Researchers requiring specific patient information may contact me direct.
JQ was a native born Australian of European descent who had lived his entire life in the Rockhampton area. He was 22 years of age on admission and had shown signs of the disease for two and a half years.

Towards the end of the life of the Stradbroke Island Lazaret, a number of coloured patients were housed in tents, in anticipation of the development of a multi-racial lazaret. In June 1905 there were 12 patients in the institution, two were South Sea Islanders and at least one was Aboriginal (Prangnell 1994). In January 1906, eight coloured men were admitted and by March 1906 there were 14 coloured patients at the Lazaret.

Inconsistencies exist in most things public bureaucracies control and the same can be said of admission policies to the Stradbroke Island Lazaret. Late in 1904 patient TM, an Aboriginal man from the Myora Aboriginal Mission (on North Stradbroke Island), was diagnosed with Hansen’s Disease. In all probability the diagnosis was made by the Medical Superintendent at Dunwich as he was the only medical person on the Island (Dr J Goodall, Department of History, University of Queensland, pers. comm. 1994). The man was sent to Friday Island in the Torres Strait even though there was a lazaret less than 10 kilometres from his home that had an Aboriginal woman as a patient. Two years later the man was admitted to the Peel Island Lazaret (Prangnell 1994).

Over the 15 years Stradbroke Island Lazaret was in operation approximately 70 patients were admitted. Of these, the youngest was nine years old and the oldest was 78. Only three patients were discharged and there are 35 recorded deaths. The deaths are recorded
in the Dunwich Funeral Register but unlike all other classes of inmates of Dunwich institutions no grave numbers are recorded. The shortest time span between admission and death was four days, the longest was eight years and six months. JQ himself died in 1899 (Prangnell 1994).

Documentary Record

As a result of the growing number of reported cases of Hansen’s Disease, especially among Europeans, the Queensland Government passed the *Queensland Leprosy Act of 1892*. Section 5 of the Act states:

> The Minister shall, upon report being made to him that any person is suffering from leprosy, cause investigations to be made by one or more medical practitioners, and upon being satisfied that the person is suffering from the disease, may, by order under his hand, direct that he be removed to and detained in a lazaret.

> If any person so ordered to be removed and detained willfully refuses to obey the order, or escapes or attempts to escape from a lazaret, or from the custody of the person charged with his removal, he may with such necessary force as the case may require, be removed and brought to, or retaken and brought back to, the lazaret.

It is clear from the earliest legislation that it was the intention of the government that sufferers of Hansen’s Disease were to be isolated, ostracised and treated in the same manner as criminals.
The first person to be diagnosed as suffering from Hansen's Disease in Queensland was a Chinese man, OT, who was recorded at the Brisbane Hospital in 1855 as suffering from 'anaesthetic leprosy' (Cook 1927:74).² Bancroft (1892:427) records the first European with Hansen's Disease as being a wardsman at Brisbane Hospital in 1868. In addition, a large amount of indentured South Sea Islander labour was brought to Queensland towards the end of the 19th century. Some of these labourers suffered from 'Islanders' Toe-Disease' which Cook (1927:740) claimed must 'from its description have been a manifestation of "neural leprosy"' (also Bancroft 1892:427; but see Evans et al. 1993:219). The first diagnosis of an Aboriginal person in Queensland with Hansen's Disease was made in 1892.

Section 3 of the *Queensland Leprosy Act of 1892* allowed the Governor-in-Council to proclaim any place as a lazaret for the reception of Hansen's Disease patients. In practice any place that housed a Hansen's Disease patient became a temporary lazaret (QSA/WOR Leper Lazaretto Peel Island Batch: 4562 of 1907).

From 1905 onwards a new location for a multi-racial lazaret was sought near Brisbane. The rationale behind the lazaret becoming officially multi-racial and for its location near Brisbane was purely financial. In determining the strategy, the Department of Health examined the difference in the cost of fresh meat, canned meat and bread delivered at Brisbane and the Torres Strait. Even with the cost of transporting 35 patients from Friday

² Powell (1983:261) was obviously in error when he stated that in 1866 'only Victoria reports any definite incidence of the disease ... in the other Australian colonies the disease has never been reported'. It may be that the disease was not recognised as Hansen’s Disease for some years after the first cases occurred.
Island to Moreton Bay and the cost of constructing new facilities, it was deemed cheaper than building a separate structure for whites and maintaining a lazaret in the north (QSA WOR/Leper Lazaretto Peel Island Batch: 1906).

Places considered for the new lazaret included Mud Island (in Moreton Bay), Amity Point (on North Stradbroke Island), Capemba (the hill behind Amity and the site of the Myora Aboriginal Mission) and the southwestern portion of Peel Island (in Moreton Bay). The proposal for Mud Island collapsed when Mr Ryder (Under Secretary of the Home Department), Dr Ham (Commissioner of Public Health) and Mr Pye (of the Department of Public Works) inspected the Island to assess its suitability and were forced to walk through half a mile of mangrove mud and swamp to reach the high ground (QSA WOR/Leper Lazaretto Peel Island Batch: 4748 of 1906; 4941 of 1906). All three gave very unflattering reports of the experience!

The proposal to build a lazaret at Amity Point was taken much more seriously and plans were drawn up for the layout of the lazaret and the construction of the buildings. It was planned to spend £1632 on building huts for eight white inmates and £230 for the removal and re-erection of humpies for 49 coloured inmates (QSA WOR/Leper Lazaretto Peel Island Batch: 4941 of 1906). The racism is self-evident.

In the end the decision was taken to construct the new lazaret on the northwestern corner of Peel Island. This decision did not meet with universal approval. The Cleveland community (the closest mainland township) roundly objected to the proposal, with
petitions being sent to Parliament. The white Hansen’s Disease patients at Stradbroke were opposed to the move and wrote to the Home Secretary that:

We the undersigned inmates of the Lazarette [sic], having heard that it is the intention of the Government to shift us to some other place, respectfully beg to be allowed to remain here. We consider this place to be fairly healthy, with a fine view, and we have made a kind of a home of it. The only drawback is the presence of so many Black Lepers camped in front and near our Verandah, so, if these Blacks were removed, we would be more reconciled to our unfortunate fate (QSA WOR/Leper Lazaretto Peel Island Batch: 3932 of 1906).

The same racist attitudes existed amongst the white patients as amongst the Government and the public in general. This letter forced a response from James Stockwell (Medical Superintendent of Dunwich):

I would respectfully draw attention to the fact that the inmates at present in the institution are strongly objecting to being located in tents at Peel Island. They desire to have new buildings erected for them. This idea has no doubt sprung up amongst them owing to their receiving almost everything they ask for or can desire, forgetting their condition previous to coming here. I therefore advise that the proposed changes which are intended solely for their greater comfort and happiness be carried out notwithstanding their dissatisfaction’ (QSA WOR/Leper Lazaretto Peel Island Batch: 1906).

The Stradbroke Island Lazaret closed in 1907 with the opening of the new multi-racial Lazaret on Peel Island. All remaining patients were transferred to the new lazaret.

Thirty-one patients came from Friday Island in a special wooden house built on the deck of the Otter (QSA WOR/Leper Lazaretto Peel Island Batch: 2230 of 1907). Seven were collected from Leper Bay at Cairns, two from Halifax and one from Cooktown on the Otter’s journey south (QSA WOR/Leper Lazaretto Peel Island Batch: 4562 of 1907).
When the Peel Island Lazaret was established there was no known treatment for Hansen’s Disease. The drug Guaiacol was used from the start and early experiments with a drug called Nastin led to a patients’ revolt and claims by patients of deaths at the Lazaret (QSA COL/322). The official inquiry concluded that Dr Row (the Medical Superintendent) was suitably qualified and experienced and that ‘professional treatment is of the best description’ (QSA COL/322: 675 of 1910). Chalmoogra Oil was the major medication used at the Lazaret, although its full-scale use did not begin until 1910 when a refined version known as Anti-Leprol became available (QSA COL/322: 9969 of 1912). It was used in conjunction with Guaiacol and could be either injected or taken orally. Sulphone drugs were introduced in the late 1940s (QSA TR1255 Box 1293). Promin was introduced in January 1947 and Dapsone in October 1947. Once drugs that dealt effectively with the disease became available the status of the Lazaret changed from a place that housed incurables to a hospital for treatment. This is reflected in the change of the name of the institution in the early 1950s to the ‘Moreton Bay Hospital’ (QSA TR1255: 1953).

In 1949 Dr Fryberg, the Queensland Director General of Health, visited the United States of America and on his return submitted a report to the Queensland Cabinet on the control of Hansen’s Disease (QSA A29448: 1953). In this report Dr Fryberg recommended that the Lazaret be moved to the mainland and Cabinet approved the concept. Consequently, throughout the 1950s the Health Department attempted to identify a new location for the Lazaret. A site was found at Burpengary, on Brisbane’s northside. Prefabricated buildings were purchased in preparation for the new lazaret; however:
During the intervening time between the decision to proceed with the transfer, and the arrival of the Pre-fabricated Buildings in Brisbane from Overseas, what might perhaps be described as a spectacular change has taken place regarding the patients in the Hansen's Disease Hospital at Peel Island (QSA A29448: 1953).

The spectacular change was the greatly increased rate of discharges from the Lazaret. Between 1949 and 1953 patient numbers fell from 50 to 23, with a reduction of 20 in 1952-1953 alone (QSA A29448). The Lazaret closed on 5 August 1959. The remaining 10 patients were transferred to the Princess Alexandra Hospital in central Brisbane.

The hospital staff left the Island on 21 September 1959 (QSA WOR/Leper Lazaretto Peel Island Batch: 2084 of 1959). Following the removal of the patients, the staff 'decontaminated' buildings (QSA WOR/Leper Lazaretto Peel Island Batch: 1959:877). They incinerated all floor coverings, mats, curtains and any bedding not removed with the inmates (just as the coloured patients had done in 1940, most patients took their bedding with them) (QSA WOR/Leper Lazaretto Peel Island Batch: 1959:877). All the buildings that had been occupied or used by patients were 'fumigated with formaldehyde gas and gammexane vapour' (QSA WOR/Leper Lazaretto Peel Island Batch: 1959:877). This decontamination process was undertaken following a Queensland Government Cabinet decision that 'consideration be given from a public relations point of view to any decontamination action' (QSA WOR/Leper Lazaretto Peel Island Batch: 2084 of 1959).

By October 1959 a caretaker (Mr J Cowell) was appointed to live at the Lazaret site and was charged with undertaking daily inspections of all buildings and landing points on the
Island to ensure the security of government property (QSA WOR/Leper Lazaretto Peel Island Batch: 1959: 882). The cost of providing this caretaking service was estimated at £100 per month and although in October 1959 it was seen to be an unproductive use of government finances (QSA WOR/Leper Lazaretto Peel Island Batch: 1959:870) caretakers remained at the Lazaret until management of the Island was handed over to the Queensland National Parks and Wildlife Service in 1993.

Content

As described in Chapter 2 the content of paternalism relates to the material and ideational aspects of the paternalistic relationship. The subsections of content are provision (of materials), protection (of individuals) and control (of behaviour) (see Figure 3). Each of these aspects of content are considered separately.

Provision

A major component of any paternalistic system is the responsibility borne by the paternalists to supply the material requirements for the inmates housed within the system.

Historical Documentary Record

Government officials and hospital staff anticipated and catered for all material aspects of patients’ lives. Patients were housed in huts in three separate compounds – white male patients, white female patients and coloured patients (Figure 2). Initially the white patients were accommodated individually in small, single-roomed, timber buildings whilst the
coloured patients were housed in rudimentary structures of bush-timber clad with ti-tree bark. Other buildings erected during this initial phase included bath houses, kitchens and dining rooms, all for white patients, and staff accommodation. In 1908 the coloured patients erected an Anglican church near their compound (Blake 1993).

At the opening of the Lazaret in 1907 the white female patients’ compound contained five huts, a kitchen and a bathhouse. The white male patients’ compound contained five huts available for mild cases of the disease, four huts available for ‘advanced cases’ of the disease, a kitchen and dining room and two bath houses. The coloured patients’ compound contained 16 huts available for coloured males and females. There was also a Superintendent’s (or Caretaker’s) quarters, nurses’ quarters and an attendants’ quarters. The Caretaker’s residence came from the Stradbroke Island Lazaret and was dismantled, transported and re-erected on Peel Island (Blake 1993:5-7).

The Government catered for the clothing needs of the patients by supplying them with clothing orders. By the 1950s the Health Department made available £17 twice a year as a clothing allowance and £40 for a discharge outfit (Berthelson and Ross 1996:31).

For recreation the white male patients were supplied with fishing boats that they could use in the Lazaret gutter (a narrow and shallow channel in the Bay) located immediately north of the Island. The patients constructed a jetty exclusively for their own use and built a boat shed in the mangroves (Blake 1993:18). The Australian Red Cross visited regularly and each patient was allowed 15 shillings worth of handicraft materials such as beads,
leather and cane (Berthelson and Ross 1996:31-32). Occasionally concert parties and
Salvation Army bands visited the Lazaret. Movies were shown in the recreation hall once
a week (Berthelson and Ross 1996:34). Gardening was a popular activity as was listening
to the radio (Blake 1993:19). The Works Department supplied radio sets and the required
batteries and in the mid-1920s radio aerials were the major element of the Lazaret skyline
(Blake 1993:34).

Some male patients also kept domesticated animals such as poultry and goats. According
to Berthelson and Ross (1996:23) the Health Department supplied all the equipment and
provisions for the patients to keep the animals and then they bought the eggs, poultry and
goat meat off the patients for use in the Lazaret kitchen. Berthelson and Ross (1993:23)
also claim that dressed poultry and goat meat was secretly sold by the patients to the
storekeepers of nearby Cleveland. This, however, was not witnessed first hand and ‘when
I arrived [1956] there were no animals in the settlement anymore’ (Berthelson and Ross
1993:23).

Documentary Record

The Government, through the Health Department and the Works Department,
provided the patients at the Peel Island Lazaret with all the material things that were
considered necessary for their wellbeing. The main areas in which material items were
provided were food, clothing and housing.
Food

According to the Dunwich Benevolent Asylum storekeeper (QSA COL/322:827 of 1908) the rations supplied to white inmates at the Lazaret on Peel Island in 1907 were:

<table>
<thead>
<tr>
<th>Daily</th>
<th>Weekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat 24 oz</td>
<td>Rice 1 lb</td>
</tr>
<tr>
<td>Vegetables 16 oz</td>
<td>Butter ½ lb</td>
</tr>
<tr>
<td>Bread 16 oz</td>
<td>Jam 1 lb</td>
</tr>
<tr>
<td>Oatmeal 20 oz</td>
<td>Cheese ½ lb</td>
</tr>
<tr>
<td>Milk ½ pint</td>
<td>Sugar 2 lb</td>
</tr>
<tr>
<td>Beer 1 pint, or</td>
<td>Tobacco 4 oz</td>
</tr>
<tr>
<td>Spirits 2 oz</td>
<td>Sago 2 oz</td>
</tr>
<tr>
<td></td>
<td>Tapioca 2 oz</td>
</tr>
</tbody>
</table>

Fruit was supplied two or three times a week and eggs were issued when available from the hens kept by the patients. Coloured inmates received no alcohol and less meat than the white inmates but more bread and their cheese ration was replaced with treacle (QSA COL/322: 827 of 1908). The milk came from the dairy herd kept on the Island (QSA COL/322: 3449 of 1908). It was estimated that the cost of these rations amounted to 10 shillings per patient per week.

In 1930 the meat supply averaged 103 lbs per day among 60 patients and 10 staff. After the removal of inedible parts this resulted in one pound of meat per person per day (QSA A31756: 8760 of 1930). Christmas and New Year parties were funded by the Health Department (QSA A31759). Extra food and alcohol supplies were brought in for these events.
After the coloured patients were moved from the Lazaret in 1940 the white patients were permitted to keep livestock. Animals kept included turkeys (QSA TR1255 Box 1096: 5067 of 1946), roosters (QSA TR1255 Box 676: 1947), ducks (QSA TR1255 Box 676: 1947) and goats. At one stage when meat supplies were low in 1946 Lazaret officials bought four turkeys from a patient to feed the patients (QSA TR1255 Box 1096: 5067 of 1946).

Clothing

Patients were supplied with clothing on a yearly basis. For example in 1907 the issue to female patient RD and male patients PS (QSA COL/322:827 of 1908) was:

<table>
<thead>
<tr>
<th>Female Patient RD</th>
<th>Male Patient PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 pairs of boots</td>
<td>1 pair of boots</td>
</tr>
<tr>
<td>2 dresses</td>
<td>2 twill shirts</td>
</tr>
<tr>
<td>10 pairs of hose</td>
<td>4 pair of hose</td>
</tr>
<tr>
<td>2 hats</td>
<td>1 hat</td>
</tr>
<tr>
<td>3 corsets</td>
<td>2 flannel drawers</td>
</tr>
<tr>
<td>3 flannels</td>
<td>6 handkerchiefs</td>
</tr>
<tr>
<td>6 aprons</td>
<td>1 coat</td>
</tr>
<tr>
<td>6 combinations</td>
<td>1 vest</td>
</tr>
<tr>
<td>3 toilet covers</td>
<td>1 pair of braces</td>
</tr>
<tr>
<td>6 towels</td>
<td>2 pairs of trousers</td>
</tr>
<tr>
<td>1 mattress</td>
<td>2 towels</td>
</tr>
<tr>
<td>2 blankets</td>
<td>1 bed</td>
</tr>
<tr>
<td>1 pillow</td>
<td>2 blankets</td>
</tr>
<tr>
<td>2 sheets</td>
<td>3 pillows</td>
</tr>
<tr>
<td>4 pillow slips</td>
<td>4 sheets</td>
</tr>
<tr>
<td>1 rug</td>
<td>6 singlets</td>
</tr>
<tr>
<td>1 mosquito net</td>
<td>1 mosquito net</td>
</tr>
</tbody>
</table>

Other items available to women were hairbrushes, shawls, sunshades, gloves, jackets, petticoats, chemises, drawers, slippers and blouses. Other items available to men
were belts, toothbrushes, overcoats (PS had previously been issued with an overcoat at the Stradbroke Island Lazaret in 1904), nightcaps, flannel shirts, slippers, pillowslips, pyjama suits, gloves, caps, tobacco pouches, hairbrushes and toilet covers (QSA COL/322:827 of 1908).

Later the inmates’ clothing issue was ordered through the Government Stores but was supplied by leading Brisbane retailers, such as McDonnell and East (QSA TR1255 Box 676: 1949) and Pike Brothers (QSA TR1255 Box 1295: 1953). By the 1950s clothes supplied included pyjamas, underwear, trousers, shorts, jumpers, sleeveless pullovers, shirts, ties, beaver hats, swim trunks, sand shoes and bowling shoes (QSA TR1255 Box 676: 1949).

Upon discharge patients were supplied with new clothes and pocket money. In 1925, £5 was supplied to discharged inmates (QSA TR1255 Box 1293: 1925). Typical of the discharge clothing provided late in the Lazaret’s history were one pair of golf shoes, one pair socks, one pair of eliminator briefs, one tie, one felt hat, one athletic singlet, one sports shirt with attached collar, one pair worsted trousers, one pair elastic bracers, one handkerchief and one worsted sports coat ‘not gaudy and definitely not tweed’ (QSA TR1255 Box 676). By 1953 it was typical for up to £40 to be approved for expenditure on discharge clothing (QSA TR1255 Box 1293: 1953).
Accommodation

The patients lived in three separate compounds, each consisting of a number of huts. The huts in the two white patient compounds were constructed at a cost of \(£55 \) each and were made of weatherboard and fibro on wooden stumps.\(^3\) Each hut had a roof ventilator. The original plans show that the huts for the white female patients were designed to be 10' x 12' x 10' high, whereas those for the white male patients were designed to be 10' x 8' and 10' high. A paper war was fought between Dr Ham, who thought 800 cubic feet was sufficient for men, and Dr Stockwell (Medical Superintendent, Dunwich) who thought that the huts should be at least 10' x 10' x 10' (QSA WOR/Leper Lazaretto Peel Island Batch: 7456 of 1906; 13719 of 1906; 403 of 1907). As it turned out all huts were initially built to the same dimensions of 10' x 12'.

In 1908 awnings were erected on the front of all existing huts in the white sections and from that time on verandahs were incorporated into the design of the huts (Figure 4). From the start patients individualised their huts by altering the awnings and enclosing them to form verandahs. A report of 1908 decried these changes as 'destroying the uniformity' of the Lazaret (QSA COL/322 1329 of 1908). By 1911, six more huts had been erected in the white male patients' compound and two more in the white female patients' compound.

A hut was typically constructed of the following elements:

1. Wooden stumps measuring 10'' diameter, and treated with arsenic, crude castor oil

\(^3\) Fibro is asbestos cement sheeting used to clad walls and roofs.
and coal tar. These were sunk 2’ into the ground. Each stump was capped with a 24-gauge galvanised iron stump cap that projected three inches from the stump. Anchor straps were used to anchor corner stumps;

2. Joists were made of 3” x 2” hardwood in single lengths spaced at 18” intervals and securely nailed;

3. Wall frames were from hardwood. External walls were sheeted with 7” x 1” x 1/4” sawn hardwood weatherboards. Number nine gauge wire nails were used. Interior walls were sheeted below sill height with 4” x 1” tongue and groove hardwood. Above sill height they were clad in 3/16” inch fibro [asbestos sheeting] secured with asbestos cement nails;

4. The roof was constructed of hardwood rafters and joists and covered by standard grey corrugated fibro sheets laid with a 3” overlap. Each sheet was secured with galvanised screws with galvanised iron and bituminous felt washers. The ceiling vent made an 18” x 18” hole through the apex of the roof. The ceiling was made of 3/16” asbestos cement sheeting. All eaves were filled in with 1 1/2” galvanised wire netting to prevent the entry of birds. The guttering consisted of 4” half round flat backed 24 gauge galvanised iron gutters and 3” diameter 24-gauge galvanised downpipes that discharged at ground level. All flashing was with five pound lead;

5. The inside flooring consisted of 4” x 1” tongue and groove hardwood. The verandah floor was covered by 4” x 1” first quality wrot and shot edge hardwood;

6. The steps were constructed of first quality hardwood with 6” rises between treads and were supported on 10” diameter stumps sunk 18” into the ground;

7. The frenchlights (doors) were 7’ tall by 3’ 6” wide framed out of one and three quarter
inch pine in two leaves. A fanlight was positioned above the frenchlights. It was framed of one and a half inch pine and was rebated for glass. The sash window was 6' x 3'. All glass in the frenchlights, fanlight and window consisted of 21 oz first quality sheet glass; and

8. All surfaces were covered in two or three coats of paint (QSA WOR/Leper Lazaretto Peel Island Batch: 1502 of 1945).

The coloured patients' huts were constructed at a cost of £3 each by Aboriginal labour from Myora Mission on North Stradbroke Island (QSA WOR/Leper Lazaretto Peel Island Batch: 3058 of 1907). Each hut was made of a timber frame cut from the trees on Peel Island, lined with rough-hewn slabs and roofed with ti-tree bark and had bare earth floors (Figure 5). These huts measured 10' x 12' and were designed to house two patients each. The Lazaret opened with 16 humpies to house 49 coloured patients. Tents were used to house the overflow (21 patients). A visiting magistrate in 1910 considered these arrangements to be adequate (QSA COL/322: 675 of 1910).

In 1908 three huts identical to those provided for coloured males were erected for coloured female patients in the coloured patients' compound. In 1909 the coloured patients' huts were 'upgraded' by recladding them in corrugated iron (QSA WOR/Leper Lazaretto Peel Island Batch: 8864 of 1909). In 1910 the floors were also concreted using shell from the large Aboriginal middens near the Lazaret (see Chapter 4). A dining room was erected in 1910. For the three years prior to this the coloured patients had eaten their meals on the bare ground under a tent fly. A moving account of the conditions under
Amended plan of additional huts.

Note: No two huts to be erected at this drawing & to be placed on the site where directed.

Figure 4. White Male Patients' Hut (QSA WOR/Leper Lazaretto Peel Island Batch)
which the coloured patients endured is provided in a letter signed by 30 patients in April
1909. I have reproduced it in full (with no corrections) so that the power of the Insiders’
Documentary Record can be appreciated:

From Coloured Patients
Lazarette
Peel Island

Dear Sir

April 27th 1909

We have long been waiting on the Government to provide us
with decent houses & it is a shame that we have been kept so long in
waiting, the winter season is begun & we are left unprepared to meet
the winter how are we to live, we shall most of us perish with cold for
the want of a warm & comfortable place to sleep in we remember one
of our friends who died about five or six days ago it was a shameful
sight to see but we must all try & make the best of it, we cannot help it,
it seems that very likely we must be likewise layed out on hard straw mattresses & pillows without a decent house to be put into & after that we call on the Government again for to provide better houses & soft mattresses & pillows for us poor sufferers why not serve us the same as a white man we have all been stationed on the Island as lepers & therefore we ought to be treated the same there are most of us which have sore all over our bodies & we ought to get these soft things to lay on all these things we ask for are necessary & we also want a place to eat very badly at the present time we are having our meals under a tents fly & it is no use to us, because when it comes over to rain we all have to stand up and eat our meals for everything gets wet & when there is a windy day our meals get all full of dust that we cannot eat it we cannot help it & we want a place to have our bath for we have been having our bath outside at night time we would like to have a bath in the day but we got no place to go into to bathe ourselves it is a shame & we have been out of water lately & we had to set to & carry our water for ourselves & those who were not able the distance where we had to carry our water from is about three hundred yards or more. I think it is time the Government ought to look towards us who need help & we also have to carry our own firewood while the whites have theirs drawn in for them the Government ought to sympathize with us & make us happy & not unhappy & since we have lived on this island we are dying away fast about fifteen have died already here and only one white, the reason why there has been as many deaths amongst us coloured patients it is because we are not looked after as well as the whites & as far as our bodies concerns they have all the comfort they are kept in warm houses away from cold & wind & rain & us poor sufferers who suffers the most cannot get what we ask for & when the whites write up for things for themselves & when they can get them, we dont blame them for it but we look upon ourselves when we ask for some thing which is necessary we cant get it but when the whites ask for any thing which is unnecessary they can get it quick. we hope dear Sir you will do your best for us & that there will be something done for us poor sufferers we have not given any trouble to our medical Superintendent or the Caretaker or any of the officials neither the Government. but we only trouble the Government for a better house & soft mattress & pillows & a place to dine in & a bath house & water & firewood.

please Sir do what you can for us, we send now this petition.

Trusting you dear Sir

We are your

Faithful Patients

Dear Sir before we sign our names to this petition we forgot to explain to you about about the houses, they leak to bad when it comes on to rain. some of us have to sleep in damp blankets & also some of us are
still sleeping in tents for the last two years & waiting for the houses
which was promised us, we hope you will do your best Sir. Signed by
all the coloured patients on the other side of this sheet of paper (QSA
WOR/Leper Lazaretto Peel Island Batch: 5025 of 1909).

In 1924 individual huts similar to those of the white female patients were erected for the
coloured female patients in the coloured patients’ compound. Also during the 1920s a
surgery, store and nurses’ quarters were constructed. Kitchenettes were added to the
white female huts as female patients were now expected to cook for themselves (QSA
WOR/Leper Lazaretto Peel Island Batch: 24147 of 1924).

By the time the Lazaret closed in 1959 it comprised a matron’s residence, a
superintendent’s residence, a doctor’s residence, nurses’ quarters, five male staff quarters
and huts, 41 huts for male patients, 17 huts for female patients, a Catholic church, an
Anglican church, a hospital and dispensary, a surgery, a recreation hall, post office and
store, kitchen, kitchen annexe, laundry, workshop, battery charging shed, poultry sheds,
stables, a powerhouse, two bath houses, water towers and earth closets (QSA
WOR/Leper Lazaretto Peel Island Batch: 1959:869). The perimeter of the Lazaret
contained extensive dumps, an incinerator, a pump house and the cemetery. Equipment in
the buildings included stoves, bath heaters, baths, wash basins, wash tubs, stainless steel
and fireclay sinks with cupboards, steel framed beds, wooden framed wire mattresses and
many pieces of wooden furniture (QSA WOR/Leper Lazaretto Peel Island Batch:
1959:869, 885).
Other Materials

As well as food, clothing and buildings the government supplied laundry facilities (QSA A31759: 1946) tobacco and beer (QSA A31756: 339 of 1927), soft drink and cordial (QSA A31758: 1945), a tennis court, fishing boats and equipment (QSA TR1255 Box 1295: 1954), garden implements (QSA TR1255 Box 1295: 1950), fencing to fence gardens (QSA TR1255 Box 1295: 1953), art materials and brushes (QSA A31758: 1945), patent medicines such as dugong oil and yeast tablets (QSA TR1255 Box 676: 1945), lawn mowers (QSA TR1255 Box 1293: 1949), spectacles (QSA TR1255 Box 1293: 1951), false teeth (QSA TR1255 Box 1293: 1948), wireless radios and batteries (QSA TR1255 Box 1293: 1952), musical instruments (QSA TR1255 Box 1293: 1920) and clocks (QSA TR1255 Box 1293: 1948).

The Dunwich Benevolent Asylum launch, the *Karboora*, made daily trips from Dunwich to Peel Island to convey provisions. Lazaret visitors arriving at Dunwich on the *Otter* would also be conveyed to Peel on the *Karboora* (Department of Health and Home Affairs, 1939:34). Stores from State Stores arrived on the Island on Tuesdays. Stores were issued to the white patients’ compounds on Wednesdays and to the coloured patients’ compound on Thursdays. Mail arrived every alternate Saturday (QSA A31756).

The store was built in the 1920s. It was located next to the Superintendent’s residence (QSA WOR/Leper Lazaretto Peel Island Batch: 3223). Inmates were issued with coupons that could be exchanged at the store for extra provisions such as tea, sugar and batteries (QSA COL/322: 3449 of 1908). There was no cash economy on
the Island. Patients lined up outside the store to receive their rations. They were not allowed to enter the building.

Many patients made requests for materials to be supplied that were denied. Examples of denied materials include kapok mattresses (QSA TR1255 Box 1294: 1950), septic system for a residential hut (QSA TR1255 Box 1295: 1952), overnight accommodation for visitors (QSA A31759), sunglasses (QSA TR1255 Box 767: 1943), and the payment of life insurance premiums (QSA TR1255 Box 767: 1946). The official reason given for the non-supply of any particularly requested item was that similar requests would then be received from many more patients and ‘they would be difficult to refuse’ (QSA TR1255 Box 1294: 1950).

Protection

Protection refers to the paternalists’ role as guardians of the moral character of their charges. This was most often expressed in controls over sexual conduct, religion and alcohol.

Historical Documentary Record

There is very little information in the Historical Documentary Record that relates to protection. One event recorded by Berthelson and Ross (1996:47) is illustrative:

We were both laughing so hard by then that we did not hear the footsteps on Bill’s verandah. Matron’s immense frame filled the doorway. I paled when I saw her. How much had she heard?

‘How dare you visit male patients in their houses’ she thundered at me. I muttered a good-bye to Bill. As I was leaving, Matron came
with me. 'You're a stupid girl to go to the men's huts. You'll get raped' she said.

Raped? By Bill! Or any of the other men! The idea was absurd. But I did not dare to laugh.

The concept of the licentiousness of Hansen's Disease patients (see Chapter 1) had not diminished by the 1950s (even amongst health workers)!

Documentary Record

The Health Department officials and the staff running the Lazaret charged themselves with providing for the moral protection of the inmates. Large fences were constructed around each compound. In October 1908 the white female patients' compound was fully fenced (QSA WOR/Leper Lazaretto Peel Island Batch: 7360 of 1908). A 1910 report by the Chief Quarantine Officer, Elkington, reported that the proximity of the male and female inmates was unsatisfactory 'from the standpoint of discipline and from that of morality' (QSA COL/322: 675 of 1910). Concern was expressed about the demoralising influence the male patients could hold over the younger women. In 1908 police were called to the Lazaret because the caretaker felt that his life was threatened; he had attempted to enforce Health Department policy and keep the white male and female patients apart. The police were stationed in a tent in the caretaker's yard and carried out patrols around the compounds to ensure that patients did not leave their huts (QSA COL/322: 3572 of 1908). The police left after the Minister for Health agreed to look into the patients' complaints.
In the early years the Health Department felt that the isolation of the place was jeopardised by visits from interested politicians, clergy and journalists. Purportedly to protect the inmates from these prying eyes, strict limits were placed on these official visits (QSA COL/322: 675 of 1910).

The government officials also felt a responsibility to protect the people that worked on the Island. Consequently in 1910 fences were constructed in the white male compound so that the cooks could work without ever coming into contact with the patients (QSA WOR/Leper Lazaretto Peel Island Batch: 583 of 1910). In 1913 notices were placed on the main beach of the Island (Horseshoe Bay) to protect the public from coming into contact with Lazaret patients using the beach (QSA WOR/Leper Lazaretto Peel Island Batch: 10400 of 1913).

To protect the religious character of the patients two churches were built at the Lazaret. In 1908 a Church of England church was built by the coloured patients just to the north of their compound. The idea for the church was suggested to Dr Row, Medical superintendent, by Archdeacon Le Fanu who stated that many of the patients from Friday Island were 'earnest Christians' (QSA WOR/Leper Lazaretto Peel Island Batch: 5109 of 1907). The church was built by the patients and was constructed from secondhand material salvaged from condemned wards at the Benevolent Asylum (QSA WOR/Leper Lazaretto Peel Island Batch: 372 of 1910). The church came to be known as the Church of the Good Samaritan (QSA WOR/Leper Lazaretto Peel Island Batch: 499 of 1963). Clergy held regular services in the church and the Archbishop held a Confirmation
Service there in 1923 (Diocese of Brisbane 1923). A hut in the white male compound was used as a Catholic church during the 1950s. Father Gabriel Nolan visited once a month to conduct mass and hear confession (Ludlow 1995a).

Control

The Lazaret was established and run with the express purposes of isolation and control. It was organised strictly in accordance with a principle of isolation and segregation. Patients were isolated from the community by being moved to Peel Island. Once at the Lazaret patients were separated by colour and gender. There are a number of subcategories of control (see Figure 3). Each of these aspects is dealt with in turn.

Spatialisation

Although Goffman’s (1961) definitions concentrated on the lives of the inmates of an institution, and a number of the histories of Peel Island are from the patients’ viewpoints, I record the arrangement of both staff and patient space at the Lazaret. It is impossible to construct the story of the use of social space at the Lazaret without understanding the way each of the groups used or were permitted to use the space.

Historical Documentary Record

Clearly, space at the Lazaret was divided into patient space and staff space. Patient space was divided into white male patient space, white female patient space and coloured patient space (possibly further separated into male and female). Staff space was divided into Doctor’s space, Doctor’s family space, Superintendent’s space,
Matron’s space, nurses’ spaces and attendants’ space. The patients who were classified as inmate labour may have occupied an ambivalent or liminal position in terms of access to space.

All staff had access to all patient areas, though patients developed a number of mechanisms for maintaining partial autonomy of their individual hut space. For example, patient June Berthelson obtained a barrel bolt and locked her hut door from the inside (Berthelson and Ross 1996). Other patients treated the staff so rudely that they fled from the hut (Opala n.d.). Staff entered patients’ huts to undertake nursing activities, to deliver and remove food, to remove rubbish, to read to blind patients, to carry out inspections and remove illicit materials.

The Lazaret was further divided into domestic space, administrative space, treatment space and recreation space (Blake 1993). Domestic space was that part of the Lazaret used for sleeping, by both staff and patients. Male staff were housed in a number of buildings around the Lazaret. Patients also had access to specific areas within the treatment zones, such as the verandah of the surgery. White patients accessed the surgery via a ramp on the northern side of the building. Coloured patients accessed the surgery by stairs on the eastern side.

White patient space was organised by the principle of isolation (Blake 1993). Each patient was allotted one sleeping hut; the huts were located a specified distance apart within fenced compounds. This principle was adopted as a treatment modality: ‘On Peel Island the
individual huts and the compounds vividly demonstrate how the concept of strict segregation operated' (Blake 1993:30).

Documentary Record

The patients were housed in the three compounds (Figure 2). The caretaker's residence was placed in the centre of the Lazaret such that there was a 'good view of all the lepers quarters and surroundings' (QSA COL/322: 3572 of 1908). The white male patients were housed in a compound of individual huts located to the east of the caretaker's residence.

The compound was 324 feet long and 172 feet wide (QSA/Department of Administrative Services, Peel Island Lazaret Batch 1). It was planned to accommodate 18 huts in four rows in this area. When the Lazaret opened 10 had been completed. The huts were built 20 feet apart on both the north-south and east-west axes. Huts were located at the northern and southern end of the compound. The central area of the compound contained the kitchen and dining room complex. The whole compound was surrounded by a post and wire fence, 4 feet six inches high. A gate was positioned in the centre of the northern fence and there were two in the western fence, allowing access to the central grassed area (QSA WOR/Leper Lazaretto Peel Island Batch: 86-87).

The original plan for the male compound was to separate the mild cases and the advanced cases. The mild cases were to be located at the northern end of the compound and the advanced cases at the southern end of the compound (QSA WOR/Leper Lazaretto Peel Island Batch: 1906). The two sections were to be separated by a fence.
The female patient compound contained four patients’ huts in a single north-south oriented row, 20 feet apart. A bath house and a laundry were located at the northern end of the row. The compound was 216 feet long and 140 feet wide. It was surrounded by the same style of fence as the male compound.

The male and female compounds were located 242 feet apart. Sixty-six feet of this distance was the grassed area and the remaining 176 feet contained the staff buildings. Three staff residences were originally constructed: the caretaker’s residence, nurses’ hut and male attendants’ hut. Each of these buildings was located within its own fenced area. All three were located in the middle of the Lazaret between the two compounds. The cottages of the nurses and attendants were located to the north of the caretaker’s residence.

The coloured patients’ huts were built in two rows on a completely different orientation to the rest of the Lazaret (Figure 2). No plans for the original construction of this part of the Lazaret have been located in any archival source. This is probably due to the use of Aboriginal workers from North Stradbroke Island, using locally available materials, to construct the huts (QSA WOR/Leper Lazaretto Peel Island Batch 3058 of 1907). No architectural plans or Works Department material were used in their construction so this information is lacking from the archives. In fact the Government Architects Office estimate for the cost of constructing the Lazaret (£2978/12/0) includes no amount for the coloured compound at all (QSA WOR/Leper Lazaretto Peel Island Batch: 1906:89). In a 1908 memorandum (QSA WOR/Leper Lazaretto Peel Island Batch: 1908:202-203) from
Dr Linford Row (Medical Superintendent Benevolent Asylum) to the Deputy Government Architect, Dr Row appended a sketch plan of the coloured compound indicating that the compound contained 19 huts. Sixteen huts were arranged in two east-west rows located 45 feet apart. The huts within each row were 18 feet apart. The other three huts were located in a north-south row some 80 feet from the western end of the other two rows. These huts are 20 feet part. The compound does not appear to have been fenced.

Minute Control

Historical Documentary Record

Meals, medication, roll calls and visits (doctors, relatives, officials and pastors) all occurred according to the routine timetable and strictly enforced rules. Staff and inmates seldom mixed socially. An exception to this is the example of Dr Gabriel (the last Medical Officer at the Lazaret) watching westerns with the patients at the Lazaret picture theatre (Berthelson and Ross 1996). In fact, when there was friendship between one staff member and a patient, the staff member was sacked (Berthelson and Ross 1996).

Documentary Record

In 1910 the Lazaret was declared a Quarantine Area under the Commonwealth *Quarantine Act of 1908*. In Australia the States are responsible for health care delivery with the exception of quarantine and repatriation services. These are the responsibility of the Federal Government.
This declaration of a Quarantine Area had the effect of severe restriction of patient and visitor activities. Regulation 62 of the *Quarantine Act of 1908* pertained specifically to *Regulations Relating to Leper Lazarets Declared to be Quarantine Areas*. In part these regulations stated:

(2) No patient shall go beyond the bounds of the Lazaret without the consent of the Medical Officer, or visit any place forbidden by the Medical Officer.

(3) No person shall visit the Lazaret without the written permission of the Chief Quarantine Officer.

(4) No application for permission to visit the Lazaret shall be granted unless it is made in writing to the Chief Quarantine Officer at least seven days before the date of the proposed visit.

(5) No visitor shall remain at the Lazaret more than half-an-hour without special permission....

(6) Visitors on arrival shall wait in a place set apart for that purpose until the patient is brought to them by the Caretaker or Matron...

(7) No visitor shall kiss or embrace or allow himself or herself to be kissed or embraced by any patient.

(8) No visitor shall shake hands with any patient on whose hands there is any open sore or wound.

(9) No visitor or employee shall remove from the Lazaret, except after disinfection, and by the written permission of the Medical Officer, any article which has been in the possession of a patient.

(11) Visitors shall wash their hands in a disinfectant solution immediately before leaving the Lazaret...

(14) No mail matter of any kind bearing a stamp which has been in the possession of, or which has been placed thereon by a patient shall be sent or taken from the Lazaret.

(18) Articles taken in to use at the Lazaret shall not be issued therefrom to any other place. Damaged or disused articles shall, with the approval of the Medical Officer, be destroyed by the Caretaker.
Any visitor bringing to the Lazaret any articles such as clothing, provisions, fruit, &c. for any patient shall deliver them to the Caretaker, who will give a receipt for them, and advise the Medical Officer of the nature of the articles. The said articles shall await the directions of the Medical Officer, and, if he thinks fit, but in no other case, shall be delivered to the patient.

These regulations divide into those controlling the behaviour of patients, those controlling the behaviour of visitors and those supplying direction for staff behaviour. A number of strict regulations controlled the behaviour of both visitors and patients. Visitors to the Island were strictly controlled, particularly prior to World War II, both in terms of frequency and duration of the visit and with respect to behaviour. It was extremely difficult for visitors to get to the Lazaret. A permit system was used. Permits were issued by the Health Department in Brisbane. It was then a four hour ride on the government launch to Dunwich. Visitors then changed boats for the trip to Peel Island. Visits were limited to 30 minutes duration and no children were allowed to visit. It was then a four hour trip back to the mainland. This meant that it took nine to 10 hours to complete a 30 minute visit.

The mail that patients sent was subjected to a rigorous process of decontamination. The envelope was snipped at one corner and three or four drops of formalin were dropped into the envelope with an eye-dropper. The envelopes were then sprayed lightly with a fine hand spray containing a 1:20 solution of formalin. Then they were put into a bag which had been sprayed with a 1:10 solution of formalin and the bag was put into a closed box for eight hours in a warm place. The letters were then ready to be sent out from the Lazaret (QSA COL/322: 675 of 1910).
Repetitive Exercise

Historical Documentary Record

The repetitive exercise at the Peel Island Lazaret was a routine of boredom. The patients mostly spent their time alone and asleep (Berthelson and Ross 1996:34). At 7 am and at 4 pm the patients had to go to the hospital for a head count but between these hours their time was their own (Berthelson and Ross 1996:32). Most patients apparently took sleeping tablets to get through the boredom of the day (Berthelson and Ross 1996:34). Meal times were set each day and ‘lights-out’ was at 10.30pm. In the early years patients were not allowed to leave the confines of the Lazaret due to the proximity of the inebriates asylum on the other end of the Island. By the 1950s patients theoretically had the run of the Island, but leaving the confines of the Lazaret was frowned upon (Berthelson and Ross 1996:37) as it removed the patients from the surveillance of the staff. So the daily routine of the inmates’ lives at the Lazaret was minutely structured; behaviour became routine, repetitive and accessible to surveillance.

Documentary Record

The documentary record does not contain any detail on the repetitive exercise although the staff of the Lazaret were obviously aware of the tedium of the lives of the patients. In 1946 Dr Reye described it as ‘oppressive boredom’ (QSA TR1255 Box 767: 1946)
Detailed Hierarchies

Documentary Record

The Lazaret opened with two staff (QSA Blue Books 1907). David Brown was the caretaker and his wife, Matilda Brown, was the matron. There was a position for a cook but it had not been filled. In 1909 a position for a nurse was created but it was not filled (QSA Blue Books 1909). By 1912 the hierarchical structure that would remain in force until 1951 had been established (Figure 6).

![Diagram of Hierarchical Structure of Lazaret Staffing]

Figure 6. The Hierarchical Structure of the Lazaret Staffing

Admission, treatment and discharge at the Lazaret were the responsibility of the medical officers. The Medical Superintendent of the Dunwich Benevolent Asylum was also the Medical Superintendent for the Lazaret until 1944 when the Dunwich Benevolent Asylum closed. These Medical Superintendents were:
<table>
<thead>
<tr>
<th>Medical Superintendent</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Linford Row</td>
<td>1907-1912</td>
</tr>
<tr>
<td>Dr J Irwin Moore</td>
<td>1912-1914</td>
</tr>
<tr>
<td>Dr J E Thomson</td>
<td>1914-1919</td>
</tr>
<tr>
<td>Vacant</td>
<td>1919-1921</td>
</tr>
<tr>
<td>Dr C D H Rygate</td>
<td>1921-1922</td>
</tr>
<tr>
<td>Dr J Coffey</td>
<td>1922-1929</td>
</tr>
<tr>
<td>Vacant</td>
<td>1929-1931</td>
</tr>
<tr>
<td>Dr J Grahame Drew</td>
<td>1931-1938</td>
</tr>
<tr>
<td>Dr D W Johnson</td>
<td>1939-1944</td>
</tr>
</tbody>
</table>

The Lazaret did not receive its own medical officer until the Dunwich Benevolent Asylum closed in 1944. Until the appointment of Dr Eric J Reye, medical visits to the Island occurred weekly and there were periods when no medical treatment was available to the patients (e.g. 1919-1921). Dr Reye made weekly visits from August 1944 and then became a permanent appointment between Fantome Island and Peel Island by August 1946. This arrangement continued until December 30 1949. Dr V L B Lennon became the first full time medical officer on Peel Island when he commenced duty on 14 November 1949. Dr Lennon remained until 1951. The last medical officer, Dr Morgan H Gabriel was appointed in 1951 and remained until after the closure of the Lazaret in 1959. With the appointment of Dr Gabriel as Medical Superintendent in 1951 the position of Superintendent was abolished and Dr Gabriel had full authority over all staff and patients at the Lazaret.
In 1912 positions were created for a Superintendent, Assistant Superintendent, two male attendants, two cooks, a cooks’ assistant, a dresser, a housemaid, a kitchenmaid and a buggyman (QSA Blue Books 1912). Table 4 shows the staff positions, appointments and salaries at the Peel Island Lazaret in 1938 (QSA A31756: 1938).

Male attendants at the Lazaret worked a 55 hour week with four weeks on and one week off (QSA A31756: 9946 of 1940). During the week off duty staff left the Island. Table 5 shows the standard split shift roster worked by male attendants at the Peel Island Lazaret (QSA A31756: 11 October 1937).

Table 4. Lazaret Staff in 1938

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Salary</th>
<th>Free Quarters</th>
<th>Board and Lodging Deduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superintendent</td>
<td>Goldsworthy</td>
<td>£310 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Assistant Super</td>
<td>Carling</td>
<td>£250 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Nurse</td>
<td>Dwyer</td>
<td>£190 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Attendant</td>
<td>Quinn</td>
<td>£230 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Temporary Attendant</td>
<td>Byrnes</td>
<td>£211 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Labourer</td>
<td>Doherty</td>
<td>£211 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Temporary Labourer</td>
<td>Amos</td>
<td>£211 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Dresser</td>
<td>Bolton</td>
<td>£4.13.6 pw</td>
<td>£1.1.0 pw</td>
<td></td>
</tr>
<tr>
<td>Housekeeper</td>
<td>Rohl</td>
<td>£138 pa</td>
<td>£39 pa</td>
<td></td>
</tr>
<tr>
<td>Chief Cook</td>
<td>Vaughan</td>
<td>£5.18.0 pw</td>
<td>16/- pw</td>
<td></td>
</tr>
<tr>
<td>Cook</td>
<td>Hinton</td>
<td>£5.8.0 pw</td>
<td>16/- pw</td>
<td></td>
</tr>
<tr>
<td>Cook</td>
<td>Leeder</td>
<td>£5.8.0 pw</td>
<td>16/- pw</td>
<td></td>
</tr>
<tr>
<td>Kitchenman</td>
<td>Backwell</td>
<td>£4.18.0 pw</td>
<td>16/- pw</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Roster Worked by Male Attendants at the Peel Island Lazaret in 1937

<table>
<thead>
<tr>
<th></th>
<th>Breakfast</th>
<th>Dinner</th>
<th>Tea</th>
<th>Total hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>6.30 - 9.30</td>
<td>11.30 - 14.00</td>
<td>15.30 - 17.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Tuesday</td>
<td>6.30 - 10.00</td>
<td>11.30 - 14.00</td>
<td>15.30 - 17.30</td>
<td>8.00</td>
</tr>
<tr>
<td>Wednesday</td>
<td>6.30 - 10.00</td>
<td>11.30 - 14.00</td>
<td>15.30 - 17.30</td>
<td>8.00</td>
</tr>
<tr>
<td>Thursday</td>
<td>6.30 - 10.00</td>
<td>11.30 - 14.00</td>
<td>15.30 - 17.30</td>
<td>8.00</td>
</tr>
<tr>
<td>Friday</td>
<td>6.30 - 10.00</td>
<td>11.30 - 14.00</td>
<td>15.30 - 17.30</td>
<td>8.00</td>
</tr>
<tr>
<td>Saturday</td>
<td>6.30 - 9.30</td>
<td>11.30 - 14.00</td>
<td>15.30 - 17.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Sunday</td>
<td>6.30 - 10.00</td>
<td>11.30 - 14.00</td>
<td>15.30 - 17.30</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Although the relationship between staff and patients is often set up as a dichotomy (e.g. Berthelson and Ross 1996), some inmates also undertook paid employment at the Lazaret. Inmate staff were a recognised part of the running of Queensland institutions. At the Dunwich Benevolent Asylum menial and unpleasant tasks such as assistants in the woodyard, scrubbing gangs or messroom gangs were undertaken by inmate labour for a small remuneration paid monthly (Department of Health and Home Affairs, 1939:31).

In 1913 Peel Island Lazaret inmates were employed as woodcutters. However, the Superintendent did not feel the work was carried out satisfactorily and 'when an explanation was sought the excuse given was that they were suffering from a leprous reaction and were unable to work' (QSA A31756: 1460 of 1927). It was decided at that time to abolish inmate labour.

In 1927 an investigation of inmate labour and other staffing arrangements at the Lazaret was undertaken by two accountants: Mr Hanify (of the Department of Public Instruction)
and Mr Bradbury (of the Home Secretary's Department) (QSA A31756). The sole purpose of the investigation was to find ways to reduce the expenditure on labour at the Lazaret. They found that six inmates were employed in a number of menial activities at the Lazaret:

1. Laundryman (inmate washing) at £9 per month.
2. Assistant in Dispensary at £1 per week.
3. Grass cutter at 15/- per week
4. Attendant on sick at 10/- per week
5. Carpenter at £5 per month
6. Woodcutter at 30/- per week (for 2 weeks per month)

The Commissioner of Public Health justified these examples of inmate labour (QSA A31756: 1460 of 1927) stating:

Laundry man - this work had to be given to an inmate as no other person could be induced to take same; at one time this job was done by a Dunwich Benevolent Asylum inmate for £40 per year

Assistant in Dispensary - this is a misnomer, the position originated at the request of a former nurse who was unable to stand the vile effluvia from some of the coloured inmates' open sores, when an appointment was recommended amongst the coloured boys; they held the position for some time eventually giving it up. Later it was impossible to obtain a coloured boy and a white man took up the position but I am told now there are no such dressings required and the person referred to waits around the dispensary but I am assured he does not touch anything in the dispensary.

Grass cutter - inmate labour - no other person handles the scythe.

Attendant on sick blacks - this is a small appointment amongst the black boys as no white could be induced to wait on blacks.

Carpenter - for work amongst the lepers' huts, E.C.s etc.

Woodcutter - part time - as the two paid labourers were unable to keep up the work this man was sent into the bush to fell timber, as an experiment.
These were the unpleasant jobs that non-inmates could not be enticed to undertake. By 1938 inmate jobs included washing, grass cutting, hairdresser, mending for the coloured camp, coloured attendant, coloured sanitary man, coloured sick attendant and night attendant (QSA A31756: 1938).

The Lazaret had two gazetted positions for general labourers. The accountants estimated that by employing two inmates to replace the labourers employed at the Lazaret the Department of Health would save £259/10/- per annum and suggested mechanisms for the avoidance of problems with the Australian Workers Union over the employment of inmate labour in gazetted positions (QSA A31756).

Following the investigation into the staffing arrangements, two inmates (FG and JJ) were employed in the two labourer positions. By 1931 JJ had been replaced on the woodcutting gang by WK. Both men became disgruntled with the meagre wage of £2 per week and when they learnt that the gang would not be increased in size as they had requested they tendered their resignations (QSA A31756: 410 of 1931). The Secretary of the Department of Public Health responded by stating 'I suggest that outside labour ... should be given a trial ... which will ... demonstrate to disgruntled inmate workers that they cannot rule the Lazaret' (QSA A31756: 271 of 1931).

It is obvious that decision-making processes concerning the Lazaret were at best *ad hoc* and at worst designed to inflict injury on the patients. The Health Department bureaucracy appears to have been quick to see the inmates as the enemy of the Lazaret
administration. This previous example demonstrates quite an over-reaction to the situation of two patients saying they no longer wished to chop wood. Appropriately the Health Department’s Peel Island administration files are entitled ‘Lazaret Control’ (QSA A29448). It appears that at no time in the history of complaint at the Lazaret did decision makers ever consider that inmates had valid concerns. Inmates were seen as trouble-makers and a hard line was always taken.

Normalising Judgment

The staff of the Lazaret undertook measures to correct the behaviour of inmates even when in all probability that inmate was not going to ever leave the Lazaret. This component overlaps in some measure with that of ‘protection’.

Historical Documentary Record

The HDR contains little clear information of this feature. It can only be gleaned in snippets from Berthelson and Ross (1996) and Ludlow (1991b). Because no areas of the Lazaret were allowed for the private and exclusive use of the patients, they remained under the gaze of the staff at all times. Berthelson and Ross (1996) record that Matron had spies who were everywhere and Matron was able to tell June Berthelson the contents of a conversation that June had had with some fisherman on the beach on the opposite side of the Island from the Lazaret. This network of communication, spies and informing the patients that their every move was observed, acted to ensure that the patients knew that behaving in a manner that Matron and the other staff defined as ‘normal’ would make their life at the Lazaret more endurable.
Documentary Record

The most visible aspect of normalising judgment was the enforcement of the 1897 Regulations for the Prevention of Spread of Leprosy which were gazetted for ‘the purpose of carrying into effect the Leprosy Act of 1892’ (QSA COL/322). These regulations state in part:

4. All dressings used upon the lepers [sic] shall be burned by the attendant immediately upon removal.

5. All clothing that shall have been in use by or upon any leper [sic] or any attendant and which shall be cast off shall be immediately burned.

6. The water used by the lepers [sic] or attendants in charge for washing themselves, or for bathing in, or for the purpose of washing any clothing or material used by them, shall be disposed of as soon as possible after it has been used.

17. The bodies of all deceased lepers [sic] shall within a period of twenty-four hours after death, be buried with quicklime.

18. All bedding, clothing, and all utensils used by the deceased, shall immediately after his death be destroyed by fire.

All these actions would continually and starkly reinforce in the inmates the differences between them and the ‘normal’ people.

The other major aspect of normalising judgement (and the medical gaze) was the strict enforcement of requirements for discharge from the Lazaret. To be eligible for discharge in 1926 a patient had to stay for two years after ‘being pronounced clean’ for ‘further and final examination’ (Smiths Weekly 12/8/26 page 28). To be discharged in 1951 patients needed 12 consecutive bacteriologically negative smears and approval of a Medical Board that assessed the inactivity of the disease (QSA
TR1255 Box 1293). In reality patients were not discharged at these times but rather they tended to be discharged in batches around Christmas time. For example four patients were discharged on 18 December 1922, five were discharged on 21 December 1925 and six were discharged on 20 December 1928 (QSA LEP 2/1). There were no other discharges around these times.

Affect

The affective component of paternalism is the emotions and feelings generated in the paternalists and the objects of the paternalistic behaviours.

Historical Documentary Record

The Historical Documentary Record does not offer much information concerning the affective component of the paternalism at the Peel Island Lazaret. June Berthelson was a patient at the Lazaret for two years just prior to its closure in 1959. In her autobiography (Berthelson and Ross 1996) she describes her feelings whilst on the Island as fluctuating between boredom, frustration, rebellion, acquiescence and loneliness. Here again, though, Berthelson and Ross (1996) do not discuss the emotional component of June’s life.

The occasional emotional note exists in the records such as ‘Superintendent Goldsworthy was the sort of bloke you took to straight off ... He gave me the home truths on survival in my new life. He cared about his charges’ (Ludlow 1992:62).
The Health Department always felt that it was doing a good job by the patients of the Lazaret. In letters written to patients by Dr Fryberg, Director General of Health, in response to their challenges about conditions at the Peel Island Lazaret, he stated:

I am aware of many instances where the Department has gone to no small amount of trouble and expense to grant patients amenities when their case warrants such assistance ... [and] even knowing that my Department will never boast of its assistance to patients, the public should be made aware of these acts (QSA TR1255 Box 1294: 1950).

and

I take strong exception to your comments regarding Peel Island as every endeavour has been made, within reason and bearing in mind that the disease is a communicable one, to make the compulsory stay of patients as happy as possible (QSA TR1255 Box 1293: 1949).

Most patients felt that they had to obey the rules of the place. 'It is now ten months since I was sent to this Lazarette [sic] and I have always obeyed regulations set down' (QSA TR1255 Box 676: 1943). However, not all patients felt indebted to the government for its attempts to help them. Individual inmates within the paternalistic structure actively resisted the domination of the system. There were successful escapes in 1917, 1927 and 1944. There were many other attempts to escape. After several such attempts in 1913 an official of the Health Department and two police officers visited the Lazaret and burnt the male patients' fishing boats (Ludlow 1991b:22). This action became part of the mythology of the place and the memory of it was used as a control mechanism for the next 50 years.
In the 1940s the patients established a Patients’ Association that was extremely active in airing patients’ grievances with the way the system worked. For example:

[If] it is considered necessary by the Queensland Government to have us segregated ... we expect and demand to be segregated in a humanitarian manner, on the mainland, with access to all modern conveniences and not, as at present on a sand-fly and mosquito infested island (QSA A29448: Letter 9204 of 1945).

The patients did not share the view of the government that the care they were receiving was something of which to be proud. In 1943 a patient wrote to the Minister stating ‘the general condition of this place resembles nothing better than a blacks camp therefore [sic] an absolute disgrace to the Health Department and the civilised world’ (QSA TR1255 Box 676).

CONCLUSION

The Peel Island Lazaret was a government institution organised along paternalistic lines in which a self-proclaimed benevolent government supplied material and non-material resources to inmates in return for docile acceptance of their treatment. Many patients felt completely overwhelmed when they received the news that they had Hansen’s Disease (Berthelson and Ross 1996). This feeling was reinforced by the routine treatment they received when they reached the Island. Despite that, for the vast majority of patients admitted to the Lazaret, it was to be the last home they ever knew, the paternalistic nature of the organisation did not allow them to be treated as individuals.
The 'history' provided in this chapter is a history that is aimed directly at presenting information that pertains only to the paternalism of the Lazaret. Two documentary sources (the Historical Documentary Record and the Documentary Record) are used to obtain this information. Any data not related to the aim of understanding the paternalism of the place have not been included and the information that has been used has been done so within the model of (archaeologically accessible) paternalism developed in Chapter 2. This is a deliberate strategy that will allow the comparable use of both documentary and archaeological data.

In general, the largest amount of available written information relates to the context of the place and provision of material items. Little information exists concerning the control and affective aspects of paternalism. The HDR is most useful in informing on the context of the place and the system but it is much less useful in providing information on the purely internal and less formal aspects of the Lazaret's operation. It tends to provide broad statements with little detail, often of apocryphal events with little evidence and offers little insight into the daily lives of the occupants of the place. This is to be expected as the HDR derives from general thematic studies and/or the staff members' and patients' memories of long ago.

The DR consists of the records written at the time of the Lazaret's operation and it proved most useful in addressing the context, provision and protection components of
paternalism. Although the DR supplies very little information on the affective component of the people’s lives it remains the only source available for this type of information.

Categories such as affect and spatalisation are not adequately described by either record. Archaeology lends itself to the analysis of such areas as spatialisation which is a major component of the following chapters.
CHAPTER 4

INTRODUCTION TO THE PHYSICAL EVIDENCE

The Peel Island Lazaret is significant for its aesthetic qualities, in particular the abandoned, decaying character of the site juxtaposed with the surrounding landscape and Moreton Bay seascape (Blake 1993 The Leper Shall Dwell Alone).

The documents give differing descriptions of life at the Lazaret. Although most people mentioned in the documents are now gone, many of the structures at the Lazaret remain, albeit in a decayed state, such that the Peel Island Lazaret stands today as the ‘only surviving multi-racial lazaret in Australia’ (Blake 1993:29). Over time various agencies have acted upon these physical remains. Of the 109 buildings constructed during the occupation of the Lazaret, one was burnt down in the 1940s, 43 remain standing, 47 are in ruins and 18 have been completely removed. This chapter describes the remnant fabric of the Lazaret and the changes that have affected the archaeological record of the Lazaret.

In the late 1950s the Works Department allocated numbers to each of the remaining structures at the Lazaret (QSA/WOR Leper Lazaretto Peel Island Batch: 1959:885-898) (see Figure 2). This was in anticipation of the closure of the Lazaret and the proposed re-use of the timber and furniture and fittings from each building. Blake
(1993:63) used these numbers to identify the structures remaining and I use the same numbers in discussing the separate structures.

A number of factors have affected the Lazaret's archaeological record. Once the Lazaret closed a caretaker lived on-site in the Superintendent's quarters (Building No. 67). Over time a number of caretakers were appointed, firstly by the Works Department, then by the Church of England Grammar School (see below) and then by Redland Shire Council (Blake 1993:25). The caretakers came to believe that the Lazaret was their home. They made a number of changes to the place including collecting artefacts, mowing the open central space to a park-like lawn and modifying the structure of buildings to suit their needs. In preparation for the hand-over of administrative responsibility for the whole Island to the Queensland National Parks and Wildlife Service in 1993 a conservation plan was prepared (Blake 1993), but from personal observation it is obvious that damage still occurs to buildings as a collateral effect of the activities of the rangers.

The largest single impact on the place was a decision taken in 1964 to remove the buildings. The appointed contractor, Surawski, demolished a number of buildings and transferred the timber to his barge. He demolished other buildings and stacked the building materials on their stumps ready for removal. He placed makeshift nameplates on the stacks (Figure 7) and sailed away. The barge overturned in Moreton Bay with the first load and the demolition and removal job remained unfinished. This is the only reason that any structures survive at the Lazaret today.
The environment has also had a large impact on the preservation of the Lazaret.

Termites were always a problem during its operation (e.g. QSA/WOR Leper Lazaretto Peel Island Batch 1944:1662, 1955:1022) and once abandoned, and the Works Department was no longer charged with its maintenance, termite damage accelerated. An inspection by a quantity surveyor in 1964 estimated that white ant (termite) damage was causing a major depreciation in the value of the buildings (QSA/WOR Leper Lazaretto Peel Island Batch 1964:471). This termite damage went
unchecked in the remaining buildings until Queensland Department of Environment and Heritage intervention in 1993.¹

The regrowth of trees is another major environmental factor. When the Lazaret was occupied it was maintained as open space so that visibility could be maintained across the entire area (Figure 8). By the 1990s almost all of the place was so thickly overgrown with *Lantana camara*, *Callitris* and *Eucalyptus* that only the area around the main staff living areas (Buildings 64-69), the edge of the male compound and the Recreation Hall (87) remained open (Figure 9). The National Parks and Wildlife Service undertook a major operation to remove the regrowth and re-open areas of the Lazaret. It has never been fully restored to its original open, park-like state. The trees have substantially damaged some of the buildings, having grown up in the driplines of structures, uprooting the stumps and displacing concrete paths. The weight of leaves on the roofs of buildings, particularly in the male compound, has caused major damage. On one occasion, rangers removing a tree by chainsaw accidentally damaged part of the roof of Building 73 when the tree fell unpredictably.

¹ Over the period in which this thesis has been written the Queensland Government department responsible for Peel Island has changed names three times. It was originally the Department of Environment and Heritage, then the Department for Environment, then the Department of Environment and Heritage again and recently it has been renamed the Environmental Protection Agency.
Figure 8. Male Patients' Compound in the 1950s (Dr M Gabriel)

Figure 9. Male Patients' Compound in the 1990s
Rain and storms have also affected the buildings. All external metal fittings including gutters, downpipes and ant caps have corroded. Corrugated iron roofs have rusted and many have large holes. The absence of maintenance after 1959 permitted rainwater to rot the timbers of the buildings. Only the fibro sheeting on some buildings has survived reasonably well.

Vandalism has occurred at the Lazaret. Peel Island is surrounded by a living coral reef that attracts recreational fishers. At times they would camp on the Island and the Doctor’s residence (89) became used as a fishing hut. The growth of trees between this building and the main Lazaret area made it completely invisible to the caretaker. Over the years much damage was done to this building.

In 1968 the Brisbane Church of England Grammar School obtained a 25 year lease over the central part of the Lazaret. This was extended in the next year to include the western most huts in the male compound. The School appointed its own caretaker and used the Lazaret as an educational camp (Blake 1993:24; Meadows 1984). Male patients’ huts were used for storage and a full size doorway was cut through the western wall of Building 33 to allow easy access. They also buried much of their garbage in pits dug at random around the Lazaret (see Chapter 6).

In 1994 maintenance and restoration work was carried out on some of the buildings at the Lazaret (Table 6) in accordance with the conservation plan (Blake 1993; Prangnell and Ross 1997). This work was funded by the Federal Government under a One
<table>
<thead>
<tr>
<th>Building Number</th>
<th>Building Name</th>
<th>Restoration and Maintenance Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male hut</td>
<td>New stumps, new ant caps, new guttering and downpipes, boarded up.</td>
</tr>
<tr>
<td>2</td>
<td>Male hut</td>
<td>New stumps and ant caps, new guttering and downpipes, new stairs and balustrading, new floorboards on verandah</td>
</tr>
<tr>
<td>4</td>
<td>Male hut</td>
<td>New guttering and down pipes, boarded up.</td>
</tr>
<tr>
<td>6</td>
<td>Male hut</td>
<td>New guttering and downpipes, new stairs, boarded up.</td>
</tr>
<tr>
<td>14</td>
<td>Male hut</td>
<td>New guttering and downpipes, new stairs.</td>
</tr>
<tr>
<td>37</td>
<td>Catholic church</td>
<td>New stumps and ant caps, new stairs, new roof, boarded up.</td>
</tr>
<tr>
<td>41</td>
<td>Surgery</td>
<td>New guttering and downpipes, stairs on eastern side removed, new roof.</td>
</tr>
<tr>
<td>47</td>
<td>Power house</td>
<td>New guttering and downpipes, new roof.</td>
</tr>
<tr>
<td>50</td>
<td>Nurses’ quarters</td>
<td>New stumps and ant caps, new stairs and balustrading, new guttering and downpipes.</td>
</tr>
<tr>
<td>64</td>
<td>Shed</td>
<td>New guttering and downpipes</td>
</tr>
<tr>
<td>65</td>
<td>Shed</td>
<td>New stumps and ant caps, new doors, new guttering and downpipes, new roof.</td>
</tr>
<tr>
<td>67</td>
<td>Superintendent’s quarters</td>
<td>New stumps and ant caps, new toilet system, new stairs, new guttering and downpipes.</td>
</tr>
<tr>
<td>68</td>
<td>Matron’s quarters</td>
<td>New stumps and ant caps, new stairs, new guttering and downpipes, painting</td>
</tr>
<tr>
<td>69</td>
<td>Nurses’ quarters</td>
<td>New stumps and ant caps, new guttering and downpipes.</td>
</tr>
<tr>
<td>74</td>
<td>Female bathhouse</td>
<td>New guttering and downpipes, new roof, boarded up.</td>
</tr>
<tr>
<td>82</td>
<td>Female hut</td>
<td>New stumps and ant caps, new stairs, new guttering and downpipes.</td>
</tr>
<tr>
<td>86</td>
<td>Female hut</td>
<td>New stumps and ant caps, new guttering and downpipes, new roof, boarded up.</td>
</tr>
<tr>
<td>87</td>
<td>Recreation hall</td>
<td>New stairs and balustrading, new guttering and downpipes, new water tank.</td>
</tr>
<tr>
<td>89</td>
<td>Doctor’s residence</td>
<td>Boarded up.</td>
</tr>
</tbody>
</table>
Nation grant.\(^2\) The table details the changes that were made to 19 of the remaining buildings. Buildings had roofs and guttering replaced and were boarded up to minimise the damaging effects of the rain.

All the above-mentioned factors together have influenced the survival of the Lazaret in its current, largely decayed state. The major factor in protecting the structures that have survived in the best condition has been their continual use, and hence maintenance, since the closure of the Lazaret. Those areas that were not used (i.e. patient areas) rapidly fell into disrepair.

COMPOUNDS AND ZONES

The physical layout of the Lazaret is organised as a series of compounds and zones around a central area of open grassland. This grassed area is approximately 100 x 35 m. To examine each area more closely I use the zones applied by Blake (1993: 62) as follows:

- Administration zone;
- Coloured patients’ compound;
- Female patients’ compound;
- Male patients’ compound;
- Recreation zone; and

\(^2\) Not at all related to the political party of the same name which formed four years after this Commonwealth initiative.
• Treatment zone.

I describe the Lazaret as it remains today using these zones but as there are many features related to the Lazaret that are not enclosed within the boundaries of the Lazaret proper I add two more:

• Perimeter zone; and

• External zone.

Administration Zone

The Administration zone contains the Superintendent’s residence (67), the Matron’s quarters (68), nurses’ quarters (50 and 69), the original male attendants’ quarters (71) (not on the map, but located immediately to the north of 69), the new male attendants’ quarters (53-58), the store (61 and 62), the kitchen (44 and 45), the male patients’ dining room (46), the laundry (51) and power and engineering sheds (47-49, 64 and 65). Most of these buildings survive today in very good condition. The Superintendent’s quarters are used as the National Parks ranger’s home, the Matron’s Quarters as the Park office and the Nurses’ quarters (69) as the rangers’ barracks.

The original male attendants’ quarters were removed prior to the closure of the Lazaret. They were in very poor condition and had been an eye-sore for some time.

The new male attendants’ quarters (53-58) were demolished by Surawski, as was the kitchen and dining complex (44-46).
Coloured Patients’ Compound

After the coloured patients left in 1940 the white patients removed and reused most of the corrugated iron huts as animal enclosures. Consequently only four huts remain in their original location though they have been modified internally to allow the keeping of poultry. The remnants of the concrete slabs from the other huts can be discerned beneath the leaf litter. The Church of the Good Samaritan was removed by the Church of England and reused on Moreton Island (also in Moreton Bay).

Female Patients’ Compound

The female patients’ compound is located to the west of the central grassed area (Figure 2 - Chapter 1). At different times huts from the female patients’ compound were moved around the Lazaret to fulfil a number of functions. One eventually ended up in the male patients’ compound as the Catholic Church (37). Only one row of female patients’ huts remain standing. Huts 72, 81, 83 and 84 were demolished and removed. Hut 80 was demolished by Surawski and stacked awaiting removal (see Figure 7). Huts 78, 79 and 85 were left standing but have collapsed over time.

Male Patients’ Compound

The male patients’ compound is located directly to the east of the central grassed area (Figure 2 - Chapter 1). The huts at the northern end of the male patients’ compound have fared better than most, as the trees have not encroached as badly. Huts 3, 5, 7, 12, 15-19, 22-24, 30, 31, 34, 25, 39 and 90 were demolished. Some, such as Huts 3, 5, 7 and 35, were completely removed whereas in other cases, such as 34 and 39, only
the stumps were left. The original fences and paths have for the most part disappeared. The fence that ran behind Huts 37-39 collapsed in 1995. The Church of England Grammar School removed the fence that ran along the western edge of this compound.

Recreation Zone

The Recreation zone comprises the Recreation Hall (87), patients’ jetty and boat houses. The jetty and boat houses are now in very poor condition. The Recreation Hall is the largest building on the Island and is in very good condition. It is now used to house groups of people who visit the Lazaret (such as the archaeological field crews).

Treatment Zone

The Treatment Zone is at the immediate southern end of the central grassed area and contains the Dispensary (40), Surgery (41), Hospital (42) and the Hospital Annexe (43). The Surgery is the only one of these buildings that remains standing. The Dispensary has been completely removed except for the concrete stumps that once supported the building. The other two buildings have been demolished and their rubble is stacked on the stumps.

Perimeter Zone

The Perimeter Zone contains two Lazaret dumps, the cemetery, the doctor’s residence (89), the pump house, the stables (60) and cooks’ house (88). The two
major dumps are located along the western edge and the northern edge of the Lazaret. The western dump is located behind the laundry (51) and white female patients' compound. The dumped material extends for a distance of 100 m. The dump consists of a 6 m high, 40° slope that marks the edge of the Island. Throughout the course of the operation of the Lazaret, materials that were not incinerated were deposited over this slope. At high tide the lower areas of the dump are inundated by saltwater. It is a dump that consists mainly of the artefacts of everyday life, such as bottles, ceramics and clothing.

The dump located to the north of the white male patients' compound has a higher and steeper slope than the western dump. This second dump consists almost entirely of hospital materials, such as enamelled bedpans and urine bottles, and artefacts related to the kitchen, such as cooking pots and parts of stoves (it was located close to the Cooks' residence (88)). Consequently there is a marked difference in the pattern of dumping at the Lazaret. Items related to the infrastructure of the hospital went over the northern cliff and items related to the daily life of the residents (patients and staff) went over the western cliff.

The cemetery is located 130 m east of the Lazaret. Originally the road from the jetty ran through the middle of the cemetery however in the early 1950s the road was moved to the south of the cemetery. The cemetery is now completely overgrown with *Eucalyptus* trees and it is covered in leaf litter. The boundaries are uncertain; a firebreak created around the cemetery by National Parks rangers gives a false
impression of the boundary. During a clean-up operation undertaken by army personnel in the 1980s (One Port Construction and Repair Group Royal Australian Engineers 1990) a large number of the metal grave markers were found in the leaf litter and arranged by the clean-up team into artificial rows. Some graves had wooden fences and crosses, however these have almost completely rotted away. Only two stone headstones survive and only one is legible. There is also half a wooden cross that is standing and legible.

The pump house, located on the edge of the ti-tree swamp 470 metres to the south of the Lazaret, was badly eaten by termites during the operation of the Lazaret and once the Lazaret closed it took little time to be completely destroyed; only the metal and concrete parts remain. The Cook's House (88) was demolished by one of the caretakers in the 1980s and the timber re-used to build a house on the southeastern side of the Island.

External Zone

The external zone consists of the remainder of the Island. In 1993 I conducted an archaeological survey of the Island concentrating on the area external to the Lazaret. A number of artefacts from the Lazaret were found spread over a large part of the Island. The survey was conducted prior to the commencement of the excavation program. While the survey had a number of aims, most extraneous to this thesis, the two main aims in relation to this thesis research were:
1. To locate and describe the distribution of Lazaret materials over the surface of Peel Island. This was primarily an aid in locating possible future excavation sites (see Dunnell and Dancey 1983). To gain a complete picture of the spatial arrangements of the Lazaret it was important to determine the extent of the Lazaret personnel’s use of the Island; and

2. To identify any patterning in the distribution of Lazaret material that may supply evidence of the paternalistic activity at the Lazaret.

An interval transect survey strategy was selected for the project. The transects were placed at 200 m intervals east/west across the Island and ran magnetic north/south (Figure 10). Local Aboriginal Traditional Owners assisted in the survey as part of a larger cultural resource management training program. A transect bearing of $0^\circ/180^\circ$ was selected to simplify the training component. At every 100 m point along each transect a 2 x 2 m quadrat was marked out, leaf litter was removed and the area examined in detail for archaeological material. At the centre of each quadrat the ground was probed with a 120 cm metal rod to detect subsurface material.

Much has been written in the archaeological literature on the merits of different survey strategies. Redman’s (1973, 1974) early works demonstrate the importance of using probability sampling (as opposed to judgment or haphazard sampling) to allow for the use of statistical inference and to reduce biases in the sample. Probability sampling allows for ‘estimating total population values for common artefacts or features. It is also good as an exploratory feature, in that it forces one to look
Figure 10. Survey Transects
“everywhere” (Redman 1987:251). A major problem of probability samples is that they are ‘poor for locating rare features or artefacts, dealing with clustered distributions, or illuminating contiguous spatial patterns’ (Redman 1987:251). There are four main types of probability sampling strategies: simple random; stratified; systematic; and stratified systematic unaligned (Plog 1976). The use of a systematic transect (or quadrat) design may increase the ability to detect clustered or contiguous patterns.

The Peel Island survey used a systematic sampling strategy. However, the grid was not placed at right angles to the study area as is typical with systematic samples (Plog 1976:137) as the edge of the study area is formed by the coastline of the Island (not including the fringing mangroves). The 100 m interval quadrats avoided problems associated with ‘periodicities in the phenomena’ (Plog 1976:137), as each 100 m measurement commenced at the start of each transect (i.e. the edge of the Island). For example Transect A contained four quadrats whereas Transect C contained 22 quadrats (Figure 10). While a systematic sample has similar advantages to using the more accepted random stratified sample, any gains in the estimation precision are dependent on the properties of the population (Plog 1976:142). Orser and Fagan (1995:131) tend to suggest that any strategy is acceptable as long as it is based not only on a knowledge of the region’s history but also on ‘good science’.

Data recorded by at each quadrat included transect number, quadrat number, location (beach, beach ridge, mangrove flat, bank, crest, swamp, flat, swale, road or the
Lazaret), canopy vegetation (mangrove, paperbark, Callitris spp., Eucalyptus spp., Banksia spp.), understorey vegetation (sisal, grass, lantana, leaf litter, ivy/vine), soil (red loam, yellow sand, black mangrove mud), ground surface visibility, artefacts (shell, bone, stone, post-contact), number and species of shell, number of ceramic, number and colour of glass, use of a probe (yes/no and result), depth of shell lens, thickness of shell lens, and a notes section recording all materials located within the visual window.

The thickness of the vegetation and the lack of ground surface visibility posed two major and related constraints to the survey. Most of the ground surface was covered in thick leaf litter (up to 13 cm) which had accumulated due to the absence of bushfires on the Island since at least the turn of the century. Along the 13 transects surveyed a total of 155 quadrats were examined in detail. Of these, only 24 (15.5%) exhibited any ground surface visibility. The average ground surface visibility over all quadrats was 6.4%. For those quadrats with ground surface visibility the average was 41.4%. Ground surface visibility of 100% was only achieved on the sand at the extreme southern end of Transect C, on the beach of Horseshoe Bay, and at the northern end of Transect M. The thick vegetation meant that only large items located between the transects, such as water tanks or truck bodies, could be recorded. Small items, such as bottles or ceramics, could not be detected more than 4-5 m from the line of the transect.

3 The DR records floods (QSA WOR/Leper Lazaretto Peel Island Batch: 1838 of 1908) and droughts (QSA A31758: 1941) but no fires on the Island.
Figure 11 shows the locations of archaeological materials found during the survey. A number of different classes of artefacts and archaeological places were located during the survey. The recorded artefacts and places relate to the pre-European Aboriginal use of the Island, the Quarantine Station (located at the southwestern corner of the Island), the Lazaret, the post-Lazaret use and incidental materials (not related to occupation of the Island). As the vegetation and soil data collected are not relevant to this study, they are not presented here.

A number of Aboriginal shell middens and smaller shell scatters were located. As expected, the middens cluster behind Horseshoe Bay (see Ponosov 1964) and on the northern edge of the Island. Ross has subsequently excavated a midden on the northern side of the Island with the Quandamooka CRM Team and has obtained dates of 1200 bp for the middle layers of the midden (Dr Anne Ross, Department of Anthropology and Sociology, University of Queensland, pers. comm. 1999). A large *Eucalyptus* tree at the northern end of Transect E has a large elongated scar on its western side. The base of the scar is three metres above the ground and its physical characteristics are not inconsistent with those of an Aboriginal scarred tree.

Toward the southern end of Transect J there is a small shell scatter containing whelk, cockle and oyster shell. It also contains fragments of case gin bottles, beer bottles, a salad oil bottle and fragments of a green and white underglaze transfer-printed plate. This material may be from the Lazaret but it is equally likely that it is the most
Figure 11. Results of Survey of Peel Island
westerly manifestation of the Quarantine station or otherwise of post-European Aboriginal origin.

Other evidence of the Quarantine Station found during the survey are a row of wooden fence posts located towards the northern end of Transect J. These round posts are grouped into two groups of two, located 10 m apart. Sisal (grown at the Quarantine Station (Ludlow 1991a:47, 1995:101)) runs in a 30 m band around the northern and western sides of the posts. The trunks of the trees immediately to the west of the fence posts have a markedly narrower diameter than those on the eastern side. This suggests that the area to the west of the posts was cleared of vegetation more recently than the area to the east.

Six hundred and fifty metres from the northern end of Transect L is a long trench measuring 48 m by 4 m and 1 m deep. It runs straight on an angle of magnetic 170°/350°. The trench may relate to garbage or sanitary disposal from the Quarantine Station as it does not match the prescribed practice for nightsoil disposal at the Lazaret:

[I]t was laid down many years ago that the sanitary reserve was to be trenched in accordance with the provisions of the Sanitary Conveniences and Nightsoil Disposal Regulations. These provide, inter alia, (Regulation 33(c)) that no trench shall be more than 18 inches or less than 10 inches in depth or more than 18 inches in width, and shall not exceed 10 feet in length (QSA A31759:1947).

The only incidental items located during the survey are the remains of a weather balloon located at the southern end of Transect F and a small hut, a wooden telegraph
pole and a concrete post marked ‘PMG CABLE’, indicating the position of the telephone cable linking Cleveland and Dunwich.

It is clear from the distribution in Figure 9 that the Lazaret materials concentrate near the Lazaret but a general scatter of material is found across a large part of the Island. Lazaret artefacts are found up to 1,500 m east of the Lazaret on Transect I (tin cans, glass, kerosene lamp and a clock), approximately 1,500 m south on Transect D (wire) and 1,400 m southeast on Transect F (a Lazaret water tank and fragments of green bottle glass). Some of the huts from the coloured patients’ compound were ‘transferred to Horseshoe Bay ... as “holiday shanties”’ (Ludlow 1991b:29) and the water tank may have been part of this relocation. At the northern end of Transect E is a complete horse skeleton with a bullet hole in its skull. When the Lazaret closed in 1959, one horse, ‘Podge’, was left on the Island (QSA WOR/Leper Lazaretto Peel Island Batch: 642 of 1961) and was shot by the caretaker in December 1962 (QSA WOR/Leper Lazaretto Peel Island Batch: 686 of 1963). This is probably Podge’s skeleton.

The survey highlighted four main areas of Lazaret dumping (see Figure 9). I labelled these Dumps 1, 2, 3 and 4. Dumps 1 and 2 have been described earlier. Dump 3 appears to be quite a different style of dump to either Dump 1 or Dump 2. There are generally four types of deposit associated with 19th and 20th century sites (Birmingham 1988:150-151):
1. Introduced fill deposit, which represents ‘municipal or private levelling activity in which hard fill characterised by numerous but indistinguishable cultural debris is imported into the site from elsewhere in the site, city or country’ (Birmingham 1988:150). No places at Peel Island represent introduced fill deposit;

2. The scatter found over former ground surfaces which consists of material built up around buildings, upon roads or in parks and paddocks. Artefacts found away from the Lazaret scattered around the Island are examples of this form of deposit;

3. The accumulation deposit, which occurs in wells, as kitchen middens or typically as underfloor deposits. They are usually open and are built up over a considerable period of time. Dumps 1, 2 and 4 are examples of accumulation deposits; and

4. Rubbish disposal, which occurs as a single depositional event and may range in size from the ‘toss-out of kitchen scraps ... to the total household clearance customary when a family property is sold up’ (Birmingham 1988:151). Dump 3 is an example of this type of rubbish disposal.

Dump 3 is located on the southwestern part of the Island near the wooden jetty (on Transect C). It consists of metal drums, glass, ceramics and the extensively corroded bodywork of a Ford truck. The dump’s location is unusual, being so far from the Lazaret, yet so close to the second jetty. As part of the survey I undertook a surface collection of a small sample of the ceramics from the site to determine their dates of manufacture. Probing of the ground surface with a one metre metal probe indicated that no subsurface deposits were associated with the dumping. The dumping occurred as a single event. The ceramics support this conclusion. They all have a
vitreous stoneware body (see Chapter 5 for definition) and have the Queensland Government crest printed on them (see Figure 28 in Chapter 6 for an example). The only pieces with makers' marks were manufactured by John Maddock and Sons Ltd of Burslem, England and one cup cannot date to earlier than 1955 (Godden 1964: Mark No. 2473). Consequently, I conjecture that at the time of the closure of the Lazaret in 1959 the patients' truck made its last trip to the jetty and a large part of its load was transferred to waiting boats. The truck was then driven into the bush and dumped along with its remaining load.

Dump 4 is located part way between the Lazaret and the swamp. It is a large dump that contains Lazaret and post-Lazaret materials and appears to be the dump site used by the on-site caretakers who supervised the area from 1959 to 1993. This dump contains many motor vehicle parts and other machinery and architectural elements.

So, the External Zone contains evidence for the continued use of the Island from pre-European times through to the post-Lazaret period. It shows evidence of the spread of Lazaret materials up to 1.5 kilometres from the Lazaret and the location of the water tank and bottle glass at Horseshoe Bay may indicate official sanctioning of use of parts of the Island away from the Lazaret itself.

CONCLUSION

The Lazaret stands today in decayed isolation on the northwestern corner of Peel Island. The buildings in the central area of the Lazaret are in relatively good
condition as they have been used since the closure of the Lazaret. The buildings, structures and artefacts in the patient areas and the perimeter and external zones, however, have decayed quite badly. The natural vegetation of the Island had, until recently, successfully reclaimed many areas of the Lazaret. Consequently the Lazaret does not appear as it did during its years of operation. At that time the Lazaret was open and park like with uninterrupted views across Moreton Bay. Staff could observe all patient areas from their central location. Now the Lazaret appears closed and dominated by tall trees and thick ground cover. Visibility between areas is very poor.

I selected four of the buildings at the Lazaret for archaeological excavation. These were buildings 34, 39, 71 and 80 (see Figure 2). The archaeological record of these places in described in detail in Chapter 6. The dump on the western side of the Lazaret (Dump 1) was also targeted for archaeological investigation. This is the subject of the next chapter.
CHAPTER 5

THE PHYSICAL EVIDENCE FROM SITE D1

The study of garbage reminds us that it is a rare person in whom mental and material realities completely coincide. Indeed, for the most part, the pair exist in a state of tension, if not open conflict (William Rathje and Cullen Murphy 1992 Rubbish!).

INTRODUCTION

The Lazaret is located on a relatively flat area of land above an elevated slope (6-10 m) that runs around the western and northern margins of the Island and terminates in the mangrove-fringed edge of the Island. The slope is a wave cut hill created during the formation of Moreton Bay, some 6,000 years ago (Flood 1984:130). The western dump extends for a distance of 80 m along the slope at the extreme western margin of the Lazaret. During exceptionally high tides the lowest parts at the base of this dump become inundated. I selected the southern section of the western dump site (Dump 1) for excavation and designated the location ‘Site D1’.

Site D1 was selected for excavation because it contains items that are mostly related to the household life of the Lazaret rather than items specifically related to its use as a hospital (as is the case of the dump along the northern slope). It was necessary to excavate at least one of the garbage dumps for a number of reasons:
- To obtain as complete an inventory as possible of all the items available for use by the residents of the Lazaret;
- To determine if changes occurred in the provisioning of the place through time;
- To determine the possibility of using the artefacts as a fine-grained chronological control for the excavation of the living sites (described in Chapter 6); and
- To determine if differential discard patterns existed for the different social groups at the Lazaret.

These factors directly relate to the major questions of the thesis as they concern the provision component of paternalism, the role of boundaries in the maintenance of the place (and how materials moved across the boundaries) and the differential access, if any, of different groups within the Lazaret to material culture items. Given the provision arrangements of paternalism it can be expected that almost all items at the place were government supplied; the excavation of a Lazaret dump should give a detailed insight into the extent of the available artefactual universe and internal variations that are likely to have existed. It should not only give insight into the materials that left the Lazaret but should provide a reliable record of materials that entered the Lazaret. All rubbish\(^1\) from the Lazaret was burnt in the incinerator, fed to the animals, buried in areas away from the Lazaret, dumped on the surface in apparently random locations in close proximity to the Lazaret or dumped over the edge of the bank running along the northern and western margins of the Lazaret. Rubbish was not removed from the Island. It is impossible to determine the amount

\(^1\) Unlike Rathje and Murphy (1992:9) I use the terms garbage and rubbish interchangeably.
of material that was burnt in the incinerator - but it must have included clothing, manchester and hospital waste (bandages etc.). I assume that the material located in Site D1 is representative of the range of material goods brought to the Island, used and then discarded. If illicit items arrived on the Island (e.g. smuggled in by visitors) it is unlikely that they will have been discarded in the location of the official rubbish disposal. They are more likely to have been smuggled away from the Lazaret for disposal elsewhere on the Island. Therefore I anticipate that very little of this type of 'illicit' artefact will be located in any excavation of Site D1.

In order to address the main questions of the thesis and the four questions posited above, I ask six questions of the examination of the artefacts from Site D1 and of the physical structure of the site:

- What material items existed at the Lazaret?
- How much variety existed within each artefact group?
- Does the site exhibit any stratigraphy?
- Can change through time be detected in the artefacts from the site?
- Is there any size sorting occurring due to the slope on the site?
- Is there any sorting of material types occurring due to the slope on the site?

These questions relate specifically to Site D1. The last four questions relate to the integrity of the site itself and the answers to these questions will determine the quality of the data obtained from Site D1 and the usefulness of applying such to the interpretation of the rest of the Lazaret. The discussion of these six questions occurs
at the end of this chapter. In Chapter 7 I discuss the data presented in this chapter in light of the major, more general questions of the thesis.

EXCAVATION METHODS

A site datum was established in the female patients' compound at a point 12.4 m at 29° from the northwestern corner of Hut 86 and 28.2 m at 326° from the southwestern corner of Hut 76. The top of the slope above the area selected for excavation is 118.44 m (at an angle of 143°) from this datum. The slope was mapped using 50 cm contours (Figure 12). It is 7 m high on a slope of 40°. A site datum at 1.02 m ASL was established on a small Eucalyptus tree located 15.28 metres and 267° from the point previously identified at the top of the slope. Four temporary surveying stations were used during excavation.

Site D1 was excavated by crews of volunteer postgraduate and undergraduate archaeology students from the University of Queensland and the University of New England under my supervision between 30 January 1995 and 10 February 1995. Two 3 x 1 m trenches were excavated into the slope of the hill (Figure 12). The trenches were placed 5.7 m apart and had a baseline of 33°.
Figure 12. Plan of Site D1
Each trench was excavated in 1 x 1 m grid units. The trenches were labelled 'A' and 'B', with Trench A being the more southerly of the two. Trench A is located in close proximity to the southern margin of the site whereas Trench B is located towards the centre of the site. The grid units were labelled 1, 2 and 3 with A1 and B1 located at the base of the slope. Due to the 40° slope of the hill upon which we were excavating the trenches could not be strung out in one metre grid units and to achieve the one metre grid units the formula \(r = \frac{x}{\cos \theta} \) was applied (Figure 13) so that on the surface of the excavation the grid units were strung out at 100 cm north/south by 130.5 cm east/west. Excavation was extremely dangerous given the slope of the deposit and the large amount of broken glass (Figure 14).

Figure 13. Figurative Representation of the Slope on Site D1
Excavation was undertaken by shovel, hand and trowel in arbitrary Excavation Units (XUs) within Stratigraphic Units (SUs). All material was dry sieved through 6 mm mesh and residual contents were boxed, labelled and transported back to the Archaeology Laboratory located at the University of Queensland.

Figure 14. Site D1
Stratigraphy

Five stratigraphic units were identified in the excavation of Site D1 (Figures 15 and 16). These were:

- SU I. The surface of the deposit. There is no matrix. This layer consists entirely of artefacts, leaf litter and tree branches. It occurs across all six grid units in a depth that varies between 50 mm and 340 mm;

- SU II. A mixture of very loose, dry, dark brown soil and artefacts. This discontinuous layer underlies SU I across the entire site varying in thickness up to 140 mm. In grid unit B3 it became quite sandy in patches. A large number of rootlets occur throughout this stratum;

- SU III. A very hard, compacted brown and grey layer that underlies SU II across all six grid units. SU III contains large numbers of insect burrows measuring one to two cm in diameter. Large roots, measuring up to 2 cm in diameter run along the junction between SU III and SU IV and SU III and SU V. SU III reaches a maximum thickness of 300 mm in grid unit A2. This layer contains fewer artefacts than SUs I and II;

- SU IV: A layer of orange and brown coloured ironstone pebbles ranging in diameter between one and three centimetres. This layer is only located in grid units A3 and B3 where it reaches a thickness of 151 mm. It contains very little
Figure 15. Stratigraphic Profile of Trench A, Site D1
cultural material (see below). It is most likely that the artefacts located in SU4 are there due to effects of bioturbatory agents or by the pressure generated by the weight of deposit above; and

- SU V: A solid sandstone layer located at the base of grid units A3 and B2, where it underlies SU III. This layer probably represents the original bedrock of this hill that once stood on a plain prior to the sea level rise during the early Holocene. This stratum was not excavated and its surface marks the base of the excavation.

An Excavation Unit (XU 4) removed from grid unit B3 contains material from both SU II and SU III. As this was discovered in the Laboratory and it was impossible to differentiate the stratigraphic origin of the material, the tables given in this chapter include a separate entry for this material labelled SU II/III.

ARTEFACT ANALYSIS METHODS

Once the artefacts were received in the Archaeology Laboratory they were analysed using the criteria described below. The data were recorded on forms specifically designed for each class of artefact and the data were entered into a relational Microsoft Access 2 database I designed for this specific purpose.

Prior to describing the artefacts from Site D1, I describe the categories and methods used in the analysis of the artefacts from this site and the residential sites (Sites 34, 39,
71 and 80) described in the next chapter. For the purposes of the presentation of the data in this study the main artefact division is into class.

I identified six classes of artefacts at the Peel Island Lazaret:

1. Food - All artefacts associated with food storage and consumption;
2. Clothing - All items of clothing including shoes;
3. Accommodation - All artefacts associated with the buildings and other structures, including building fittings such as door and window furniture. This class also includes all furniture and electrical fittings;
4. Hospital - All artefacts associated with medical and nursing treatments. It also includes all pharmaceutical and laboratory equipment;
5. Personal - All artefacts associated with activities of personal hygiene and grooming, such as combs. Also includes items of personal adornment, such as earrings, and recreational items such as fishing equipment. All items related to tobacco consumption are included in this category; and
6. Unassigned - This is a diverse class that contains all items that cannot be placed in the other classes due to the lack of identification of an item or because they do not fit into the schema.

I am aware of the strong movement in the literature away from imposing etic interpretive categories on archaeologically derived material culture owing to its recursive nature (Burley 1995; Campbell 1996; Little and Shackel 1992; Miller 1987; Miller and Tilley 1996; Scott 1997:135; Stuart 1993). ‘Just as language reflects and
in use creates, so things that are made reflect but also substantiate and verify, and thus reproduce the processes that led to making them’ (Leone 1992:131). This is true whether the meanings are explicit, implicit, simple or complex (Little 1992:86).

There is also no doubt that material culture items are re-used (Busch 1987) and put to uses for which they are not originally intended, even within hospital settings: ‘disposable drinking cups are used for urine sample collection [as a cost-cutting measure]’ (P MacGregor, Registered Nurse, Ramsey Health Service, pers. comm. 1999). Material culture may also have more than one intended use, for example a mineral water bottle is both a storage container and a vessel used for consumption.

Despite these objections archaeologists do impose etic categories in an effort to organise and describe their data (Orser and Fagan 1995:176). In this case it is appropriate to organise the data into the classes I have identified because the artefacts:

• are from a 20th century site from my own culture. Therefore I am not ‘guessing’ across cultural boundaries as to the meaning or uses to which these items were put based on morphological characteristics. I am familiar with most of the items;
• are from a health institution. As a Registered Nurse with some 12 years experience working in similar institutions I am familiar with the role of particular material culture items related to health care delivery;
• are being used to examine the provision element of paternalism. Consequently I am interested in the intentions of the paternalists in supplying particular items to
the Lazaret. Items were supplied for particular purposes, for example a chutney bottle was supplied as a storage container for chutney; any subsequent use as a storage container for lead sinkers or buttons, for instance, whilst interesting, cannot be detected archaeologically. Therefore the classes for artefact division are based on the primary purpose for which an artefact entered the Lazaret and forever crossed the boundary that existed between the Lazaret and the rest of Queensland society; and

• all the classes derive from knowledge gained from the Historic Documentary Record and the classes ‘food’, ‘clothing’ and ‘accommodation’ correspond to the categories used in the discussion of documents relating to provision in Chapter 3.

Within each class the artefacts are analysed by material type: brick, cardboard, ceramic, charcoal, concrete, cork, faunal material (bone, coral, shell, teeth and turtle shell), fibre, fibro, glass, leather, metal, plastic, wax and wood. The details of each type are presented below.

Brick, Cardboard, Charcoal, Faunal Material, Fibre, Fibro, Leather, Metal, Plastic, Wax and Wood

All these items had the following information recorded:

• Site Code - the Site, Stratigraphic Unit and Excavation Unit (defined in the relational database as ‘Site Code’);

• Quantity – count of fragments (not recorded for charcoal);

• Weight in grams;
Ceramic

The term ‘Ceramic’ is used to define any material that is the product of high temperature treatment of silica compounds (Copeland 1982), except bricks. The term ceramic therefore includes all pottery and porcelain. The attributes recorded for each piece of ceramic are:

• Site Code;

• weight in tenths of grams;

• thickness in tenths of millimetres, measured at the widest part. Although South (1977:326) labels the practice of measuring ‘in millimetres the size and thickness of broken sherds of English ceramics’ as both an ‘absurdity’ and ‘apparent nonsense’ it is necessary to measure the thickness of sherds so as to obtain an indication as to the minimum number of individual vessels, particularly given the presence of numerous sherds with the same pattern. I also wanted to obtain knowledge concerning the fragmentation and size sorting effects that have occurred at Site D1;

• diameter in tenths of millimetres;

• a description, including information on conjoin sets and other associations and pattern names if they are obtainable;
the body material is recorded following the typology developed for Australian sites by Thompson and Wilson (1987). This is similar to the classificatory system proposed by Worthy (1982). Although this does not follow an emic system used by the potters (Miller 1980, 1988, 1991) and possibly the users themselves, this site is a 20th century site containing government-issue materials and consequently the use of classificatory systems identifying 17th through 19th centuries products such as pearlware, delftware and sgrafitto slipware (e.g. Dyson 1982; Lange and Carlson 1985) is not applicable. Thompson and Wilson's (1987:2-3) classification of the fabric of the body is presented in Table 7:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Earthenware</td>
<td>Earthenware with coarse inclusions. Normally reddish-brown in colour. The break has a coarse textured appearance, often with visible impurities. The body is very absorbent and sticks to the tongue. Variations in the colour across the break can result from uneven firing. Most often used for bricks, agricultural drains and items where porosity is acceptable and a smooth finish is not important. These pieces are rarely glazed.</td>
</tr>
<tr>
<td>Red Earthenware</td>
<td>Refined earthenware without coarse inclusions. Ranging in colour from reddish-brown to cream. The break has an even, sandy textured appearance, most often without visible impurities. The body is very absorbent and sticks to the tongue. Variations in colour across the break do occur. Most often used for flowerpots, utilitarian wares, architectural elements and some decorative wares. These pieces can be both glazed, in colours or with clear glazes, and unglazed (often called Terracotta).</td>
</tr>
<tr>
<td>White Earthenware</td>
<td>Highly refined earthenware without inclusions. Ranging in colour from pure white to grey. The break has an even, fine sandy textured appearance. Most bodies are quite absorbent and stick to the tongue. Most often used for table and decorative wares. These pieces are usually clear glazed and may be decorated with transfer prints or hand painted colours.</td>
</tr>
<tr>
<td>Material</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pipe Clay (PC)</td>
<td>Highly refined white earthenware without inclusions. The break has an even, very finely textured appearance. The body is absorbent and sticks to the tongue. Used for mould pressed tobacco pipes. The tip of the stem is occasionally glazed yellow or red.</td>
</tr>
<tr>
<td>Coarse Stoneware (CS)</td>
<td>High fired body with coarse inclusions. Ranging in colour from grey to brown. The body is not absorbent. Colour variations across the break are common. Most often used for drain pipes and occasionally bricks. Often found with a mottled brown or grey salt-glaze.</td>
</tr>
<tr>
<td>Fine Stoneware (FS)</td>
<td>High fired, dense body. The colour of the body varies enormously and is normally related to function. Utilitarian wares are usually cream to brown to grey. Specialised decorative wares can be almost any colour. The break has a finely textured, smooth, compact appearance. Colour across the break can vary also according to function. The body is not absorbent. Used for utilitarian wares such as ginger beer and stout bottles, jugs, storage jars. From the late 18th century it was also used in the production of specialised decorative wares such as Josiah Wedgwood’s jasper and black basalts. Utilitarian wares are usually salt-glazed or clear glazed.</td>
</tr>
<tr>
<td>Vitreous Stoneware (VS)</td>
<td>High fired, dense, vitrified body. The colour of the body ranges between white and grey. The break has a finely textured, smooth, compact appearance. The body is not absorbent. Used for plates and other tablewares. Usually with a hard clear glaze. Often decorated with underglaze transfer prints or enamel overglaze painting and gilding.</td>
</tr>
<tr>
<td>Porcelain (P)</td>
<td>High fired, very finely textured, hard, vitrified translucent body. The colour ranging from creamy white to pure white. The break usually has a sharp edge, the colour even. The glaze often merges with the body. The body is not absorbent. Most of these pieces are finely potted. Used principally for table and decorative wares. Usually with a clear, hard glaze. Often decorated with underglaze transfer prints and/or enamel overglaze painting and gilding.</td>
</tr>
<tr>
<td>Oriental Porcelain (OP)</td>
<td>High fired, finely textured, hard, translucent body. The colour ranging from greyish white to white, often with a faint blue-grey tinge. The break often with a coarse waxy texture, with sharp edges. The glaze often appears to be distinct from the body. The body is not absorbent and does not stick to the tongue. Used principally for tablewares. Often decorated with underglaze hand-painting with a clear glaze. Sometimes with raised overglaze painting. Occasionally painted with a green celadon glaze. Never decorated with transfer prints.</td>
</tr>
</tbody>
</table>
the body shape: the shape of the piece, such as plate, side plate, bowl, cup, saucer, vase, unidentified;

the fragmentation: whether the artefact is complete or a rim, a base, a body, a handle, a bowl, a stem, a mouthpiece or unidentified;

the presence of glazing. Glaze is ‘the skin of glass that covers the surface of the body’ (Sandon 1973:xxv). Glazing is essential for earthenware bodies as they are made with porous clay;

the presence of decoration such as moulded, impressed, underglaze or overglaze. Moulded decoration is part of the body of the piece and is raised above the background. Impressed decoration is a design stamped onto the clay ‘usually by wood, metal or hard clay’ (Hall and Hall 1992:82). If the decoration is done by hand it is usually known as ‘incise’. Underglaze is a ‘decoration applied to the biscuit ware [once-fired clay body] before glazing’ (Copeland 1982:4). Because of the high temperatures involved the range of colours was limited, with cobalt (blue) being the most popular. Overglaze (sometimes known as on-glaze) is decoration that is applied after the piece has been glazed, ‘usually with low-fired enamel colours’ (Hannah 1986:100);

the colour of the decoration: whether it is polychrome, black, blue (cobalt), brown, gilt, green or red;

a description of the details of the decoration, including the pattern name if known;

the presence and description of a backstamp. A backstamp is ‘the maker’s mark placed on the underside of a piece of ware giving information about [the] manufacturer’ (Hannah 1986:109);
• estimated date range for manufacture;
• manufacturer; and
• country of manufacture.

Glass

• Site Code;
• Colour: Black, Blue (Cobalt), Blue/Green (Turquoise), Brown (Amber), Clear (Transparent), Green, Pink and Purple;
• Use: Each class has a number of uses associated with it, for example:

<table>
<thead>
<tr>
<th>Class</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodation</td>
<td>Light bulbs, window glass</td>
</tr>
<tr>
<td>Food</td>
<td>Beer, chutney, cordial, gin, jam, milk, mineral water, pickles, rum, sauce, schnapps, vinegar, whisky, wine</td>
</tr>
<tr>
<td>Hospital</td>
<td>Ampoules, beakers, medicine glasses, microscope slides, poison bottles, test tubes, thermometers, vials</td>
</tr>
<tr>
<td>Personal</td>
<td>Beads, ink, jewellery, marbles, perfume, tumblers, vases;</td>
</tr>
</tbody>
</table>

• Part of the bottle: Complete, Stopper, Rim, Seal, Neck, Body, Base and Kick (also known as ‘kick-up’). Figure 17 illustrates the different parts of a bottle. To measure minimum numbers of bottles by rims or kicks these elements were only recorded for a specimen if more than 50% of the rim or kick was present, otherwise they were recorded as necks and bases respectively. Some bottles do not have kicks and instead have flat bases. The centre of the base was recorded as a kick, irrespective of the existence of an actual kick, so as to maintain comparability across bottle types;
- Type of rim: Applied lip, Crown seal and Ring seal. Figure 18 illustrates the three different rim types. These are the three most popular rim seal types in Australia in the last 130 years. Although invented in America in 1892 the Australian patent for the crown seal was not taken out until 1899. It was not until the 1920s that it became popular. By that time Australian manufacturers had developed the improved machinery that could guarantee consistent rim size (Jones 1979:39);

- Weight in grams;

- Manufacturer; and

- Distinguishing features, such as lettering or symbols.

![Figure 17. Parts of a Bottle](image)
These then are the attributes recorded for the artefacts excavated from Site D1. These classifications and attributes are also applied in the next chapter to the excavated material from the four residential sites (Sites 34, 39, 71 and 80).

ARTEFACT ANALYSIS RESULTS

In this section I present the data obtained from the artefacts excavated from Site D1 using the classes and attributes outlined. Counts, rather than weights, of individual artefacts are used throughout the analysis as density of the material itself causes distortions in the data. For example quite significant differences occur within the
ceramic collection when weights are preferred over counts. The ceramic collection weighs just over 12 kg (12,047.4 g). Figure 19 allows for a comparison of the percentage of the total number and weight that each body material constitutes. It also demonstrates that using weight as a measure of the amount of each body material dramatically alters the view of the composition of the collection. The representation of white earthenware and porcelain is greatly reduced and the representation of coarse stoneware is increased by more than 500%. This is related to the density of the materials and the thickness of the individual pieces. Therefore to maintain comparability throughout the entirety of the data analysis I use the frequency of artefacts as the basis for comparison.

Figure 19. Comparison of Frequency and Weight of Ceramics in Site D1 as Percentages (see Table 7 for key to abbreviations)

2 All the ceramic body materials defined by Thompson and Wilson (1987) are present in the collection except Oriental Porcelain.
A total of 81,988 artefacts were excavated from Site D1 and their numbers by class and by Stratigraphic Unit are presented in Table 8.

Table 8. Counts of Artefacts by Class and by Stratigraphic Unit in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Food</th>
<th>Clothing</th>
<th>Accom.</th>
<th>Hospital</th>
<th>Personal</th>
<th>Unassigned</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>8104</td>
<td>33</td>
<td>133</td>
<td>113</td>
<td>38</td>
<td>6633</td>
<td>15054</td>
</tr>
<tr>
<td>SU II</td>
<td>22135</td>
<td>417</td>
<td>255</td>
<td>317</td>
<td>59</td>
<td>25773</td>
<td>48956</td>
</tr>
<tr>
<td>SU III</td>
<td>5445</td>
<td>190</td>
<td>25</td>
<td>167</td>
<td>2</td>
<td>6788</td>
<td>12617</td>
</tr>
<tr>
<td>SU II/III</td>
<td>1183</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>1858</td>
<td>3060</td>
</tr>
<tr>
<td>SU IV</td>
<td>398</td>
<td>17</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>1861</td>
<td>2301</td>
</tr>
<tr>
<td>Total</td>
<td>37265</td>
<td>662</td>
<td>422</td>
<td>626</td>
<td>100</td>
<td>42913</td>
<td>81988</td>
</tr>
</tbody>
</table>

Food

Artefacts related to food consumption and storage comprise the largest single class of artefacts within the collection obtained from Site D1. The number of individual food related artefacts by SU is presented in Table 9. It is interesting to note that no faunal material was found that relates to food consumption. No identifiable food species were found.

Table 9. Distribution of Food Class in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Cork</th>
<th>Glass</th>
<th>Metal</th>
<th>Rubber</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>139</td>
<td>7</td>
<td>7946</td>
<td>12</td>
<td>0</td>
<td>8104</td>
</tr>
<tr>
<td>SU II</td>
<td>170</td>
<td>16</td>
<td>21783</td>
<td>165</td>
<td>1</td>
<td>22135</td>
</tr>
<tr>
<td>SU III</td>
<td>29</td>
<td>7</td>
<td>5405</td>
<td>4</td>
<td>0</td>
<td>5445</td>
</tr>
<tr>
<td>SU II/III</td>
<td>5</td>
<td>0</td>
<td>1177</td>
<td>1</td>
<td>0</td>
<td>1183</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>397</td>
<td>1</td>
<td>0</td>
<td>398</td>
</tr>
<tr>
<td>Total</td>
<td>343</td>
<td>30</td>
<td>36708</td>
<td>183</td>
<td>1</td>
<td>37265</td>
</tr>
</tbody>
</table>
Ceramic

Of the 465 ceramic artefacts excavated from Site D1, 343 (73.8%) are food related. Two sherds are large ginger beer storage vessels, both of fine stoneware and glazed. The remainder of the sherds are tableware which constitutes the largest single ceramic type (n = 341, 73.3%). The collection comprises 15 bowl sherds, 35 cup sherds, 32 dinner plate sherds, 113 plate sherds, 1 side plate sherd, 1 platter sherd, 25 saucer sherds, 3 teapot sherds, 5 tureen sherds and 113 unidentified flatware sherds.

Nineteen pieces of tableware are datable by the backstamps (Table 10). The ‘ceramic number’ is an identifier given to each ceramic piece in the Archaeology Laboratory and on the database. All of the identified manufacturers are from the Staffordshire potteries of northern England.

Ceramic piece 272 has the mark "7=97" impressed in the base. This most probably refers to a date of manufacture (i.e. July 1897). Piece 454 has a mark that could be any one of these four marks:

- Johnston Bros 1891-1913 (Godden 1964: mark no. 2176);
- Alfred Meakin 1897 - ? (Godden 1964: mark no. 2584);
- Mellor, Taylor & Co 1891-1904 (Godden 1964: mark no. 2647); or
- Wilkinson 1891-1910 (Godden 1964: mark no. 4169).

This particular mark contains the royal crest, the words ‘ROYAL IRONSTONE CHINA’ and the word ‘ENGLAND’. As ‘ENGLAND’ is in a different font and a
slightly different colour to the rest of the stamp, it may suggest that it was applied as a new addition to an existing stamp and that it dates to 1891 or thereabouts. In 1891 the word ‘ENGLAND’ was added to most marks to comply with the American McKinley Tariff Act (Godden 1964). So, in all probability the piece dates to between 1891 and 1913 although if it is the Meakin mark then it could date up to the 1930s. Due to the slightly different colour of the word ‘ENGLAND’ I suspect that it dates closer to 1891 than 1930.

<table>
<thead>
<tr>
<th>Ceramic Number</th>
<th>SU</th>
<th>Date Range</th>
<th>Manufacturer (Godden 1964)</th>
<th>Shape</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>1945</td>
<td>Arthur J Wilkinson Ltd</td>
<td>Cup</td>
<td>Fine Stoneware</td>
</tr>
<tr>
<td>145</td>
<td>1</td>
<td>1895-1898</td>
<td>Smith & Ford</td>
<td>Flatware</td>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td>147</td>
<td>2</td>
<td>1897-1930</td>
<td>Alfred Meakin</td>
<td>Dinner Plate</td>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td>185</td>
<td>3</td>
<td>1891-1904</td>
<td>Mellor, Taylor & Co</td>
<td>Plate</td>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td>235</td>
<td>1</td>
<td>1897-1930</td>
<td>Alfred Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>236</td>
<td>1</td>
<td>1897-1930</td>
<td>Alfred Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>243</td>
<td>1</td>
<td>1939+</td>
<td>Alfred Meakin</td>
<td>Plate</td>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td>249</td>
<td>1</td>
<td>1897-1930</td>
<td>Alfred Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>255</td>
<td>1</td>
<td>1897-1930</td>
<td>Alfred Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>272</td>
<td>1</td>
<td>1897</td>
<td></td>
<td>Plate</td>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td>273</td>
<td>1</td>
<td>1890-1939</td>
<td>J & G Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>295</td>
<td>2</td>
<td>1890-1939</td>
<td>J & G Meakin</td>
<td>Plate</td>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td>351</td>
<td>2</td>
<td>1890-1939</td>
<td>J & G Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>399</td>
<td>1</td>
<td>1945+</td>
<td>John Maddock & Sons</td>
<td>Cup</td>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
<td>1897-1930</td>
<td>Alfred Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>1890-1960</td>
<td>J & G Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>451</td>
<td>2</td>
<td>1890-1939</td>
<td>J & G Meakin</td>
<td>Plate</td>
<td>White Earthenware</td>
</tr>
<tr>
<td>454</td>
<td>2</td>
<td>1891-1913</td>
<td></td>
<td>Plate</td>
<td>Vitreous Stoneware</td>
</tr>
</tbody>
</table>
Bowl Sherds

There are 15 bowl sherds in this collection. Two exhibit a solely moulded design, one an underglaze design and four have both moulded and underglaze designs on them. One sherd has moulded leaves on the outside of the vessel and brown, transfer printed flowers and leaves on the inside of the bowl. Another has brown transfer printed leaves and butterflies on the inside and moulded leaves on the outside.

Three of the bowl sherds have a pattern known as 'CATEDRAL', which was produced by the J & G Meakin company of Hanley, Staffordshire. It is a blue, underglaze, transfer printed design of flowers, leaves, arches, dots and asterisks (Figure 20). Based on the backstamps of pieces with this design it dates to between 1890 and 1939 (Godden 1964: mark 2601). The mark includes the pattern name ‘CATEDRAL’. The arches in the pattern have the appearance of church windows and the pattern name is the Spanish word for 'cathedral' hence the inspiration for the design.

There are 55 pieces of tableware with this design: three bowls, seven dinner plates, 33 plates, one side plate, one saucer and 10 unidentified pieces with this pattern. One piece is made of fine stoneware, whilst 13 are of vitreous stoneware and 41 white earthenware. The pattern is distributed throughout SU I and SU II with 31 pieces (56.4%) in SU I and 24 pieces (43.6%) in SU II. There are five conjoin sets in the white earthenware Catedral collection.
Figure 20. Catedral Design
In SU I there are four conjoin sets containing two pieces each and in SU II there is a four piece conjoin set.

There are two possible explanations for the variation in the body material (fine stoneware, vitreous stoneware and white earthenware). One is that the 55 pieces represent three different unrelated sets acquired at either different times or the same time, the other, that they represent one set and that replacement or additional pieces were acquired through time and matching the pattern was more important than matching the body.

Cup Sherds

Of the 35 cup sherds two manufactured by Arthur J Wilkinson Ltd and John Maddock and Sons, are datable by backstamps (see Table 10). The Wilkinson cup is almost complete and is a government issue teacup complete with a date (1945) and the insignia of King George VI ('G. vi R.') in underglaze black print. The Maddock cup has a circular mark and crown that closely approximates the Godden (1964) mark 2470 which was introduced in 1945.

Six cup sherds are decorated. One is a vitreous stoneware handle sherd with raised ridges around the edge of the handle. A second handle sherd has a moulded scroll design. A porcelain rim has overglaze gilt lines painted around the rim and 20 mm down from the edge. Another piece is almost identical with the lower line being 19.1 mm in from the edge. Another two sherds have overglaze gilt designs. One has four
gilt bands around the rim and the other is a broken porcelain base with a hand painted bird’s head, neck and wing above a flower. This sherd is the only piece found in SU III.

Table 11 provides a summary of the body material and fragmentation of the sherds.

Nineteen of the sherds are from SU I, 15 are from SU II and there is one from SU III.

<table>
<thead>
<tr>
<th>Table 11. Summary Data for Cups in Site D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Material</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Fine Stoneware</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Porcelain</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Vitreous Stoneware</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>White Earthenware</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Dinner Plate Sherds

There are 32 dinner plate sherds in the collection. One is made of porcelain, 17 are vitreous stoneware, 12 are white earthenware and two are fine stoneware. There are three conjoin sets in the collection. Three white earthenware sherds in SU I conjoin as do four vitreous stoneware sherds in SU II and two white earthenware sherds in
SU III. Seven of the sherds have the Catedral pattern (see above). None of the conjoins has this pattern. Seven other sherds are decorated. Four have moulded decorations and three have transfer prints. The moulded designs are:

- Three raised rings around the underside of the plate;
- Two rings around the upper side of the plate;
- Floral design around the edge; and
- Basketweave pattern around the edge.

The underglaze decorations are:

- Blue and white floral design around the scalloped edge;
- Red floral design on body; and
- Unidentified blue design on body.

Plate Sherds

Plate sherds total 113, of which 76 are white earthenware and 37 vitreous stoneware. Fifty-seven are rim pieces, 36 are bases and 20 are body sherds. The 15 plate sherds identifiable by backstamps are detailed in Table 10. Thirty-three sherds have the Catedral pattern. Other patterns are presented in Table 12. The remaining plate sherds (n = 45) are plain white utility dinnerware.
Table 12. Patterned Plate Sherds in Site D1

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moulded scrollwork</td>
<td>6</td>
</tr>
<tr>
<td>Moulded scrollwork and scalloped edge</td>
<td>4</td>
</tr>
<tr>
<td>Moulded flowers</td>
<td>1</td>
</tr>
<tr>
<td>Moulded flowers and scalloped edge</td>
<td>1</td>
</tr>
<tr>
<td>Moulded leaves</td>
<td>1</td>
</tr>
<tr>
<td>Moulded basketweave</td>
<td>17</td>
</tr>
<tr>
<td>Transfer-print red branches, wattle flowers, bell-shaped flowers and leaves</td>
<td>3</td>
</tr>
<tr>
<td>Transfer-print blue flowers</td>
<td>1</td>
</tr>
<tr>
<td>Transfer-print blue leaves</td>
<td>1</td>
</tr>
<tr>
<td>Catedral</td>
<td>33</td>
</tr>
</tbody>
</table>

Side Plate Sherds

There is one side plate sherd made of vitreous stoneware. It has a Catedral pattern, is from SU II of grid unit A3 and weighs 22.3 grams.

Platter Sherds

One vitreous stoneware platter sherd was found in SU I of grid unit B1. It has a width of greater than 220 mm and weighs 407.3 g. It is decorated in transfer-printed blue vine leaves.

Saucer Sherds

Of the 25 saucer sherds 12 are porcelain, nine are vitreous stoneware and four white earthenware. There are two conjoin sets: four pieces of porcelain form one saucer with three concentric overglaze gilt rings commencing 10 mm from the edge of the rim; and two pieces of vitreous stoneware. These latter two have a broad band of
overglaze gilt around the rim and three gilt lines running around the body. Other decorations include a sherd with four bands of overglaze gilt around the edge of the saucer, one with three parallel gilt lines near the rim and another with a 6.3 mm wide gilt rim and three gilt lines around the body of the saucer. Two saucer sherds have moulded designs: one has a fine scalloped edge and swirled ridges run from the centre of each scallop towards the centre of the saucer; the other has a scalloped edge. One vitreous stoneware rim piece has the Catedral pattern.

Teapot Sherds
Three teapot body sherds are located in SU II of grid unit A3. All three pieces have a brown glaze and similar appearance however they do not conjoin and their mean weight is 66.9 grams.

Tureen Sherds
There are five tureen lid sherds made of vitreous stoneware. All five sherds have a red transfer-printed design of festoons of wattle flowers, branches, fern leaves, vines and berries. Four originate in SU I of grid unit B2 (two conjoin) and one is in SU II of the same grid unit.

Unidentified Sherds
There are 113 pieces of tableware that can not be categorised due to the high degree of fragmentation. Sixty are made of white earthenware, 13 of porcelain, 39 of vitreous stoneware and one of red earthenware. The red earthenware piece is unusual.
in that it has a clear glaze. Fourteen of the sherds are bases, 21 are rims and 13 are body sherds. The other 55 pieces are unidentifiable at this level. A base sherd in SU I of grid unit B1 (see Table 10) was manufactured by Smith and Ford at their Burslem Pottery between 1895 and 1898 (Godden 1964). The mark includes the pattern name ‘ANEMONE’ although none of the pattern is on this piece. Ten sherds have the Catedral pattern (see above).

Cork

A total of 30 bottle corks were located in Site D1. None of the corks had any identifying marks on them.

Glass

A total of 38,530 pieces of glass were excavated from the six square metres of Site D1 (Table 13). The distribution pattern for the number of pieces of glass in each SU is very even (Table 14) as is the ratio of one colour of glass to another. This tends to suggest that the glass is not randomly distributed and that similar ratios of glass colour were deposited through time. The glass collection from these two trenches totals 862,282.8 grams (c.862 kg). Food and beverage sherds account for 95.27% of the entire glass collection.
Table 13. Frequency of Glass by Colour in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Blue</th>
<th>Blue/Green</th>
<th>Brown</th>
<th>Clear</th>
<th>Green</th>
<th>Pink</th>
<th>Purple</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>30</td>
<td>117</td>
<td>787</td>
<td>1302</td>
<td>6750</td>
<td>0</td>
<td>73</td>
<td>9059</td>
</tr>
<tr>
<td>SU II</td>
<td>2</td>
<td>41</td>
<td>209</td>
<td>1414</td>
<td>2585</td>
<td>17805</td>
<td>1</td>
<td>252</td>
<td>22309</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>13</td>
<td>37</td>
<td>372</td>
<td>519</td>
<td>4535</td>
<td>3</td>
<td>80</td>
<td>5559</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>12</td>
<td>26</td>
<td>118</td>
<td>161</td>
<td>869</td>
<td>0</td>
<td>1</td>
<td>1187</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>26</td>
<td>34</td>
<td>346</td>
<td>0</td>
<td>4</td>
<td>416</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>96</td>
<td>395</td>
<td>2717</td>
<td>4601</td>
<td>30305</td>
<td>4</td>
<td>410</td>
<td>38530</td>
</tr>
</tbody>
</table>

Table 14. Percentage of Glass by Colour in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Blue</th>
<th>Blue/Green</th>
<th>Brown</th>
<th>Clear</th>
<th>Green</th>
<th>Pink</th>
<th>Purple</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0.01</td>
<td>0.18</td>
<td>0.94</td>
<td>0.01</td>
<td>0.94</td>
<td>0.18</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>SU II</td>
<td>0.01</td>
<td>0.18</td>
<td>0.94</td>
<td>0.01</td>
<td>0.94</td>
<td>0.18</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>SU III</td>
<td>0.01</td>
<td>0.18</td>
<td>0.94</td>
<td>0.01</td>
<td>0.94</td>
<td>0.18</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>0.01</td>
<td>0.18</td>
<td>0.01</td>
<td>0.94</td>
<td>0.18</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>SU IV</td>
<td>0.01</td>
<td>0.18</td>
<td>0.94</td>
<td>0.01</td>
<td>0.94</td>
<td>0.18</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.01</td>
<td>0.18</td>
<td>0.94</td>
<td>0.01</td>
<td>0.94</td>
<td>0.18</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The food glass is subdivided based on use (Table 15). One third of this glass collection (33.8%) is beer bottle glass. This figure rises to three-quarters (76.9%) of the use-identified collection (n = 16,155). Identified alcohol bottles account for 94.5% (n = 15,269) of the use-identified collection and 41.6% of the entire collection.

Of all the parts of the bottle, the body is the most represented part in the collection (Table 16). Six hundred and seventeen bottles had rims identifiable as applied lips, crown seals or rings seals (Table 17).
Table 15. Distribution of Glass Food Artefacts in Site D1

<table>
<thead>
<tr>
<th></th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>SU II/III</th>
<th>SU IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer</td>
<td>3426</td>
<td>7516</td>
<td>1182</td>
<td>159</td>
<td>137</td>
<td>12420</td>
</tr>
<tr>
<td>Chutney</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Claret</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cordial</td>
<td>58</td>
<td>251</td>
<td>81</td>
<td>1</td>
<td>6</td>
<td>397</td>
</tr>
<tr>
<td>Gin</td>
<td>9</td>
<td>91</td>
<td>1</td>
<td>13</td>
<td>3</td>
<td>117</td>
</tr>
<tr>
<td>Jam</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Milk</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Mineral Water</td>
<td>8</td>
<td>49</td>
<td>25</td>
<td>0</td>
<td>5</td>
<td>87</td>
</tr>
<tr>
<td>Pickles</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Rum</td>
<td>7</td>
<td>23</td>
<td>19</td>
<td>4</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>Sauce</td>
<td>67</td>
<td>96</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>178</td>
</tr>
<tr>
<td>Schnapps</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Sherry</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Syrup</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Vinegar</td>
<td>65</td>
<td>112</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>190</td>
</tr>
<tr>
<td>Whisky</td>
<td>252</td>
<td>683</td>
<td>139</td>
<td>75</td>
<td>3</td>
<td>1152</td>
</tr>
<tr>
<td>Wine</td>
<td>472</td>
<td>531</td>
<td>397</td>
<td>92</td>
<td>24</td>
<td>1516</td>
</tr>
<tr>
<td>Unidentified</td>
<td>3575</td>
<td>12410</td>
<td>3529</td>
<td>822</td>
<td>217</td>
<td>20553</td>
</tr>
<tr>
<td>Total</td>
<td>7946</td>
<td>21783</td>
<td>5405</td>
<td>1177</td>
<td>397</td>
<td>36708</td>
</tr>
</tbody>
</table>

Table 16. Bottle Body Part of Food Glass in Site D1

<table>
<thead>
<tr>
<th>Bottle Part</th>
<th>Frequency</th>
<th>Weight (g)</th>
<th>Mean Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>21</td>
<td>17084</td>
<td>813.5</td>
</tr>
<tr>
<td>Stopper</td>
<td>11</td>
<td>103.8</td>
<td>9.4</td>
</tr>
<tr>
<td>Rim</td>
<td>788</td>
<td>66034.0</td>
<td>83.8</td>
</tr>
<tr>
<td>Neck</td>
<td>2733</td>
<td>62597.7</td>
<td>22.9</td>
</tr>
<tr>
<td>Seal</td>
<td>2</td>
<td>13.4</td>
<td>6.7</td>
</tr>
<tr>
<td>Body</td>
<td>23082</td>
<td>389311.5</td>
<td>16.9</td>
</tr>
<tr>
<td>Base</td>
<td>2297</td>
<td>101731.9</td>
<td>44.3</td>
</tr>
<tr>
<td>Kick</td>
<td>1098</td>
<td>206307.1</td>
<td>187.9</td>
</tr>
<tr>
<td>Unidentified</td>
<td>6676</td>
<td>5279.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>36708</td>
<td>848463.1</td>
<td>23.1</td>
</tr>
</tbody>
</table>
Table 17. Distribution of Bottle Rim Types in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Applied Lip</th>
<th>Crown Seal</th>
<th>Ring Seal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>68</td>
<td>18</td>
<td>219</td>
<td>305</td>
</tr>
<tr>
<td>SU II</td>
<td>47</td>
<td>12</td>
<td>233</td>
<td>292</td>
</tr>
<tr>
<td>SU III</td>
<td>5</td>
<td>2</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>32</td>
<td>465</td>
<td>617</td>
</tr>
</tbody>
</table>

Beer Bottle Glass

A total of 12,420 fragments of beer bottles were identified in the material excavated from Site D1. All the beer bottle fragments were from pint bottles except 132 sherds from half pint bottles. Sixty three half pint bottle fragments were in SU I, 66 were in SU II and three were in SU III. The fragmentation of the glass is shown in Table 18. Based on the number of complete bottles and kicks the MNI of beer bottles is 719. Almost all the fragments were plain and carried no identifying marks. Only 62 (0.5%) were identifiable to a particular brewer: one was a Fosters bottle from Melbourne; 36 were Resch's bottles from Sydney; and 15 were The New South Wales Lager Bier Company from Sydney. A further 28 (0.2%) bottles were identifiable to the bottle company (rather than the brewer). Twenty-one were produced by Brisbane Bottle Exchange (BBE), six by Australian Glass Manufacturers (AGM) and one by Busby and Sons. The date of manufacture of the six AGM bottles can be obtained from their base marks (see Nolan 1992:30). In SU I of grid unit B2 there is one piece that was produced between 1922 and 1929 and four pieces produced between 1934 and 1948. In SU II of the same grid unit there is one piece that dates between 1922 and 1929.
In SU I of grid unit B3 there is one piece and it was produced between 1934 and 1948.

Table 18. Fragmentation of Beer Bottle Glass in Site D1

<table>
<thead>
<tr>
<th>Complete</th>
<th>Rim</th>
<th>Neck</th>
<th>Body</th>
<th>Base</th>
<th>Kick</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>522</td>
<td>1048</td>
<td>8805</td>
<td>1326</td>
<td>700</td>
<td>12420</td>
</tr>
</tbody>
</table>

Ninety five percent (n = 11,800) of the beer bottle glass is green. The remaining five percent is made up of two clear sherds and 618 brown sherds.

Chutney Bottle Glass

There was only one chutney bottle sherd; the kick of a bottle found in SU I of grid unit B2. It is the product of the Bengal Chutney Company and was made by Queensland Glass Manufacturers. Arnold (n.d.:11) attributes this bottle to the 1890-1930 period.

Cordial Bottle Glass

A total of 397 pieces of cordial bottles were located (Table 19). Based on the number of kicks the MNI of cordial bottles is 18. Three hundred and ten sherds are from bottles that come from the company Brookes and Sons. Brookes and Sons produced cordials in Melbourne (Australia), Christchurch (New Zealand) and New York (USA). The other 87 pieces are not identifiable to any particular maker.
Table 19. Fragmentation of Cordial Bottle Glass in Site D1

<table>
<thead>
<tr>
<th>Complete</th>
<th>Rim</th>
<th>Neck</th>
<th>Body</th>
<th>Base</th>
<th>Kick</th>
<th>Unid</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>27</td>
<td>319</td>
<td>20</td>
<td>18</td>
<td>2</td>
<td>397</td>
</tr>
</tbody>
</table>

Claret Bottle Glass

There is only one claret bottle sherd in the collection. It is a green sherd from the body of a bottle located in SU II of grid unit A1 and it has the lettering ‘CLARE ...’ embossed on the body. It has evaded further identification.

Gin Bottle Glass

Of the 117 fragments of gin bottles there are 109 body sherds, three rim pieces, two neck pieces, one base and two seals. All the sherds are green. Based on rim pieces the MNI is three. Twenty-seven sherds, including the two seal fragments, come from bottles of A van Hoboken and Co (of Rotterdam) casement gin bottles. The seal fragments conjoin to form one seal that has the initials ‘AVH’ within two concentric circles (Figure 21). Litherland (n.d.:38) provides an example of an identical bottle that he dates to 1890 whereas McNiven (1998:14) dates an example of this seal to between 1860 and 1880.

Jam Jar Glass

Of the 15 pieces of jam jars eight are body sherds whilst six are neck sherds and one is a rim of a jar. The MNI is one jam jar.
Figure 21. A van Hoboken Seal

Milk Bottle Glass

Seven pieces of milk bottle glass were excavated from Site D1. Seven are rim pieces and two are neck pieces. The MNI of milk bottles is seven.

Mineral Water Bottle Glass

There is a total of 87 mineral water bottle sherds (Table 20). Based on kick sherds, the MNI of mineral water bottles is nine.

<table>
<thead>
<tr>
<th>Table 20. Fragmentation of Mineral Water Bottle Glass in Site D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Fifty-four of the mineral water bottle sherds are Codd’s bottles and one is a marble from the neck of a Codd’s bottle. The Codd’s patent bottle was an international success by 1873 (Jones 1979:36). The only Codd’s bottle in this collection with a manufacturer’s mark is one from ‘L & B’, Sydney. Using Jones’ (1979) catalogue of Sydney’s aerated water manufacturers there are two possible manufacturers: Long & Bardon who operated between 1915 and 1930 and Louden & Bath who operated between 1904 and 1908. Eight pieces of glass are from Lamont patent bottles. Lamonts were patented in 1874 (Jones 1979:43) and remained popular until the 1920s (Arnold n.d.:30). These eight pieces all belong to bottles produced for Marchant & Co. of Sydney which operated from Parramatta between 1893 and 1909. The company then became Marchants Ltd. and continued to trade until 1930 (Jones 1979:28). Two sherds also belong to Helidon Spa Water Company bottles. This company is located in southeastern Queensland and has operated since 1870 (Redland Shire Council 1970).

Pickle Bottle Glass

Of the nine pickle bottle sherds seven sherds are from the bodies of the bottles, one is a rim and one is a kick. The MNI is three. Five are from Rising Sun Brand which was a trade mark of A. Hoadley & Co. of Melbourne. They operated in the period 1890-1930 (Arnold n.d.:11). One is a Harrison’s Brand and another is Castlebrand pickles.
Rum Bottle Glass

Of the fifty-four rum bottle fragments one is a rim piece, seven neck pieces, 38 body pieces, seven bases and one kick. The MNI therefore is one. Only one rum bottle has lettering on it: ‘C S & Co Ltd’. This is on the underside of a kick and is probably the name of the bottle manufacturer rather than the rum supplier.

Sauce Bottle Glass

There are 178 sauce bottle fragments in Site D1 (Table 21). Based on the number of kicks the MNI is 20.

<table>
<thead>
<tr>
<th>Stopper</th>
<th>Rim</th>
<th>Neck</th>
<th>Body</th>
<th>Base</th>
<th>Kick</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>12</td>
<td>113</td>
<td>13</td>
<td>20</td>
<td>178</td>
</tr>
</tbody>
</table>

Sixty-three sherds can be definitely identified to a particular sauce company with two separate companies represented in the collection. Fifty-seven sherds are from Holbrook & Co. bottles and six are from Lea & Perrin’s sauce bottles. Both companies still supply sauce to the Australian market.

Sherry Bottle Glass

The one sherry bottle fragment is a brown rim found in SU I of grid unit A3. It weighs 223.4 grams.
Schnapps Bottle Glass

There are eight schnapps bottle fragments of which a kick, a rim and a body sherd are from SU II whilst five body sherds are from SU III. Consequently the MNI is one.

Vinegar Bottle Glass

There are 190 vinegar bottle sherds. They are all clear glass and 108 are body pieces, 60 are necks, 10 are kicks, seven are base pieces and five are rims. The MNI of vinegar bottles is 10. Seventy of the sherds are attributable to Champions Vinegar. ‘Champions Celebrated Malt Vinegar’ bottles are the most common vinegar bottle found in the Australian context and date to pre-1940 (Arnold n.d.:14).

Whisky Bottle Glass

Although 1,152 whisky bottle sherds were identified, the MNI is 16 bottles (14 green rims, one black sherd, one clear sherd). In addition to the 14 rim sherds there are 141 neck sherds, 962 body sherds, 30 base sherds and four kicks. Forty-three sherds are clear, 1,108 are green and one is black. By the writing embossed on the shoulders of the bottles, 80 of the whisky bottle sherds are attributable to ‘The Gaelic Whisky’. Another three sherds in SU III of grid unit A3 conjoin to form a picture of a turreted castle with the lettering ‘TR ...’ impressed in the glass. A clear sherd bears the logo ‘Whyte & ...’ and is attributed to Whyte and Mackay, a Glasgow manufacturer.
Wine Bottle Glass

Of the 1,516 wine bottle sherds the vast majority are green (96.3%, n = 1460). There are also 52 brown sherds and 4 clear sherds. The MNI of wine bottles in 103, being the number of kicks plus one brown and one clear bottle. There are also 79 rims, 150 neck sherds, 1,061 body sherds and 125 base sherds.

Unassigned Bottle Glass

The specific usage of the largest proportion of bottle glass (55.9%, n = 20,553) is not identifiable. This is caused by the close similarities in attributes of beer and wine bottles and by the number of uses to which a plain general green bottle can be put. The large number of unidentified bottle glass sherds is also due in part to my refusal to attribute a sherd to a particular use until I was definite in the attribution. The fragmentation of the unidentified collection is presented in Table 22. One third (32.5%) of the unidentified bottle sherds cannot be identified as to the body part.

Table 22. Fragmentation of Unidentified Bottle Glass in Site D1

<table>
<thead>
<tr>
<th>Complete</th>
<th>Stopper</th>
<th>Rim</th>
<th>Neck</th>
<th>Body</th>
<th>Base</th>
<th>Kick</th>
<th>Unid.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>132</td>
<td>1252</td>
<td>11505</td>
<td>756</td>
<td>230</td>
<td>6676</td>
<td>20553</td>
</tr>
</tbody>
</table>

The MNI of unidentified bottles is 231 comprising 230 kicks and one complete bottle.

The complete bottle is a small rectangular bottle with bevelled edges made of clear glass and weighing just 79.4 grams. I have not been able to identify it.
Metal

A total of 41,160 pieces of metal were removed from the six grid units of Site D1. Although there is a large number of metal artefacts and the heaviest (a stove door) weighs 2071.2g, the average weight is less than half a gram. Of the total artefacts 91.18% (40,822) are unidentifiable due to their very small size and highly corroded state. Metal artefacts were located in every SU of every excavated grid unit.

One hundred and eighty three of the identifiable metal artefacts relate to food consumption or storage (Table 9). These consist of a desert spoon, a three tyne fork, a piece of foil from a whisky bottle, three pieces of foil from unidentified bottles, three jar lids, two keys for opening cans, one lead seal from a bottle top and 151 tin cans pieces.

Rubber

Of the 20 pieces of rubber 65% percent is found in grid unit A3, 15% in B2 and the remaining 20% in B3. The only rubber artefact related to the provision of food is an ebonite stopper with a rubber washer from a Vallet’s patent, a Breffit’s patent or a Kilner patent aerated water bottle (Jones 1979:43-44). It is a black, bullet or suppository shaped (i.e. cylindrical with a domed head) artefact measuring 23.7 mm long with a diameter of 13.9 mm. All these bottles were patented in the second half of the 19th Century. Ebonite is also known as vulcanite or ‘hard rubber’. It is rubber in which the vulcanisation process has been taken to the extreme (Katz 1986:31).
The stopper has the lettering ‘M. S. B * W. K. S C° *’ in a sans-serif script in a circle around the tip. It is located in SU II of grid unit A3.

Summary of Food Related Artefacts

Food related artefacts comprise 45.5% of the total artefact collection from Site D1. Of these 98.5% are glass and 41.0% are specifically alcohol bottle sherds. Beer bottle sherds alone account for 33.3% of all food related artefacts. The next most common type of glass sherd is wine bottle representing 4.1% of the food related artefacts.

The next largest category (apart from glass) is ceramic and accounts for 0.9% of the collection. All but two of the ceramic pieces are tableware and of these 19 are datable by backstamps (see Table 10). The date ranges cover the entire period of Lazaret occupancy. All the pieces are examples of mass produced wares.

Small numbers of other food related artefacts were located in Site D1. These artefacts include bottle stoppers (30 corks, a lead seal and an ebonite seal), cutlery (a spoon and a fork) and tin cans.

Clothing

A total of 662 clothing related artefacts were recovered from Site D1. Their distribution is presented in Table 23. No fibrous material or threads such as wool or cotton were found.
Table 23. Distribution of Clothing Artefacts in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Leather</th>
<th>Metal</th>
<th>Plastic</th>
<th>Shell</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>32</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>SU II</td>
<td>400</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>417</td>
</tr>
<tr>
<td>SU III</td>
<td>184</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>190</td>
</tr>
<tr>
<td>SU II/III</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>SU IV</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>635</td>
<td>23</td>
<td>3</td>
<td>1</td>
<td>662</td>
</tr>
</tbody>
</table>

Leather

A total of 635 leather artefacts were recovered from Site D1, of which 99.06% (n = 629) are pieces of shoe leather. Twenty-three pieces found in SU I of grid unit B1 conjoin to form an almost complete man’s right foot, black, lace-up, leather shoe. One artefact is a complete child’s left foot sandal; it is white in colour, 18 cm long and weighs 119.2 grams. The five leather artefacts not related to footwear are still related to clothing. Four pieces of leather from SU II of grid unit B1 conjoin to form a 4.6 cm section of a woman’s watchband. The other leather artefact (found in SU II of grid unit B2) is a 9.1 cm length of brown belt containing three belt holes.

Metal

The 23 metal clothing related artefacts in Site D1 are shoe eyelets (n = 17), shoe nails (n = 2), a button (n = 1), a button shank (n = 1) and a belt buckle. The shoe eyelets were most probably deposited as part of complete shoes and after the leather corroded the eyelets became dispersed within the deposit. The button has two holes and is 11.4 mm in diameter.
Plastic

Three very small, spherical to ovoid beads of white plastic, each with a diameter of 3.5 mm and with a combined weight of 0.1 grams are found in SU II. The beads have no bore hole, shanks or others means of attaching them to other items.

Shell

The only shell clothing artefact is a mother of pearl, two-holed button found in SU II of grid unit B2. It is 11.1 mm in diameter, and 1.6 mm thick. It is plain with no decoration.

Summary of Clothing Related Artefacts

There are 662 clothing related artefacts in Site D1. Pieces of shoes comprise 97.9% (n = 648) of this collection. Other artefacts include button, belts, beads and watch band pieces. In addition 18 fragments from rubber gloves were recovered. These are considered to be related to nursing treatments and consequently are described in the Hospital section of this chapter.

Accommodation

There are 422 artefacts associated with the provision of buildings and accommodation at the Lazaret (Table 24).
Table 24. Distribution of Accommodation Artefacts in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Brick</th>
<th>Ceramic</th>
<th>Concrete</th>
<th>Fibro</th>
<th>Glass</th>
<th>Metal</th>
<th>Wood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>75</td>
<td>37</td>
<td>15</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>SU II</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>127</td>
<td>50</td>
<td>59</td>
<td>13</td>
<td>255</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>206</td>
<td>103</td>
<td>83</td>
<td>14</td>
<td>422</td>
</tr>
</tbody>
</table>

Brick

Of the three pieces of brick recovered two were half bricks and the other was a quarter of a brick. The two half bricks possessed distinctly different frogs. A frog is the central depression in the largest surface of a brick. One has a small oval-shaped frog whilst the other has a large rectangular frog that commences 2.5 cm from all four edges. No other distinguishing features existed on the bricks.

Ceramic

Accommodation ceramic pieces amount to 2.2% (n = 10) of the recovered ceramic sherds. All are from drainage pipes and they range in weight from 12.0 to 514.9 g, with a mean of 166.2 g. They are found distributed through all stratigraphic units except SU IV. Eight of the pieces are coarse stoneware and the other two are red earthenware. The coarse stoneware sherds are all glazed, four of them with a mottled brown salt-glaze, whilst the two red earthenware sherds are not glazed.
Concrete

Only three pieces of concrete were located in Site D1. One piece, located in SU I of grid unit A3, weighs 295.3 g or 99.23% of the entire concrete collection. This is a large, irregularly -shaped piece with rounded pebble inclusions.

Fibro

A total of 206 pieces of fibro sheeting were recovered. All but four pieces were found in SU I and II and 194 (94.17%) pieces are located in Trench B with only 12 pieces in Trench A.

Glass

All the glass artefacts related to accommodation are window pane glass. Four pieces in SU I are louvre glass as is one piece in SU II.

Metal

The metal accommodation artefacts found in Site D1 are presented in Table 25.

Wood

A total of 14 pieces of extremely fragmented brown coloured wood, other than sticks and branches from the trees overhanging the site, were recovered. All the wood was
Table 25. Metal Accommodation Artefacts in Site D1

<table>
<thead>
<tr>
<th></th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brackets, window</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Brackets, other</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Coach bolt</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Door knob</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electric light bulb fitting</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Furniture tack</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Latch, window</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mesh from meat safes</td>
<td>3</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Nails</td>
<td>0</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Rivets from water heaters</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screws</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Solder</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Stove doors</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stove tops</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Straps, galvanised</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Straps, other</td>
<td>1</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Water heater components</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Water pipe</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Wire, 0.1mm diameter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Wire, 1.4mm diameter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Wire, 3.7mm diameter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Wire, 4.3mm diameter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Wire, chicken</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>60</td>
<td>9</td>
</tr>
</tbody>
</table>

found in grid unit A1 with 93% of it in SU II. These wooden artefacts in all probability originate from the wood used for hut construction.

Summary of Accommodation Related Artefacts

The accommodation related artefacts include bricks, window glass, drainage pipes, concrete, wire, screws and wood, but by far the largest number of artefacts are pieces of fibro wall cladding. Fibro represents 48.8% of the accommodation artefacts.
Hospital

There are 626 artefacts from Site D1 that relate to the operation of the place as a hospital. Their distribution is presented in Table 26.

Table 26. Distribution of Hospital Related Artefacts in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Glass</th>
<th>Metal</th>
<th>Plastic</th>
<th>Rubber</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>11</td>
<td>101</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>113</td>
</tr>
<tr>
<td>SU II</td>
<td>18</td>
<td>289</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>317</td>
</tr>
<tr>
<td>SU III</td>
<td>14</td>
<td>143</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>167</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SU IV</td>
<td>1</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>556</td>
<td>7</td>
<td>1</td>
<td>18</td>
<td>626</td>
</tr>
</tbody>
</table>

Ceramic

There are 44 pieces of hospital ceramic of which 31 are pieces of white lotion bottles. These lotion bottles have a diameter of 52 mm and a single external thread around the rim. The bottle pieces are identical except for the body material. One of the 31 the pieces is a complete porcelain bottle and was located in SU II of grid unit A1. The other 30 lotion pot sherds comprise one other porcelain sherd, three fine stoneware 26 white earthenware. Within these white earthenware sherds there are two conjoin sets. Fourteen sherds from SU III of grid unit A1 conjoin to form the majority of one lotion bottle and a further two pieces from SU I of grid unit A3 conjoin. The weight range of all the sherds is 0.1 to 140.1 g, with a mean weight of 21.9 g.
Apart from the body material the appearance and dimensions of the lotion pots are identical. One possible explanation is that the different body materials were used at different time periods. This however does not appear to be the case. Table 27 demonstrates that the distribution of these sherds through the deposit is not patterned except for the introduction of fine stoneware and porcelain in SU II.

Table 27. Distribution of Lotion Pot Sherds in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Fine Stoneware</th>
<th>Porcelain</th>
<th>White Earthenware</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>SU II</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>2</td>
<td>26</td>
<td>31</td>
</tr>
</tbody>
</table>

The remaining 13 (of the 44) artefacts are all porcelain and represent 19.7% of the entire porcelain collection. Nine of these pieces are from the same artefact found in SU II of grid unit B3. It is some form of narrow laboratory vessel with a spout. Using a Hemastix™ test the spout tested positive to the presence of haemoglobin. This test was applied using the protocols developed by Loy (1997) to ensure that a false positive result was not achieved due to contamination from manganese in the soil or the presence of chlorophyll on the artefact. This positive result for the presence of haemoglobin indicates the presence of blood on the artefact. Another sherd that morphologically resembles these nine pieces was located in SU II of grid unit B1. The other three pieces constitute two rims and a body sherd from sample collection bowls.
Glass

Of the 556 pieces of glass defined as hospital related, 482 are fragments of medicine bottles, 52 are sherds of poison bottles, seven are fragments of ampoules, seven are pieces of test tubes, six are pieces of microscope slides, one is a complete medicine glass and one is an Eno's salts bottle stopper. 'Kepler/Wellcome' is the only medicine bottle manufacturer identifiable. There are two types of Kepler medicine bottle: a green and a brown. There are 137 green sherds and 28 brown ones. The minimum number of Kepler bottles, based on kicks, is three brown and 10 green. The bottles are rectangular in shape and on each of the four shoulders bear the logo 'KEPLER'.

On the base the bottles bear the raised lettering:

WELLCOME
CHEMICAL
WORKS
R. 497461

The 'R' is a registration number.

Fifty-two poison bottles were also identified. The vast majority them are body pieces (n = 45, 86.5%). Three are base pieces, one is a kick, one is a neck piece and two are rims. Based on the number of rims the MNI is two. Three of the poison bottle sherds carry identifying lettering on their bases:

1. '... E & MAYR ...
2. '... AYR ...
3. '... E & MAYR ..., ... BURG'.

These would appear to be the same company and possibly German (Hamburg?).
All test tube pieces were found in SU III of grid unit A2 and all but one of the microscope slides are located in SU II in Trench B: one in B1, four in B2 and one in B3. The exception is located in SU II/III.

The medicine glass is clear and is 48.3 mm high. The diameter of the rim is 37.9 mm, the diameter of the base is 28.9 mm and it weighs 33.2 g. It has the mark ‘W.T. Co’ on the base. The sides of the glass are marked off in ‘TEA’ - ‘DESSERT’ - and ‘TABLE’ - spoon measurements.

Salts Bottle Glass

The one salts bottle fragment identified in Site D1 is a stopper. It is a clear stopper weighing 30.8 grams. It was located in SU II of grid unit B3 and has the wording ‘... [P]REPARED BY ENO’S PATENT’ around it. It is a stopper of an Eno’s salts bottle which are still sold in Australian supermarkets for the symptomatic relief of indigestion.

Metal

Only seven metal artefacts that relate to the function of the hospital were identified. These were four metal foil seals from ‘ENO’s Fruit Salts’, a medicine bottle cap, the cap from a powder tin and a backplate from a bath thermometer.
Plastic

The only plastic artefact is a small part of a brown cap of a medicine bottle recovered from SU II of grid unit A2.

Rubber

These 18 rubber artefacts are fragments of rubber gloves, most probably associated with nursing duties and the application of topical medicines,

Summary of Hospital Related Artefacts in Site D1

There are 626 hospital related artefacts of which 556 (88.8%) are made of glass.
Hospital related artefacts include test tubes, poison bottles, medicine bottles, a medicine glass and the backplate of a bath thermometer.

Personal

There are 100 personal artefacts in the material excavated from Site D1. Their distribution is presented in Table 28.

Table 28. Distribution of Personal Artefacts in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Cardboard</th>
<th>Ceramic</th>
<th>Glass</th>
<th>Metal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>17</td>
<td>11</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>SU II</td>
<td>1</td>
<td>20</td>
<td>9</td>
<td>29</td>
<td>59</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>38</td>
<td>21</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>
Cardboard

Only one piece of cardboard was located. It is brown and was located in SU II of grid unit B1. It weighs 1.0 grams and has red lettering stating ‘STORE DRY ONLY’. Based on comparative material collected elsewhere at the Lazaret this cardboard is the outer covering of a D cell battery used to power crystal radio sets. Battery power appears to have been restricted to powering the radio sets. A battery core was located in SU II of grid unit B3 (see below).

Ceramic

The personal ceramic collection totals 38 pieces of which eight are vase sherds. Five of the vase pieces are fine stoneware and conjoin to form most of one side of a cream coloured vase, two are white earthenware and one vitreous stoneware. Seven of these eight pieces have moulded designs on them, and the remaining peice conjoins with four of them. Five have a basketweave pattern impressed on them and two others have a floreate design.

A mere five pieces in the personal ceramic collection are clay tobacco pipe fragments. This is a surprisingly small collection as most Australian sites yield far higher numbers of clay pipe pieces (e.g. Birmingham 1987; Dane and Morrison 1979; Hall et al. 1996; Prangnell 1991; Proudfoot et al. 1991). This no doubt relates to the twentieth century origins of the site and the decline in pipe smoking related to the increase in popularity of cigarettes after the 1870s (Fletcher 1972). Of course all five sherds are made from pipe clay. Four are bowl fragments and one is a stem fragment. The stem
fragment has the lettering ‘... A PARIS... moulded on the side (Figure 22a).
1599 P...’

This mark implies manufacture in Paris, ‘à Paris’, and was used by a number of French companies including Gambier and Noël Frères (Walker 1983). Gambier pipes were always marked in this way. French companies often used this mark on their export pipes whether or not they were actually made in Paris (Walker 1983). The Gambier company dates from 1780 to 1926 and the Noël company from 1808 to approximately 1920. The number ‘1599’ is probably the manufacturer’s mould number.

Three of the bowl fragments have impressed markings. The first is a complete bowl weighing 15.9 grams, with a maximum diameter of 27.9 mm and a height of 43.3 mm. It has a row of incised dashes, known as milling or rouletting, around the rim and the word ‘CORK’ in an oval on the back of the bowl (Figure 22b). A pipe with the same mark was excavated in Sydney and Birmingham (1987:15) makes a deductive leap and states that it comes from Ireland. However Irish designs were made by English and Scottish potters for the domestic Irish market. Excavations at Carlisle in England have yielded pipe bowls with patriotic Scottish and Irish symbols (Oswald 1975).

Oswald (1975) records only three pipe makers in Cork. All three operated in the 1840s and none are recorded as exporters. Pipes bearing Irish symbols including ‘place names, slogans, harps, shamrocks [and] often on particularly heavy, thick bowls, [are] aimed apparently at the navvy population’ (Oswald 1975:110) are one of the characteristic pipe styles of the late nineteenth century and were produced by a number of potters in England and Scotland.
The next bowl fragment has two bands with the letters ‘...IPE...’ between the bands (Figure 22c). The final marked piece is a bowl fragment with the letters ‘...RK...’ within a circle. This piece also has milling around the rim. None of these pipe fragments match any from the Port Arthur (Dane and Morrison 1979) collection. All five clay pipe fragments come from the same grid unit in the site (B3), but come from two or three different strata (SUs I, II and II/III).

Figure 22. Details of Clay Pipe Artefacts
Fourteen of the personal ceramic sherds are from flower pots and range in weight from 1.1 to 264.5 g with a mean weight of 95.2 g. Ten are red earthenware, two fine stoneware, one vitreous stoneware and one coarse stoneware. The fine stoneware sherds are the base and body of a pot constructed by coiling. It has a brown glaze on the interior and exterior. The vitreous stoneware sherd is part of a rim and has a blue coloured glaze on the exterior.

There are eight pieces of bathroom ceramics recovered from Site D1. Seven pieces are found in SU I and the other piece in SU II. Five of these are from chamber pots and the other three are rims of white earthenware basins. Three of the chamber pots are fine stoneware, of which two are rims and one is a body sherd. One of the rim sherds has a floreate design around the edge of the piece. One chamber pot sherd is made of vitreous stoneware and is the base of a pot. The final three pieces are rims of white earthenware decorated in an underglaze blue transfer print of flowers and leaves.

There are two sherds from a bowl (or bowls) in this collection. Both sherds are red earthenware, have a thick green glaze on them and were recovered from SU I of grid unit B1. They do not conjoin; either they are discontinuous sherds from the same bowl or they are from two different vessels in the same set.

The final personal ceramic artefact is a sherd from a jar located in SU II of grid unit B1. It is a rim sherd from a jar that resembles a Chinese ginger jar in shape. Most of
the jar is unglazed stoneware, however it has turquoise coloured glaze that comes from inside the rim and continues down the exterior of the vessel for 6cm.

Glass

There are 21 pieces of glass categorised as personal of which nine are vase sherds, one is a bowl fragment, six are perfume bottles sherds, including one complete bottle, and five are ink bottles pieces. The complete perfume bottle is made by A. Gaiffe of Paris, France. The other five pieces conjoin to form the base and body of one small bottle, the maker of which is unidentifiable. Of the five ink bottles only one is identifiable to a particular manufacturer. It is a small round bottle that bears the logo of Angus & Co. These bottles were introduced in the late 1890s and by 1932 Angus & Co. were the largest producers of ink in Australia (Roycroft and Roycroft 1985:19). Three of the remaining bottles are what are known in Australia as ‘cabin inks’ (Roycroft and Roycroft 1985) and in the United States as ‘schoolhouse inks’ (Ketchum 1985). These bottles are small and rectangular with a groove on either side on which to lay a pen. The other fragment cannot be identified.

Metal

The personal metal artefacts for the most part relate to recreational activities. The collection comprises a crystal radio set dial with ‘D.R.G.M.’ and floreate and scroll work engraved on its surface, a D cell battery for powering a crystal radio set, the reed frame of a mouth organ, a fish hook, the stem of a tobacco pipe including the mouthpiece, measuring 86.3 mm long, 32 pieces of foil from cigarette packets, a
clock and two cog wheels from clocks. Mouth organ reed frames have been found at a number of archaeological sites throughout Queensland (most often in Aboriginal post-contact sites (Morwood 1990:27)).

Summary of Personal Artefacts in Site D1

There are 100 personal artefacts in Site D1. Artefacts represented in the collection include vases, bowls, perfume bottles, metal and clay tobacco pipes, ink bottles, parts of crystal radio sets, batteries, a clock, a fishhook and the reed frame of a mouth organ.

Unassigned

Based on count the unassigned class of artefacts is the largest. This is due almost entirely to the large number of highly corroded and very small pieces of metal that could not be identified. The distribution of unassigned artefacts is presented in Table 29. Charcoal is placed in the unassigned class however no counts of charcoal were recorded.

Table 29. Distribution of Unassigned Artefacts in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Fauna</th>
<th>Glass</th>
<th>Metal</th>
<th>Rubber</th>
<th>Wax</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>399</td>
<td>964</td>
<td>5269</td>
<td>1</td>
<td>0</td>
<td>6633</td>
</tr>
<tr>
<td>SU II</td>
<td>15</td>
<td>411</td>
<td>178</td>
<td>25166</td>
<td>0</td>
<td>3</td>
<td>25773</td>
</tr>
<tr>
<td>SU III</td>
<td>1</td>
<td>75</td>
<td>0</td>
<td>6712</td>
<td>0</td>
<td>0</td>
<td>6788</td>
</tr>
<tr>
<td>SU II/III</td>
<td>2</td>
<td>24</td>
<td>0</td>
<td>1832</td>
<td>0</td>
<td>0</td>
<td>1858</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1860</td>
<td>0</td>
<td>0</td>
<td>1861</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>910</td>
<td>1142</td>
<td>40839</td>
<td>1</td>
<td>3</td>
<td>42913</td>
</tr>
</tbody>
</table>

221
Ceramic

Eighteen pieces of ceramic were unidentifiable at the class level. They ranged in weight between 0.1 and 11.4 g with a mean weight of 2.2 g. Removing the 11.4 g outlier gives a mean of 1.7 g. These pieces were also unidentifiable at the level of body shape or fragmentation. Thirteen of them are made of porcelain, three of red earthenware, one of coarse earthenware and one of vitreous stoneware.

Charcoal

The total weight of charcoal in Site D1 is 358.8 g (Table 30). The charcoal is all black, small and much of it is rounded and not blocky, possibly suggesting a high degree of weathering. This very small amount of charcoal indicates that no attempt was made to burn the dumped material before or after it was deposited.

<table>
<thead>
<tr>
<th>Weight (g)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>35.5</td>
</tr>
<tr>
<td>SU II</td>
<td>195.7</td>
</tr>
<tr>
<td>SU III</td>
<td>112.7</td>
</tr>
<tr>
<td>SU II/III</td>
<td>9.3</td>
</tr>
<tr>
<td>SU IV</td>
<td>5.3</td>
</tr>
<tr>
<td>Total</td>
<td>358.8</td>
</tr>
</tbody>
</table>

Faunal Material

A total of 910 animal remains were located in Site D1 (Table 31), of which 87.47% is shell and 9.45% is bone.
Table 31. NISP of Faunal Remains in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Bone</th>
<th>Coral</th>
<th>Shell</th>
<th>Teeth</th>
<th>Turtle Shell</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>12</td>
<td>3</td>
<td>384</td>
<td>0</td>
<td>0</td>
<td>399</td>
</tr>
<tr>
<td>SU II</td>
<td>21</td>
<td>11</td>
<td>368</td>
<td>7</td>
<td>2</td>
<td>411</td>
</tr>
<tr>
<td>SU III</td>
<td>53</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>1</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>17</td>
<td>796</td>
<td>7</td>
<td>2</td>
<td>910</td>
</tr>
</tbody>
</table>

Bone

Eighty-six pieces of bone were excavated from Site D1. The bone was distributed unevenly (Table 32) with 60 (69.77%) pieces in Trench A and 26 (30.23%) in Trench B. There are differences in the distribution of the bone in each trench (Table 33) in that in Trench A there is no bone in SU I, 11.67% in SU II and 88.33% in SU III whereas in Trench B 46.15% of the bone is in SU I, 53.85% is in SU II and there is no bone in SU III.

Table 32. Distribution of Bone in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Weight (g)</th>
<th>Mean Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>12</td>
<td>19.7</td>
<td>1.642</td>
</tr>
<tr>
<td>SU II</td>
<td>21</td>
<td>18.1</td>
<td>0.862</td>
</tr>
<tr>
<td>SU III</td>
<td>53</td>
<td>42.2</td>
<td>0.796</td>
</tr>
<tr>
<td>SU II/III</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>80.0</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Table 33. Distribution of Bone in Trench A and Trench B

<table>
<thead>
<tr>
<th></th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>SU IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trench A</td>
<td>0</td>
<td>7</td>
<td>53</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Trench B</td>
<td>12</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>21</td>
<td>53</td>
<td>0</td>
<td>86</td>
</tr>
</tbody>
</table>

The bone is extremely fragmentary and difficult to speciate by gross morphological means as the average weight of each piece was 0.93 grams. In the context of this study it was not appropriate to apply more scientific methods such as DNA analysis (Hlinka 1997, 1998) or thin sectioning. Knowledge of the species of animals present would not have advanced knowledge on the primary questions of this thesis and the cost expended could not be justified for the small gain in knowledge. Table 34 contains details of the bone that is identifiable. Identification occurred at the level of taxonomic class and 72 of the 86 pieces were identifiable at this level. Of the 62 mammalian bones 41 are identified as *Macropus agilis* (Agile Wallaby). There are only two species of macropod on the Island, *Macropus agilis* and *Wallabia bicolor welsbyi* (swamp wallaby) (Oxnam 1989), and hence at least 66.13% of the mammal bone belongs to animals native to the Island and Moreton Bay. Given that no identifiable bone belongs to meat cuts it is not possible to apply measures such as ENU (number of beef cut units) (Lyman 1987; Schmitt and Zeier 1993) nor undertake any foodways analysis (e.g. Crass and Wallsmith 1992; Huelsbeck 1991). Of the reptile bones, one is identified as 'turtle' and the other six as 'lizard'.

224
Table 34. Bone Identifiable at the Class Level

<table>
<thead>
<tr>
<th></th>
<th>Aves</th>
<th>Reptilia</th>
<th>Mammalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISP</td>
<td>3</td>
<td>7</td>
<td>62</td>
</tr>
</tbody>
</table>

From the whole collection identifiable skeletal elements include femurs, scapulae, vertebrae and ribs. In all probability these animals died in the vicinity of the Lazaret and their carcasses were removed to the dump or else they were washed in on the tide, particularly given that 46 of the 86 bones (53.49%) are in two grid units, A1 and B1, located at the base of the slope. There are no butchering marks, such as scrapes, cuts, chops, shears and saws (Landon 1996) on any of the bones. Sixteen of the 86 (18.6%) bones are burnt. Except for the 358.8 g of charcoal, no other material of any kind from the Site D1 shows evidence of burning, consequently these burnt bones must represent secondary or tertiary deposition (Landon 1996:139). They cannot have been burnt in situ.

Coral

A total of 17 pieces of coral were located in the excavation (Table 35), however no species identification was attempted. Peel Island has a fringing coral reef that supports a thriving ecosystem of plants and animals (Davie 1998; Oxnam 1989).

Table 35. Distribution of Coral in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Weight (g)</th>
<th>Mean Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>3</td>
<td>6.1</td>
<td>2.033</td>
</tr>
<tr>
<td>SU II</td>
<td>11</td>
<td>25.7</td>
<td>2.336</td>
</tr>
<tr>
<td>SU III</td>
<td>2</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>SU II/III</td>
<td>1</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>SU IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>34.5</td>
<td>2.029</td>
</tr>
</tbody>
</table>
Shell

A total of 795 shellfish fragments were recovered in the excavation of Site D1 with 785 (98.74%) of them identified to species level (Table 36). SUs I and II contain 94.45% (n = 751) of the entire shellfish collection. All the identified shellfish are edible species that occur in Moreton Bay, although people of non-Aboriginal descent seldom if ever collect and eat Hercules Club Mud Whelk (*Pyrazus ebeninus*) or mangrove snail (*Salinator solida*). All these species occur in prehistoric midden sites throughout Moreton Bay.

There is one shell artefact, a mother of pearl button, that is not included in Table 36 (see Clothing - this chapter).

<table>
<thead>
<tr>
<th></th>
<th>Saccostrea glomerata</th>
<th>Pyrazus ebeninus</th>
<th>Trichomya hirsutus</th>
<th>Salinator solida</th>
<th>Unid. gastropod</th>
<th>Unid.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>353</td>
<td>19</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>384</td>
</tr>
<tr>
<td>SU II</td>
<td>304</td>
<td>17</td>
<td>28</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>367</td>
</tr>
<tr>
<td>SU III</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>SU II/III</td>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>SU IV</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>700</td>
<td>37</td>
<td>39</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>795</td>
</tr>
</tbody>
</table>

Teeth

There are seven teeth in the collection from Site D1 of which five are rodent teeth. One is a *Wallabia biclor welsbyi* (swamp wallaby) and the other is too fragmentary to identify but appears to be mammal.
Glass

Failure to identify glass at the class level was due to the very high degree of fragmentation of the pieces collected. The 1,142 pieces of unidentified glass weighed a total of 1,048.5 g, with an average of 0.92 g per piece.

Metal

The unassigned metal artefacts consist of 40,822 pieces of highly corroded metal that cannot be identified at all. The mean weight of these pieces is only 0.48 g. The other unassigned metal artefacts are three C-clips, three pieces of lead, nine pieces of tin foil and two triangular shaped rods.

Rubber

There is one red rubber band in SU I.

Wax

Three irregularly shaped small pieces of wax were identified in SU II of grid unit A3. They weigh a total of 0.8 g. Each piece is a different colour: white, pink and purple. The use of the wax is unknown but it may have been from candles (electricity was not supplied until 1947).

This then has been a summary presentation of the data obtained from the almost 82,000 artefacts obtained from the excavation of six square metres of Site D1. I now turn back to the questions I posed at the start of this chapter.
DISCUSSION

At the start of this chapter I posed six questions concerning the archaeological record at Site D1:

1. What items existed at the Lazaret?
2. How much variety existed within each artefact group?
3. Does the site exhibit any stratigraphy?
4. Can change through time be detected in the artefacts from the site?
5. Is there any size sorting occurring due to the slope on the site?
6. Is there any sorting of material types occurring due to the slope on the site?

The first two questions aim at determining the extent of the artefactual universe that existed at the Lazaret so that the information can be applied to the discussion of paternalism in Chapter 7. The last four questions relate to the integrity of the site and the depositional and post-depositional effects on a site located on a 40° slope.

What items existed at the Lazaret?

A large and diverse collection of artefacts were identified at Site D1. There are artefacts related to the Lazaret in all aspects of paternalist provision, i.e. food, clothing, accommodation, hospital treatment and personal artefacts. The overall amount of hospital material is quite small and this is to be expected as I targeted this particular dump because it apparently had less hospital material than the bank at the northern end of the Lazaret.
There are artefacts related to the everyday life of the inmates and staff, such as the beer bottles, chamber pots, vases, a mouth organ and tableware. The largest single type of identifiable glass related to alcohol bottles. Food and non-alcoholic beverages accounted for a very small proportion of the material.

How much variety existed within each artefact group?

Probably the most important finding to come from the analysis of the material excavated from Site D1 relates to variety. For almost all the identifiable artefact types, only one supplier of each product type was represented in the collection. There was only one identifiable supplier for chutney (Bengal), cordial (Brookes and Sons), gin (A van Hoboken), lotion (Kepler/Wellcome), poisons (...E & Mayr...), salts (Enos), and vinegar (Champions). There were two suppliers of sauce, though Holbrook & Co. were preferred over Lea & Perrin by 57 sherds to six. Similarly there were two whiskey suppliers: The Gaelic Whisky and Whyte and Mackay. There were three different suppliers of pickles (Rising Sun, Harrison’s and Castlebrand) though the last two were represented by only one sherd each. It was not possible to identify the brewer associated with 99.5% of the beer bottle sherds. The identifiable sherds belonged to three companies: one from Melbourne and two from Sydney. It would appear that most of the beer bottles had paper labels that have deteriorated. It is hard to accept that the beer was imported from interstate when Brisbane had a number of local brewers in the nineteenth and early twentieth centuries. The examples from these three identified brewers may well represent special orders, catering for special events (such as Christmas) or illicit supplies by visitors. Overall
though it appears that there was very little change in the contracting of suppliers of bottled material to the Lazaret.

The ceramic collection demonstrates more variability than the other materials. In the tableware six different companies are represented: John Maddock & Sons, Alfred Meakin, J & G Meakin, Mellor, Taylor & Co., Smith & Ford and Arthur J Wilkinson Ltd. All these companies only have one sherd that has been identified to it except the Meakin companies. J & G Meakin sherds far outnumber those of any other company as the 47 Catedral pattern pieces can be attributed to this company. There were four different Meakin companies (Alfred Meakin, Charles Meakin, Henry Meakin and J & G Meakin) operating in the Staffordshire potteries in the second half of last century (Godden 1964). J & G Meakin were 'major mass-market producers of the late nineteenth century' (Branstner and Martin 1987:315). J & G Meakin were not part of the Arts and Craft Movement of this time. They were not producers of art pottery but rather utility wares. The process was industrial and produced rather crude, mass-produced articles (Curtis 1990). At least these Meakin pieces are decorated. Almost the entire ceramic collection is undecorated, plain, whiteware.

The total collection of ceramics from this site numbers 465 sherds, of which 301 are undecorated. Of the 164 decorated sherds, moulded decoration is the most common. Sixty-five sherds have only moulded decorations whilst 45 have only underglaze decoration and 14 have only overglaze decoration. A further 37 sherds have both
moulded and underglaze decoration. All sherds with an overglaze decoration exhibit no other form of decoration. Table 37 presents the decoration style by body material.

Table 37. Decoration Style by Ceramic Body Material in Site D1

<table>
<thead>
<tr>
<th></th>
<th>CE</th>
<th>RE</th>
<th>WE</th>
<th>PC</th>
<th>CS</th>
<th>FS</th>
<th>VS</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impressed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Moulded</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>34</td>
<td>3</td>
<td>102</td>
</tr>
<tr>
<td>Overglaze</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Underglaze</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>26</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>65</td>
<td>11</td>
<td>201</td>
</tr>
</tbody>
</table>

Over half (55.2%) of the decorated items are white earthenware whereas no coarse earthenware, red earthenware and coarse stoneware are decorated. Tables 38 and 39 detail the colour of underglaze and overglaze decoration related to the body materials. Cobalt blue is the dominant colour (80.5%) in the underglaze collection and there is no underglaze gilt although transfer gilding was patented in 1835 (Hughes n.d.:130). There is no polychrome decoration. Every underglaze or overglaze decorated piece is decorated in one colour only. White earthenware is the major body material (64.6%) in the underglaze decorated collection. Gilt is the predominant colour (92.9%) for the overglaze decoration and porcelain is the major body material (57.1%).

Table 38. Underglaze Decoration Colour and Ceramic Body Material in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Blue</th>
<th>Brown</th>
<th>Green</th>
<th>Red</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Stoneware</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Vitreous Stoneware</td>
<td>0</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>White Earthenware</td>
<td>0</td>
<td>51</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>66</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>82</td>
</tr>
</tbody>
</table>
Table 39. Overglaze Decoration Colour and Ceramic Body Material in Site D1

<table>
<thead>
<tr>
<th></th>
<th>Gilt</th>
<th>Brown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcelain</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Vitreous Stoneware</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>White Earthenware</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

The category that is the exception to the plain whiteware is the saucers. Only one saucer has Catedral patterning. Nine of the 25 saucers are gilded in one form or another. Two others have fine scalloped edges. The cups differ from the saucers as only six of the 35 sherds are decorated. One cup sherd, however, is the finest piece of ceramic in the collection and is the base of a porcelain cup with a hand painted design including a bird and a flower.

The trend towards sole suppliers of material for consumption at the Peel Island Lazaret has strong implications for the study of paternalism at this place, as does the plainness of the materials and the repeated patterns. This is discussed in greater detail in Chapter 7.

Does the site exhibit any stratigraphy?

Five strata were identified in the site (see pages 168-171). These were defined by the character of the matrix such that SU I consisted entirely of artefacts whilst SU II had a very loose dark brown soil matrix. Stratigraphic Units III, IV and V are part of the original hill that has been cut by wave action to form the slope upon which the site is
situated. The difference between SU I and SU II was easily observable in the field but may only relate to the soil trapped by the artefacts on the slope. While the Lazaret closed in 1959 and the last 40 years has seen no deposition of artefacts, apparently there has been no deposition of sediment either. SU I is up to 34 cm deep yet it contains no matrix, only artefacts. These artefacts are quite large and as the soil moves diagonally down the slope due to the effects of gravity, wind or water it would become trapped by these artefacts and move vertically down between them and build up at the base (the top of SU III). This has resulted in the sediment and artefacts in SU II being thoroughly mixed. Therefore it may be that it is not appropriate to talk in Stratigraphic Units at all and the slope of the hill has conspired to deny any observable stratigraphy. Table 10 demonstrates that no difference exists in the ceramics of SU I and SU II; both SUs contain ceramics dated to the same periods and the surface SU (SU I) contains ceramics made either before or shortly after the commencement of the Lazaret.

Can change through time be detected in the artefacts from the site?

To test whether change occurred through time in the deposition of artefacts at Site D1, one grid unit was chosen for a more exhaustive analysis. This analysis was of the green beer bottle glass in grid unit B1, to determine if any variation occurred in the shape of the original bottles related to depth in the pit. Most other artefacts types have a single supplier and it is reasonable to assume that the same condition existed for beer. This is not to say that the same supplier supplied beer throughout the entire history of the Lazaret, but rather that only one supplier at a time possessed the
government contract to supply beer. I therefore make the assumption that there will be more variation in the shape of the bottles between different suppliers than within the bottles supplied by the one supplier. Change in supplier may be detected by morphological changes in the bottles.

Grid unit B1 was chosen for this analysis to avoid the post-depositional problems associated with the grid units in Trench A (see below) and the problem of the unassigned stratigraphic origin of SU II/III of grid unit B3. Green beer bottle glass was selected for this analysis as it is the single most abundant type of artefact in the site. Up to seven variables, covering the entire bottle, were recorded for each piece of green beer bottle glass in grid unit B1. The variables are shown in Figure 23. These variable are:

- Internal rim measurement;
- Minimum external rim measurement;
- Maximum external rim measurement;
- Overall height of the bottle;
- Height of the kick;
- Diameter of the base; and
- Maximum diameter of the body of the bottle.

These seven variables are similar to, but simpler than, the 13 horizontal and vertical parameters measured used by Coutts (1984:226-227). The first three variables will be affected by the rim type (i.e. applied rim, crown seal or ring seal). It is possible that
these rim types also relate to differences through time. Therefore the analysis of these three variables occurs within the confines of rim type. There were 28 half-pint bottles sherds identified in the deposit of grid unit B1. To maintain the comparability of the variables I have removed these half pint bottle sherds from the analysis. Tables 40 to 46 summarise the data collected from the 1,392 remaining sherds. In these tables I use Excavation Units (XU) rather than SUs as the analytical category as they are more fine-grained than the SUs. The XUs in grid unit B1 were superimposed upon each other such that XU 1 is the upper half of SU I and XU 2 is the lower half of SU I.

Figure 23. Variables of Green Beer Bottle Glass Sherds from Grid Unit B1 of Site D1
Excavation Units 3, 4 and 5 are the upper, middle and lower components of SU II respectively. Excavation Unit 6 is SU III.

Table 40. Summary of Internal Rim Measurements (in mm) of Green Beer Bottle Glass from Grid Unit B1 in Site D1

<table>
<thead>
<tr>
<th>XU</th>
<th>Rim Type</th>
<th>Count</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Applied Lip</td>
<td>2</td>
<td>16.4</td>
<td>15.7</td>
<td>16.1</td>
<td>0.495</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>11</td>
<td>17.7</td>
<td>16.5</td>
<td>17.3</td>
<td>0.3807</td>
</tr>
<tr>
<td>2</td>
<td>Applied Lip</td>
<td>5</td>
<td>17.9</td>
<td>16.4</td>
<td>16.9</td>
<td>0.6702</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>16.9</td>
<td>16.9</td>
<td>16.9</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>22</td>
<td>17.6</td>
<td>15.3</td>
<td>16.9</td>
<td>0.6445</td>
</tr>
<tr>
<td>3</td>
<td>Applied Lip</td>
<td>8</td>
<td>16.7</td>
<td>15.8</td>
<td>16.3</td>
<td>0.4726</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>34</td>
<td>18.5</td>
<td>16.2</td>
<td>17.6</td>
<td>0.481</td>
</tr>
<tr>
<td>4</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>8</td>
<td>18.0</td>
<td>16.3</td>
<td>17.6</td>
<td>0.6524</td>
</tr>
<tr>
<td>5</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>3</td>
<td>18.0</td>
<td>16.9</td>
<td>17.3</td>
<td>0.5859</td>
</tr>
<tr>
<td>6</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 41 demonstrates that there is so little variation within each rim type for the internal rim measurement that no patterning is observable between the XUs. For example, the maximum ring seal measurement varies between 17.7 mm, 17.6 mm, 18.5 mm, 18.0 mm and 18.0 mm. This is a total variation across five Excavation Units of less than one millimetre.
Table 41. Summary of Minimum External Rim Measurements (in mm) of Green Beer Bottle Glass from Grid Unit B1 in Site D1

<table>
<thead>
<tr>
<th>SU</th>
<th>Rim Type</th>
<th>Count</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Applied Lip</td>
<td>2</td>
<td>25.0</td>
<td>23.1</td>
<td>24.1</td>
<td>1.3445</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>11</td>
<td>31.0</td>
<td>27</td>
<td>28.6</td>
<td>1.2256</td>
</tr>
<tr>
<td>2</td>
<td>Applied Lip</td>
<td>5</td>
<td>29.8</td>
<td>25.7</td>
<td>27.4</td>
<td>1.8565</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>27.2</td>
<td>27.2</td>
<td>27.2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>22</td>
<td>30.5</td>
<td>26.0</td>
<td>28.4</td>
<td>1.3315</td>
</tr>
<tr>
<td>3</td>
<td>Applied Lip</td>
<td>8</td>
<td>25.4</td>
<td>25.0</td>
<td>25.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>34</td>
<td>31.5</td>
<td>25.9</td>
<td>29.1</td>
<td>1.329</td>
</tr>
<tr>
<td>4</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>8</td>
<td>30.3</td>
<td>28.4</td>
<td>29.2</td>
<td>0.6448</td>
</tr>
<tr>
<td>5</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>3</td>
<td>30.9</td>
<td>28.0</td>
<td>29.4</td>
<td>1.4572</td>
</tr>
<tr>
<td>6</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

There is only very small variation within any of the rim types for the measurement of the minimum external rim dimension. The standard deviations show that the variations are negligible. There is no patterning between the XUs in this table.

Within each of the three rim types there is very little variation in the maximum external rim dimensions. The most variation is seen in the applied lips which vary in size by up to 5 mm. The crown seals only vary by one millimetre.
Table 42. Summary of Maximum External Rim Measurements (in mm) of Green Beer Bottle glass from Grid Unit B1 in Site D1

<table>
<thead>
<tr>
<th>SU</th>
<th>Rim Type</th>
<th>Count</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Applied Lip</td>
<td>2</td>
<td>27.2</td>
<td>24.8</td>
<td>26.0</td>
<td>1.697</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>28.3</td>
<td>28.3</td>
<td>28.3</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>11</td>
<td>36.7</td>
<td>31.2</td>
<td>33.8</td>
<td>1.7482</td>
</tr>
<tr>
<td>2</td>
<td>Applied Lip</td>
<td>5</td>
<td>31.9</td>
<td>26.5</td>
<td>28.6</td>
<td>2.4249</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>29.2</td>
<td>29.2</td>
<td>29.2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>22</td>
<td>35.8</td>
<td>29.4</td>
<td>32.6</td>
<td>2.1535</td>
</tr>
<tr>
<td>3</td>
<td>Applied Lip</td>
<td>8</td>
<td>29.9</td>
<td>27.0</td>
<td>28.4</td>
<td>1.4526</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>1</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>34</td>
<td>36.5</td>
<td>28.6</td>
<td>33.4</td>
<td>2.0811</td>
</tr>
<tr>
<td>4</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>8</td>
<td>34.9</td>
<td>31.7</td>
<td>33.9</td>
<td>1.09</td>
</tr>
<tr>
<td>5</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>3</td>
<td>35.5</td>
<td>32.1</td>
<td>34.0</td>
<td>1.7474</td>
</tr>
<tr>
<td>6</td>
<td>Applied Lip</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Crown Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ring Seal</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Crown seals became the most popular form of rim seal in Australia after 1920 yet even in SU I ring seals remain the dominant form of seal. Crown seals enter the deposit in XU 3.

Table 43. Summary of the Height (in mm) of Green Beer Bottles from Grid Unit B1 in Site D1

<table>
<thead>
<tr>
<th>XU</th>
<th>Count</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>302.0</td>
<td>301.0</td>
<td>301.5</td>
<td>0.7071</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>312.0</td>
<td>302.0</td>
<td>307.0</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>303.0</td>
<td>303.0</td>
<td>303.0</td>
<td>n/a</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>295.5</td>
<td>295.5</td>
<td>295.5</td>
<td>n/a</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
It was only possible to measure the heights of seven of the 1392 bottle sherds consequently Table 43 shows no patterning at all in the distribution of sherds.

Table 44. Summary of the Height (in mm) of the Kick of Green Beer Bottles from Grid Unit B1 in Site D1

<table>
<thead>
<tr>
<th>XU</th>
<th>Count</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>59.9</td>
<td>8.0</td>
<td>46.8</td>
<td>15.7166</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>63.3</td>
<td>18.4</td>
<td>53.3</td>
<td>9.196</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>72.6</td>
<td>12.6</td>
<td>52.0</td>
<td>15.4066</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>67.7</td>
<td>47.8</td>
<td>55.9</td>
<td>5.7032</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>62.2</td>
<td>51.7</td>
<td>55.5</td>
<td>3.9433</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

The maximum height shows no patterning but there appears to be a distinctive change between SU III and SU IV in the minimum height of the kick. The values for minimum kick height in SUs I to III ranges between 8.0 mm and 18.4 mm. The least value in SU IV and SU V is 47.8 mm. There is however very little difference in the means. The standard deviations of XUs 1 and 3 suggest that there is a very large variation in the height of the kicks in these layers whereas there is much less variation in XUs 5 and 6. This suggests that bottles with consistently deeper kicks are located in the two lower layers of the site.

In Table 45 the minimum values of diameter in XU 5 and XU 6 are again much higher than for the four layers above them however there is only one sherd in XU 6 so this can hardly form the basis for a rigorous comparison. XUs 1 to 4 are all very similar in all measures.
Table 45. Summary of the Diameter (in mm) of the Base of Green Beer Bottles from Grid Unit B1 in Site D1

<table>
<thead>
<tr>
<th>XU</th>
<th>Count</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>93.1</td>
<td>70.0</td>
<td>83.2</td>
<td>6.5826</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>91.8</td>
<td>60.3</td>
<td>83.4</td>
<td>6.8191</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>96.2</td>
<td>70.0</td>
<td>84.5</td>
<td>6.325</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>91.6</td>
<td>70.0</td>
<td>84.6</td>
<td>5.8854</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>91.4</td>
<td>88.3</td>
<td>89.9</td>
<td>1.2153</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>80.0</td>
<td>80.0</td>
<td>80.0</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 46. Summary of the Diameter (in mm) of the Body of Green Beer Bottle from Grid Unit B1 in Site D1

<table>
<thead>
<tr>
<th>XU</th>
<th>Count</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>142</td>
<td>100.0</td>
<td>50.0</td>
<td>75.4</td>
<td>8.8179</td>
</tr>
<tr>
<td>2</td>
<td>204</td>
<td>90.0</td>
<td>40.0</td>
<td>76.0</td>
<td>7.242</td>
</tr>
<tr>
<td>3</td>
<td>497</td>
<td>100.0</td>
<td>40.0</td>
<td>74.8</td>
<td>8.9558</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>90.0</td>
<td>70.0</td>
<td>80.0</td>
<td>6.8521</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>91.7</td>
<td>89.2</td>
<td>90.6</td>
<td>1.0344</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>90.0</td>
<td>70.0</td>
<td>76.7</td>
<td>6.5134</td>
</tr>
</tbody>
</table>

A simple gauge was used to estimate the diameter of the body from sherds that were not complete enough to obtain a diameter measurement. This gauge allowed for measurement of the diameter to the nearest millimetre and they were rounded down so that 70 mm is equivalent to the range of 70 mm to 70.9 mm.

There is no discernable pattern to the distribution shown in Table 46; the numbers for XU 4 are almost identical to those for XU 6 and those for XU 1 are very similar to those for XU 3. There is also very little vertically patterned change in the deposit of green beer bottles in grid unit B1. There is some small variability in the width of the base of the bottles and in the size of the kick below XU 4 as compared to those.
above. The rim size of the crown seal bottle sherds also appears to be more consistent than the other types of rim, this being related to the requirement to produce consistent rim shapes to fit standardised bottle caps. All this evidence taken together indicates that there is little to no archaeological evidence for changes in the green beer bottle collection through time.

Is there any size sorting occurring due to the slope on the site?

To test the size sorting effects of the slope on the distribution of artefacts at Site D1 the average weight of ceramics, glass and metal was taken for each grid unit at the site. The results are presented in Table 47. The glass artefacts are heavier in the grid units further up the slope (A3 and B3) and gradually reduce in weight down the slope. However this is not the case for the metal which is consistent across the grid units and the ceramic does not show any consistent pattern at all.

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Glass</th>
<th>Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>25.6</td>
<td>54.7</td>
<td>0.4</td>
</tr>
<tr>
<td>A2</td>
<td>68.1</td>
<td>27.4</td>
<td>1.0</td>
</tr>
<tr>
<td>A1</td>
<td>27.8</td>
<td>25.7</td>
<td>0.4</td>
</tr>
<tr>
<td>B3</td>
<td>46.7</td>
<td>30.9</td>
<td>0.5</td>
</tr>
<tr>
<td>B2</td>
<td>18.8</td>
<td>20.3</td>
<td>0.4</td>
</tr>
<tr>
<td>B1</td>
<td>16.6</td>
<td>10.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Is there any sorting of material types occurring due to the slope on the site?

Due to the severity of the slope (40°) different classes of artefacts may move down the slope at different rates. In order to test whether sorting of artefacts has occurred due to the slope the percentage of the frequency of each of the two most abundant artefact classes (metal and glass) were compared within each SU within each grid unit in both Trench A and Trench B. Figure 24 presents the changes through space in the relationship between the percentage of glass artefacts and the percentage of metal artefacts. Trench B shows a distinct pattern to the material as it moves down the slope. At the top of the slope glass predominates and at the base, metal predominates. In the intervening grid unit (B2) the glass:metal ratio approximates 50:50 and this pattern is consistent across all three SUs. The pattern in Trench A is less clear; there is no consistent pattern in any of the SUs and none of them matches the pattern from Trench B. Thus other factors must be affecting the distribution of artefacts in Trench A. The location of Trench A towards the edge of the dump may have had a number of affects:

1. Less material may have been dumped less often on this part of the dump. Garbage disposal was done from the top of the slope and the track from the Lazaret arrives at the bank above the site in the centre of the dump;

2. The dump may have spread laterally over time due to the continued addition of material from above and slumping of the deposit. The patterns in Trench A may reflect this lateral movement rather than vertical movement; and

It may have been more affected by bottle collectors than Trench B, as it is located towards the margin of the dump and a well-worn track exists within two metres of the
trench (see Figure 12). Anecdotal evidence suggests extensive bottle collecting activity has occurred over a number of years. This is reinforced by the presence of only 22 complete bottles in the excavated collection.

Figure 24. Comparison of Percentage of Glass and Metal in each SU in the Six Grid Units
Thus, in Trench B there is a clear pattern demonstrating that material sorting is occurring on the slope; however in Trench A no consistent pattern exists and other factors are at play.

CONCLUSION

A total of 81,984 artefacts were removed from the excavation of six square metres of deposit at one dump site at the Peel Island Lazaret. These artefacts weigh a total of just over 934 kg (934,121.3 g). The artefacts from Site D1 present a picture of the artefactual universe of the Lazaret that is rich in quantity but depauparate in quality and in variety. The ceramics are either plain whiteware or mass produced patterns. The bottles are mostly plain and could have been used for any purpose. Consequently the uses to which 55.9% of the bottle glass was put cannot be identified. There is also no detectable change through time in the artefacts. Each supplier appears to have supplied their product consistently to the Lazaret. It also appears that old stock was used at the Lazaret as the gin bottles were supplied by a company (A van Hoboken) that only has 19th century associations.

The lack of chronological control is due to the lack of integrity of the site itself. In the centre of the site the slope has acted to sort certain classes of materials yet at the edge no such sorting effects exist. Other explanations for the patterning at the edge of the site may be that the patterns are related to the activities of bottle collectors or lateral movement of the dump through time.
Knowledge of these problems within the site would not have been possible without the thorough analysis of the artefacts presented in this chapter. It is from understanding the patterning of the artefacts in the site that knowledge of post-depositional disturbance factors at the site have been revealed and questions raised as to process of dumping that has occurred at the site. This is particularly so given that SU I contains virtually no matrix: it is all artefacts. Even though some problems exist with the site, the excavation of Site D1 has met at least one of its main objectives: supplying as complete an inventory of artefacts found at the Lazaret as possible. Although it has been shown that the artefacts from Site D1 cannot be used for fine-grained chronological control during the excavation of the living sites, the information obtained from Site D1 will be used in the interpretation of the place as a whole that occurs in Chapters 7 and 8. In the next chapter I turn to the excavation and artefact analysis of those places at the Lazaret in which the inmates and staff actually lived.
CHAPTER 6

THE PHYSICAL EVIDENCE FROM SITES 34, 39, 71 AND 80

What place is this, to which the squalid street conducts us? A kind of square of leprous houses, some which are attainable only by crazy wooden stairs without. What lies beyond this tottering flight of steps, that creak beneath our tread? a miserable room, lighted by one dim candle and destitute of comfort, save that which may be hidden in the wretched bed (Charles Dickens 1908 American Notes and Pictures from Italy).

INTRODUCTION

The Lazaret operated for 52 years. In that time 572 patients lived in the huts provided for them by the Queensland Health Department and built by the Works Department. These huts were arranged into three distinct compounds (see Chapters 3 and 4). The layout of the Lazaret was such that the compounds were arranged triangularly around the centralised staff localities. To gain an understanding of the lifeways at the Lazaret I excavated four of these areas:

- two white male patients’ huts, designated as Site 34 and Site 39;
- one white female patient’s hut, designated as Site 80; and
- the original male attendants’ quarters, designated as Site 71.

The site designations (e.g. Site 34) follow the same Works Department allocations of building numbers used in Chapter 4. The site numbers, however, do not equate

246
directly to the building numbers, as these were only applied to the huts themselves and not the surrounding area. The site numbers therefore are labels applied to the archaeological expression of the places where the buildings (with the allocated building numbers) once stood and include the area around the building. The site area is often larger than the dimensions of the hut. These numbers are used for ease of reference.

The selection of places to excavate at the Lazaret was limited by factors external to the research questions. The entire Island is a registered place under the *Queensland Heritage Act 1992* (the Act). Under the Act any development at the place must be approved by the Queensland Heritage Council. Part (g) of the definition of ‘development’ includes ‘excavation’. I received Heritage Council approval to excavate at the Lazaret in 1994. This approval was given subject to the condition that excavations only occur in areas that do not contain standing structures.

An important consideration in the excavation program was that there was no need to open up large areas in order to locate the foundations of buildings. The location of almost every structure at the Lazaret is well known and many of the buildings remain standing. The Documentary Record provided information on the use of almost every structure at the Lazaret. There never was any question concerning the location of individual structures.
The excavations therefore concentrated on the areas that were likely to yield information concerning the life of the occupants of the huts. All huts had close fitting wooden floorboards and some huts had a small hole cut through the floorboards near the door to allow dirt and other material to be swept through it and onto the ground below (Blake 1993:46). So, the areas around the entrances to the buildings, such as the steps and the verandah, and areas towards the central rear of the verandah were targeted. The same strategy was used at all the sites; a strategy adopted so as to detect:

- Artefacts swept from the house and verandah;
- Artefacts discarded under the steps;
- The presence of any garden around the entrance to the hut; and
- Artefacts discarded into such a garden.

This strategy of targeting these high-use and high-traffic areas gave the best possibility of obtaining artefacts related to the occupation of each building.

While almost all the white female patients’ huts remained standing, many were just as remnants. I selected Site 80 for excavation as it was the site of one of the four original huts (dating to 1906) in this compound and a recently published autobiography (Berthelson and Ross 1996) recalled the life of a patient (June Berthelson - see Chapter 3) who lived in the hut for two years in the mid-1950s. This hut would have been occupied by many other patients throughout its history, although it had been vacant for at least some time before June arrived (Berthelson and Ross 1996:26). Thus, although only one hut was excavated, it was actually the abode of
many different people through time. No official written records identifying the actual occupants of any of the white patients’ huts at any point in time has ever been identified.¹

I excavated two of the 15 demolished huts in the white male patients’ compound. The first excavation was of Site 39, a hut that was the long-term residence of one patient, ERC (Mrs June Berthelson, ex-patient, pers. comm. 1994). It was only erected in the early 1940s (ERC was evacuated to Peel Island from Darwin in 1941) and occupied for a period of 17 years by the same patient. Prior to 1940 the main road entrance to the Lazaret ran through the area occupied by this row of huts.

To achieve the same effect as the excavation of Site 80 (i.e. to ensure that the area excavated included the places that many people lived in through time and also due to the short occupancy of Site 39) Site 34 was also excavated. This hut was erected in the early 1920s and the site showed evidence of change through time with the addition of a concrete footpath in the 1940s.

The choice of which staff quarters to excavate was even more limited; the only demolished staff structures were the two male attendant’s quarters and the cooks’ quarters. All other structures were in reasonably good condition due to their continued use by caretakers and then National Parks rangers (see Chapter 4). The

¹ A 1924 hand drawn plan of the coloured patients’ compound, complete with the names of the occupants of each hut, exists in the Works Department records (QSA WOR/Leper Lazaretto Peel Island Batch: 3188)
first male attendants’ quarters was built in 1906 and the second in the late 1940s. I decided to excavate the male attendants’ quarters that had been in use since the opening of the Lazaret. The cooks’ quarters were inappropriate for excavation as ‘the cooks’ were a specific staff classification and they did not tend to participate in the normal social life of the Lazaret, nor to have patient contact (Mr Robert Izlaub, ex-male attendant, pers. comm. 1994).

I did not excavate within the boundaries of the coloured patients’ compound. Out of respect for the wishes of members of the Quandamooka Aboriginal Land Council, the Traditional Owners\(^2\) of the place, of whom some were patients and others were staff members, I did not excavate a place that has become historically significant to them. Plans are being developed in consultation with the Aboriginal people of Quandamooka, for future excavation of the coloured patients’ compound.

The excavation of these four sites was undertaken over three seasons in 1994 and 1995 with a volunteer crew of archaeology staff and postgraduate and undergraduate students from the University of Queensland and the University of New England under my supervision. Students of the University of Queensland’s Department of Anthropology and Sociology’s Field Archaeology subject, AY225, undertook the excavation of Site 71 as part of an archaeological field training course.

\(^2\) The Quandamooka Land Council Aboriginal Corporation currently have a Native Title Claim over Peel Island and the waters of Moreton Bay before the Native Title Commission.
STRATIGRAPHIC HORIZONS

The stratigraphy of all four sites is very similar, and different from that of Site D1. Lazaret-wide stratigraphic horizons are identifiable at all four sites. This is to be expected as all are located on the same flat area of the Lazaret and all are subjected to similar and short-term depositional processes. The three common horizons are:

- **SU I.** A thin (1-8 cm) layer of organic material at the top of each excavation. It consists variably of thin grass turf or leaf litter from *Eucalyptus* spp., mango, poinciana and *Callitris* spp. trees. At each site this organic layer was removed in one unit and sieved. It almost always contained artefacts deposited during the demolition of the structure;

- **SU II.** A 3-20 cm loosely compacted brown soil layer (Munsell colour 10Y3/4) that underlays the organic layer at every site. This is generally an artefact rich layer at each site; and

- **SU III.** A thick, highly compacted orange (Munsell colour 10YR 4/4) layer underlaying the lightly compacted layer. The compactness of this layer varied across the sites with the heaviest compaction in Site 80 grid unit A1. This layer contains fewer artefacts than SU II.

Seven unique features (F) are also recorded throughout the sites:

1. **F 1.** A linear arrangement of artefacts in SU II of grid unit C2 of Site 34;
2. **F 2.** A posthole in Site 39;
3. F 3. A layer of midden shell located in grid units A1 and B1 of Site 39. It varies between 0.5 cm and 8.0 cm in depth;

4. F 4. A linear sandstone arrangement at the base of SU III in grid units B1 and B2 of Site 39;

5. F 5. A pit in Site 71 that contains artefacts from the 1970s;

6. F 6. A garbage pit in grid units A and D of Site 80. The pit contains a mixture of sediments from SUs I and II and numerous post-Lazaret artefacts; and

These strata and features are described in more detail in the relevant discussion of each site.

SITE DATUM

A site datum for the entire Lazaret was established on a concrete surround of a metal drain inspection cover located on the western edge of the central grassed area. This point is marked on the digitised Lazaret plan produced by AUSLIG (the Australian Government Surveying Department) in 1992. AUSLIG marked the spot with a metal pin hammered into the concrete. The digitised MapInfo plan forms the basis of the site plans in this chapter. Sites 34, 39 and 80 each had a local datum (a nail hammered into a stump) that was plotted back to the site datum. For the excavation of Site 71, the site datum was used as it was immediately adjacent to the site.
SITE 34

Site 34 is located immediately to the north of the hospital, surgery and pharmacy buildings (see Figure 2). The site datum for Site 34 is located 102.7 m at 125.7° from the site datum and the southwestern corner of Hut 34 is 22.7 m on an angle of 6.2° magnetic from the northeastern corner of the Surgery. Hut 34 was constructed in the early 1920s to the standards described in Chapter 3. It was 10' x 10' square on wooden stumps with a verandah attached to the northern end of the hut. A concrete path was laid in 1948 from a bitumen road to the steps located in the centre of the verandah (Figure 25).

All that currently remains of this structure are six wooden stumps, eight depressions indicating stump holes and the concrete footpath. The ground is covered in leaf litter from the large mango trees planted in rows throughout the male compound. Four large trees have grown in the original dripline of the structure.

Six 100 x 50 cm pits were excavated. They were labelled A1, A2, B1, C1, C2 and D1 (Figure 25). A total of 446.4 kg of sediment was removed from these pits. All sediment was removed in arbitrary two-bucket Excavation Units (XUs) within Stratigraphic Unit (SUs) and sieved on site through nested 6mm and 3mm sieves. At the end of the excavation the sieved sediment was used to backfill the site.
Site 34 Stratigraphy and Features

The stratigraphy of Site 34 matches exactly the stratigraphic horizons described above. SU I covers the entire site and contains the leaf litter from the mango trees and *Callitris* spp. growing in close proximity to the site. SU I varies in depth between 1 cm in grid unit D1 and 8 cm in grid unit C2 (Figure 26). It contains less than one third of the artefacts found in SU II.

SU II is a rich brown layer that covers the entire site. This layer is rich in artefacts of which the majority are shell fragments. Large numbers of marine and mollusc shell are spread throughout this layer (see the discussion of shell under 'accommodation artefacts' in the next section). SU II varies in depth between 3 cm in grid unit D1 and 20 cm in the southwestern corner of grid unit C1. This deeper area of SU II relates to the close proximity of a wooden stump post, the hole for which was dug from SU II through SU III.

While SU III was only exposed in two grid units (C1 and D1), there is no reason to suspect it does not underlay all the other layers at the site. The base of SU III was not exposed in either grid unit; however, excavation ceased when no further cultural material was removed in the Excavation Units. SU III contains markedly less shell and other artefacts than SU II.
Figure 25. Plan of Site 34
Figure 26. Stratigraphic Profiles of Site 34
One feature was identified in Site 34: Feature 1 (F1). It is an arrangement of five highly corroded and fragmentary tin cans buried in SU II of grid unit C2. The tops of these cans were exposed 2 - 3.5 cm below the surface of SU II in the northwestern corner of C2 (Figure 27). These five cans form a loosely constructed row that runs roughly parallel with the concrete path. The diameter of the largest can is 12.5 cm and the smallest 7.5 cm. The cans are filled with the sediment of SU II. As the concrete path laid in 1948 would have followed the line of the original entrance to the hut, these tins may either have marked the edge of the path prior to the footpath construction or have been used as pots for plants decorating the edge of the footpath.

Figure 27. Plan of F1
Site 34 Results

As the same categories for the artefact analysis of Site D1 are used for the analysis of all four living sites, the reader should refer to Chapter 5 for an explanation of classes and terms.

This site is rich in artefacts (n = 11,971). The breakdown of these artefacts into classes is presented in Table 48.

Table 48. Distribution of Artefact Classes in Site 34

<table>
<thead>
<tr>
<th></th>
<th>Food</th>
<th>Clothing</th>
<th>Accom.</th>
<th>Hospital</th>
<th>Personal</th>
<th>Unassigned</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUI</td>
<td>10</td>
<td>1</td>
<td>166</td>
<td>9</td>
<td>4</td>
<td>2355</td>
<td>2545</td>
</tr>
<tr>
<td>SUI II</td>
<td>26</td>
<td>2</td>
<td>5978</td>
<td>77</td>
<td>12</td>
<td>2082</td>
<td>8177</td>
</tr>
<tr>
<td>SUI III</td>
<td>1</td>
<td>2</td>
<td>25</td>
<td>5</td>
<td>0</td>
<td>1216</td>
<td>1249</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>5</td>
<td>6169</td>
<td>91</td>
<td>16</td>
<td>5653</td>
<td>11971</td>
</tr>
</tbody>
</table>

Food

Thirty-seven items related to food were recovered. Table 49 presents the number of each material in each SU. Numerical data for each stratum is presented in Table 49.

Table 49. Materials in Food Class in Site 34

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Cork</th>
<th>Glass</th>
<th>Metal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUI</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>SUI II</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>SUI III</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>22</td>
<td>37</td>
</tr>
</tbody>
</table>
Ceramic

The nine ceramic sherds that relate to food are all white earthenware tableware. They have an average weight of 14.2 g and a range of 0.1 g to 121.6 g. Two are cup sherds and the rest are unidentified pieces of flatware. The two cup sherds are in SU II; one is a body sherd, the other a rim sherd. The rim sherd has the Queensland Government crest in underglaze black transfer print on it (Figure 28). One of the unidentified sherds, from SU I, has an underglaze handpainted design in red and green and appears to be part of larger polychrome design; however, the sherd is too small to determine.

Figure 28. Queensland Government Crest on Cup Rim Sherd
the design. Another, from SU II, has two small metal pins inserted through the body which are now causing a green stain to spread under the glaze. These pins are the result of repairs undertaken after purchase, indicating that the piece was not government issue, as broken government issue crockery would not be repaired but replaced from Stores. This piece probably had monetary or sentimental value to the owner to justify the labour and expense of repairing it. Eventually the piece was broken again and this time it entered the archaeological context. Either it had lost its value or the break was too great to repair.

Cork

Two bottle corks without identifying marks were found in Site 34. One was in SU I of grid unit A2, the other in SU II of grid unit D1.

Glass

The bottle glass totals 293 pieces weighing a total of 161.4 g (mean = 0.55 g). All the glass is quite small and it is only possible to identify four pieces beyond the level of ‘bottle’ with any confidence; three pieces of whisky bottle in SU II and one piece of beer bottle in SU III. As no kicks or rims are present no MNI for bottles can be determined. No pieces are identifiable to a particular supplier.
Metal

In SU I there are five pieces of round tin cans and one crown seal bottle cap. In SU II there are 14 pieces of tin cans and two crown seal bottle caps. There are no food related metal artefacts in SU III.

Clothing

Only five artefacts in Site 34 are directly related to clothing; two are leather and three are metal. The leather pieces are both black and very small. A piece in SU I weighs 1.1 g and the piece in SU II weighs 0.1 g. This second piece exhibits a small eyehole and is either a piece of shoe or belt. The metal artefacts comprise one press stud (in SU II) and two buttons in (SU III). All three are very badly corroded. The buttons are both four-hole men’s trousers buttons.

Accommodation

The accommodation related artefacts total 6,169 items (Table 50). In Site D1 shell was part of the unassigned class; however, in Site 39 the shell in SU II is assigned to the accommodation class as its use in the construction of the concrete footpath is known. The amount of coral also increases in SU II; however, it remains unassigned (see later) as no coral has been observed in the footpath itself. Coral is found in some abundance in the Lazaret midden (the source of the shell) as it may have been used as a heat-retaining material in fire places (Dr Anne Ross, Department of Anthropology and Sociology, University of Queensland, pers. comm. 1999).
Table 50. Distribution of Accommodation Artefacts in Site 34

<table>
<thead>
<tr>
<th></th>
<th>Brick</th>
<th>Concrete</th>
<th>Glass</th>
<th>Metal</th>
<th>Plastic</th>
<th>Shell</th>
<th>Wood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>83</td>
<td>5</td>
<td>0</td>
<td>64</td>
<td>166</td>
</tr>
<tr>
<td>SU II</td>
<td>4</td>
<td>115</td>
<td>6</td>
<td>188</td>
<td>2</td>
<td>5544</td>
<td>119</td>
<td>5978</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>125</td>
<td>6</td>
<td>291</td>
<td>7</td>
<td>5544</td>
<td>183</td>
<td>6169</td>
</tr>
</tbody>
</table>

Brick

Thirteen pieces of brick weighing a total of 31 g were recovered. As no parts of the huts were built with brick (although bricks were used in the construction of the hospital and the incinerator) it may have been used to edge garden beds.

Concrete

Excavation recovered 125 pieces of concrete (280.1 g). Eighty-two percent by both number (n = 102) and weight (229.9 g) is in SU II. All but eight pieces of the SU II concrete are located in grid units C1, C2 and D1, which lie parallel with the concrete path (see Figure 25). There is an equivalent increase in the amount of shell in SU II (see below). The path was constructed in 1948. As it exhibits the dated signature and handprints of a male patient, EH, at both the northern and southern ends of the path, this may have been his hut. He may have been earning money by laying the concrete or it may have been a random act. The increased amount of concrete and the raw material (shell) for its manufacture in SU II equates with the laying of the path and thus would date that part of SU II to 1948. This Stratigraphic Unit was probably
the land surface for a long time and when the path was laid it would have been
excavated slightly into the existing ground surface at the time.

Glass

Five of the pieces of accommodation related glass are window pane fragments, the
other is a light bulb fragment. The light bulb is from SU II and cannot date earlier
than 1947 (the introduction of electricity to the Lazaret). This date matches well with
the 1948 date for the construction of the concrete path, the material for which is also
located in SU II.

Metal

A large amount of accommodation related metal artefacts are found in Site 34 (Table
51). It includes wires, screws, nails, bolts and various electrical fittings.

Plastic

There are seven accommodation related plastic artefacts. In SU I there is one piece of
black electrical insulation flex and four pieces of grey coloured light bulb fitting. In
SU II there is another piece of black electrical flex and a piece of brown light bulb
fitting.

Shell

A total of 7,504 pieces of shell are found in Site 34. SU II contains 73.9% of the
entire shellfish collection (n = 5,544). SU II is the unit containing increased volumes
of shell, coral and concrete and this probably relates to the use of midden shell as the raw material for the construction of the 1948 footpath. It is not possible to distinguish the shell relates to the construction of the footpath from that that does not. Therefore I have assigned all the shell in SU II to the Accommodation class. As with Site D1 all the identified shellfish are edible species from Moreton Bay with *Saccostrea glomerata* and *Trichomya hirsutus* as the dominant species (Table 52).

Table 51. Distribution of Metal Accommodation Artefacts in Site 34

<table>
<thead>
<tr>
<th>Artefact</th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Copper tube</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Copper tube - ‘MSTP 70 CC’</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Electrical connector</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Electrical element</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Electrical fitting</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Furniture tack</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Light bulb fitting</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Nail</td>
<td>50</td>
<td>126</td>
<td>16</td>
<td>192</td>
</tr>
<tr>
<td>Nail - brad</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Nail - clout</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Nail - lead headed</td>
<td>7</td>
<td>13</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Rivet</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Screw</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Screw - counter sunk wood</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Screw - hex</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sheet metal with circular hole</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Solder</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Wall bracket</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Washer</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Wire</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wire - fly screen</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>188</td>
<td>20</td>
<td>291</td>
</tr>
</tbody>
</table>
Table 52. Species of Shell in SU II of Site 34

<table>
<thead>
<tr>
<th>Species</th>
<th>SU II</th>
<th>SU I</th>
<th>SU III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anadara trapezia</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Pyrazus ebeninus</td>
<td>163</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>Saccostrea glomerata</td>
<td>3121</td>
<td>3121</td>
<td>3121</td>
</tr>
<tr>
<td>Salinator solida</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Trichomya hirsutus</td>
<td>2182</td>
<td>2182</td>
<td>2182</td>
</tr>
<tr>
<td>Unidentified gastropod</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>5544</td>
<td>5544</td>
<td>5544</td>
</tr>
</tbody>
</table>

Wood

There are 183 pieces of artefactual wood in Site 34; 64 in SU I and 119 in SU II. All are either pieces of stumps or weatherboards from hut walls. Only eight exhibit any evidence of having been painted; all eight are painted white.

Hospital

All the artefacts (n = 91) related to the functioning of the Lazaret as a hospital are made of glass. SU I contains one fragment of broken pipette, a piece of the body of a blue medicine bottle with no identifying marks and seven laboratory beaker fragments. SU II contains seven pipette fragments, 69 pieces of broken laboratory beaker and the body of an ampoule. SU III contains five beaker fragments. Together this material indicates the degree to which medical and nursing treatments occurred within the huts. Patients in an advanced state of the disease were routinely treated in their huts (Ludlow 1993:15). It would appear that used ampoules and broken glass items such as pipettes were discarded under the hut when they were no longer serviceable.

Personal

A total of 16 personal artefacts were recovered (Table 53).
Table 53. Distribution of Personal Artefacts in Site 34

<table>
<thead>
<tr>
<th></th>
<th>Glass</th>
<th>Metal</th>
<th>Pencil lead</th>
<th>Plastic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SU II</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

Glass

The glass artefact in SU I is a complete round ink bottle standing 47.0 mm high with a
diameter of 44.3 mm. It is a 20th century machine made bottle embossed with the
legend ‘HIGGIN’S INKS 2 BROOKLYN N.Y.’. The two personal glass items in SU
II are a spherical glass bead and a blue glass marble.

Metal

The two metal items in SU I are foil wrappers from cigarette packets. In SU II is a
lead, barrel-shaped fishing sinker, two components from crystal radio sets and a
complete toothpaste tube manufactured by Colgate Palmolive of Sydney. The tube is
silver/grey with yellow and red stripes and red lettering: ‘...tasil...’ (on obverse) and
‘...LG...T...&...OLI...registered ... and ...’, ‘...ATE PALMOLIVE CO...’ and
‘...COLGATE PALMOLI...t...Sydney and Melbourne’ on the reverse. Colgate
Palmolive still produce cleaning and personal hygiene products for the Australian
market.
Pencil lead

There are three pieces of pencil lead in Site 34: one in SU I and two in SU II. Each piece weighs 0.1 g.

Plastic

The four plastic personal artefacts in Site 34 are all teeth from different combs. They is one transparent pieces and the others are coloured black, green and red.

Unassigned

There are 5,653 unassigned artefacts in Site 34 (Table 54). This total does not include charcoal (which was not counted but weighed).

Table 54. Distribution of Unassigned Artefacts in Site 34

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Fauna</th>
<th>Glass</th>
<th>Metal</th>
<th>Plastic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>920</td>
<td>85</td>
<td>1350</td>
<td>0</td>
<td>2355</td>
</tr>
<tr>
<td>SU II</td>
<td>1</td>
<td>179</td>
<td>276</td>
<td>1621</td>
<td>5</td>
<td>2082</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>1123</td>
<td>27</td>
<td>66</td>
<td>0</td>
<td>1216</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>2222</td>
<td>388</td>
<td>3037</td>
<td>5</td>
<td>5653</td>
</tr>
</tbody>
</table>

Ceramic

A piece of porcelain (weight = 0.1 g) is located in SU II. The piece is too small to determine if it is food or hospital related.
Charcoal

Site 34 contains almost six kilograms of charcoal. Charcoal represents a greater proportion of the sediment in the lowest stratum (Table 55).

<table>
<thead>
<tr>
<th></th>
<th>Weight (g)</th>
<th>% of Sediment Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>120.2</td>
<td>2.37</td>
</tr>
<tr>
<td>SU II</td>
<td>2720.2</td>
<td>9.28</td>
</tr>
<tr>
<td>SU III</td>
<td>3091.9</td>
<td>26.0</td>
</tr>
<tr>
<td>Total</td>
<td>5932.3</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Table 55. Distribution of Charcoal in Site 34

Faunal Material

A total of 7,766 faunal fragments were located (Table 56). Of this total, 96.6% is shell, the remainder comprises bone (2.1%), coral (1.3%) and exoskeleton (0.03%). The 5,544 pieces of shell in SU II were discussed under the accommodation class.

<table>
<thead>
<tr>
<th></th>
<th>Bone</th>
<th>Coral</th>
<th>Exoskeleton</th>
<th>Shell</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>897</td>
<td>920</td>
</tr>
<tr>
<td>SU II</td>
<td>102</td>
<td>76</td>
<td>1</td>
<td>0</td>
<td>179</td>
</tr>
<tr>
<td>SU III</td>
<td>46</td>
<td>14</td>
<td>0</td>
<td>1063</td>
<td>1123</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>100</td>
<td>2</td>
<td>1960</td>
<td>2222</td>
</tr>
</tbody>
</table>

Table 56. NISP of Unassigned Faunal Remains in Site 34

Bone

One hundred and sixty pieces of bone were excavated with 64% from SU II (Table 56). The bone weighs a total of 61.6 g with a mean weight of 0.4 g. Two mammal
vertebrae and two mammal long bone fragments were identified; however, due to its fragmentary nature, most bone was not identifiable. Thirty-eight pieces have been burnt: one in SU I; 13 in SU II and 24 in SU III (this corresponds to the increasing amounts of charcoal, see above). None of the bone exhibits any butchering marks.

Coral

One hundred pieces of coral (mean weight = 0.7 g) were found in Site 34. Ten pieces are in SU I, 76 in SU II and 14 in SU III. The increase in coral in SU II may relate to the construction of the footpath as the lime from coral is used as a raw material in concrete production; however no coral was observed in the completed concrete footpath.

Exoskeleton

There are two pieces of crab exoskeleton in Site 34; one each in SUs I and II. The one identifiable piece in SU II is a claw fragment of *Portunus pelagicus* (sand crab) claw. Although sand crabs are eaten regularly by Queenslanders I have not included these artefacts in the Food class as their origin is unknown.

Shell

Details of the shellfish remains (excluding SU II) are presented in Table 57. All the shell represents edible species from Moreton Bay and probably originates in the Aboriginal middens located around the Lazaret margins (the Lazaret Midden). As this corner of the Island was probably a popular camping area in prehistory (Dr Anne
Ross, Department of Anthropology and Sociology, University of Queensland, pers. comm. 1999) it is likely that the entire Lazaret is built on a layer of disturbed shell midden material.

Table 57. NISP of Unassigned Shell in Site 34

<table>
<thead>
<tr>
<th></th>
<th>Anadara trapezia</th>
<th>Nerita atramentosa</th>
<th>Pyrazus ebeninus s</th>
<th>Saccostrea glomerata</th>
<th>Trichomya hirsutus</th>
<th>Unidentified gastropod</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>557</td>
<td>314</td>
<td>18</td>
<td>897</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>684</td>
<td>345</td>
<td>2</td>
<td>1063</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>38</td>
<td>1241</td>
<td>659</td>
<td>20</td>
<td>1960</td>
</tr>
</tbody>
</table>

Glass

The unassigned glass artefacts total 388 sherds, including 289 bottle sherds. They weigh a total of 165.6 g with a mean weight of 0.43 g. All pieces are clear except for 24 green and one blue sherd. They are all too small to identify at a more specific level.

Metal

There are 3,037 unassigned pieces of metal. This is largely due to the mean weight for all the metal in Site 34 being only 0.37 g. Table 58 presents the unassigned metal artefacts by SU.
Table 58. Unassigned Metal Artefacts in Site 34

<table>
<thead>
<tr>
<th></th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C-ring</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D-ring</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Drawing pin</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Foil</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Nut - hex</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Nut - knurled locking</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>O-ring</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Screw - grub</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Sharpening file</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tacks</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Tube cap</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Unidentifiable due to level of corrosion and small size</td>
<td>1344</td>
<td>1552</td>
<td>65</td>
<td>2961</td>
</tr>
</tbody>
</table>

Plastic

There are five pieces of unassigned plastic and they are all in SU II. Three are tube caps, one is far too small to identify and the other is a curved black plastic fragment with ‘...RI...’ on the convex surface and ‘...USTRALIA’ on the concave surface. The curvature of the fragment resembles that of light bulb fittings however it does not match any of the light fittings found at the Lazaret.

Site 34 Summary

Artefacts related to the Lazaret are found in all three strata in Site 34. The concrete footpath that runs from the bitumen road to the front steps of the hut is the most predominant feature and has had the greatest influence on artefact distribution. Half
the artefacts in the entire site relate to its construction. In fact the accommodation related artefacts total 6,169 items (51.5% of all the artefacts).

There are nine pieces of crockery found in Site 34. Male patients were required to eat in the dining room and had no cooking facilities in their huts. I infer from this crockery that at some stage a patient took his meals in the hut, or that this material was provided for the occupant’s personal use. The government crest on one of the cup sherds tends to reduce the reliability of the second hypothesis.

The clothing artefacts are all from clothes worn by men and the personal artefacts all relate to male-oriented activities described in the Documentary Record and the Historical Documentary Record (i.e. fishing, letter writing and radio listening). Pencil leads and ink bottles indicate that the patients’ hut was a site of more activities than the sanctioned sleeping and resting. They were at least used for other solitary activities such as letter writing, although desks and chairs were not part of the furniture issued for huts.

There is evidence for the nursing treatment of patients within their own huts, rather than at the hospital or surgery, or for the use of huts as makeshift laboratories. A relatively large number (n = 91) of discarded hospital related artefacts are located around the front entrance of Hut 34. This material includes beakers, pipettes, vials and ampoules. This equipment must have been discarded by the nursing staff at some stage after patient treatment. However, discarding hospital items in this manner was
not routine. The Lazaret predates the introduction of disposable treatment items, such that all used glass and metal equipment would have been sterilised to some degree before re-use. Items would only be disposed of once they were broken or no longer serviceable (this could explain why no syringes or needles were found). Ampoules are a one dose medication storage medium and would be discarded immediately after use. Occasionally a patient’s hut was used as a ‘makeshift laboratory’ by the nursing staff (Ludlow 1993:15), although no Documentary Record or Historical Documentary Record exists identifying which huts were used in this way. It is possible that broken items on the floor may have been swept from the verandah.

SITE 39

Site 39 is located in the white male patients’ compound immediately adjacent to the Surgery complex. It is 13 m from the northeastern corner of the Surgery to the southwestern corner of Hut 39 at an angle of 51.8°. The local datum is located 117.7 m at 129.13° from the Lazaret datum. Hut 39 was the western most hut in a row of three. Site 39 is located 10.5 m south of Site 34.

Site 39 measures 5.25 x 6 m (31.5 m²) and consists of the wooden stumps of a larger than average hut. On the western and southern sides of the site a one-metre-high wire mesh fence was located of 2.8 m away. (It collapsed in 1995). The surface of the site was covered in leaf litter from mango trees and Callitris spp. and all that remains of
the hut are 17 round wooden stumps, two square wooden stumps, two metal ant caps and one tread from the steps to the front door (Figure 29).

Five pits were excavated, each measuring 100 x 50 cm. As with the other sites, a strategy of excavating around the steps and front door area of the hut was employed. A total of 528.0 kg of sediment was removed from these pits.

Site 39 Stratigraphy and Features

The basic stratigraphy of Site 39 differs somewhat from that of Site 34, yet still follows the stratigraphic horizons identified earlier. The differences are in the features identified in Site 39 (Figure 30). Feature 2 (F 2) is a post hole located in the southeastern corner of grid unit C 1. Unlike the post hole in Site 34 in which the sediments were indistinguishable from SU II, this one contained a very loose, dark brown sediment that was virtually sterile. It contained only three artefacts: two pieces of glass and one piece of shell.

Feature 3 (F 3) is a shell layer located in grid units A1 and B1, which lies beneath SU I and is interfingered throughout SU II. It is located in the area immediately beneath the entrance steps to the hut and ceases under the building line (Figure 29). The shell commences in the northeastern corner of the pit and crosses it in a straight line until it intersects with the western wall of the pit 20 cm south of the northern wall. This line runs parallel with the walls of the hut. F 3 contains 53.1 kg of midden shell from elsewhere on the Island (see below) and appears to have been a decorative feature.
under the entrance steps to the building. It does not extend along the northern wall as far as grid unit D1. Probing the sediments around grid unit A1 indicated that F 3 was restricted to the area under the stairs.

Feature 4 (F 4) is a linear sandstone feature located at the base of grid units B1 and B2. It is covered by SU III in both squares. This extremely siliceous sandstone runs NW-SE through the two squares (Figure 29) and varies between 7 and 11 cm in width. Large blocky pieces of charcoal are associated with the northern boundary of this feature. There are at least three possible explanations for this feature:

- It is completely natural and is the top of the bedrock in this area. However, as SU III sediment removed on either side of the feature contained glass and other artefacts, this argument would appear unlikely;
- An old tree root may have been replaced by water borne material that has now silicified; and
- It is a cultural feature. The original road into the Lazaret ran through this area and entered the Lazaret from the east. This was the case from 1906 until the coloured patients were removed from the Lazaret in 1940. The road was then diverted around the disused coloured patients' compound to enter the Lazaret from the southwest. This sandstone may mark the side of the road or a drainage channel associated with the road. The irregularity of the edges of the sandstone may count against this. There is no evidence that it has been shaped by humans.
Figure 29. Plan of Site 39
Figure 30. Stratigraphic Profiles of Site 39
Site 39 Results

There were 4,208 artefacts in the 528.2 kg of sediment removed from Site 39 (Table 59). The largest proportion are accommodation related artefacts (68.7%), the smallest class is hospital related (0.14%).

Food

There are 61 food related artefacts consisting of seven ceramic, 49 glass and five metal artefacts (Table 60).

<table>
<thead>
<tr>
<th>Table 59. Distribution of Artefact Classes in Site 39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
</tr>
<tr>
<td>SU I</td>
</tr>
<tr>
<td>F 2</td>
</tr>
<tr>
<td>SU II</td>
</tr>
<tr>
<td>F 3</td>
</tr>
<tr>
<td>SU III</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 60. Distribution of Food Artefacts in Site 39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic</td>
</tr>
<tr>
<td>SU I</td>
</tr>
<tr>
<td>F 2</td>
</tr>
<tr>
<td>SU II</td>
</tr>
<tr>
<td>F 3</td>
</tr>
<tr>
<td>SU III</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Ceramic

Seven pieces of ceramic were recovered (Table 60), all quite small (total weight = 4.0 g). They are all tableware and all white earthenware except for one piece of fine stoneware in SU II. The white earthenware sherd in F 3 is a teacup rim sherd.

Glass

There are 215 pieces of glass, 140 of which are from bottles. Of these, 49 are identifiable as to use; 48 are beer bottle sherds and one (in SU II) is from a vinegar bottle. None is identifiable to company or city of manufacture.

Metal

There are five crown seal bottle caps in SU II.

Clothing

The only clothing artefacts are made of leather. There are 21 pieces in SU II of grid unit B1 and they all come from three different men’s black shoes.

Accommodation

Accommodation related artefacts make up over two thirds of the entire artefact collection from Site 39 (Table 59). Almost every raw material type is included within the class, although the vast majority of the artefacts are the shells and other faunal material located in F 3 (Table 61).
Table 61. Accommodation Artefacts in Site 39

<table>
<thead>
<tr>
<th></th>
<th>Concrete</th>
<th>Fauna</th>
<th>Fibro</th>
<th>Glass</th>
<th>Metal</th>
<th>Stone</th>
<th>Wood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>F 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SU II</td>
<td>45</td>
<td>0</td>
<td>28</td>
<td>9</td>
<td>93</td>
<td>0</td>
<td>2</td>
<td>177</td>
</tr>
<tr>
<td>F 3</td>
<td>0</td>
<td>2622</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>2630</td>
</tr>
<tr>
<td>SU III</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>2622</td>
<td>70</td>
<td>10</td>
<td>133</td>
<td>1</td>
<td>9</td>
<td>2891</td>
</tr>
</tbody>
</table>

Concrete

There 46 pieces of concrete, of which one is in SU III and 45 in SU II. They are distributed fairly evenly throughout the matrix, though the presence of concrete is difficult to explain as there are no obvious concreted structures related to Site 39, except the concrete stumps of the pathology building located immediately north of the surgery.

Faunal Material

A total of 3,345 animal remains were located. A little over 78% of them (n = 2,622) are from F 3 (Table 62). F 3 is restricted to the area immediately beneath the entrance steps to the hut and appears to have been a decorative feature at the doorway to the hut. Consequently the faunal material found within it is included in the Accommodation class. The ratio of crab shell:coral:shellfish in Feature 3 matches well with the ratio of the same materials in the middens located in close proximity to the Lazaret (Dr Anne Ross, Department of Anthropology and Sociology, University of Queensland, pers. comm. 1998).
Table 62. NISP of Faunal Remains in F 3 Site 39

<table>
<thead>
<tr>
<th></th>
<th>Bone</th>
<th>Coral</th>
<th>Exoskeleton</th>
<th>Shell</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 3</td>
<td>41</td>
<td>93</td>
<td>5</td>
<td>2483</td>
<td>2622</td>
</tr>
</tbody>
</table>

Bone

F 3 contains 39 pieces of turtle bone, four of which exhibit evidence of cutting, 35 are calcined and two have been burnt. There are also two fish bones of which one is a vertebra.

Coral

The coral in F 3 represents 73.8% of all the coral in Site 39. It has not been speciated.

Exoskeleton

Five fragments of *Scylla serrata* (mud crab) shell were found in F 3.

Shell

A total of 3,108 shellfish fragments were recovered from the excavation of Site 39. Approximately 80% (79.9%) of the shell is in Feature 3 (Table 63). The species represented are all edible species from Moreton Bay. The 26 *Donax deltoides* (pipi or eugarie) fragments come from a species found only on high energy surf beaches and must have been brought to the northern side of the Island from Horseshoe Bay, almost certainly by humans. The shell in Site 39 almost certainly comes from Aboriginal middens located on Peel Island.
Table 63. Species of Shell in F 3 in Site 39

<table>
<thead>
<tr>
<th>Species</th>
<th>NISP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anadara trapezia</td>
<td>3</td>
</tr>
<tr>
<td>Bembicium auratum</td>
<td>2</td>
</tr>
<tr>
<td>Calthalotia arruensis</td>
<td>5</td>
</tr>
<tr>
<td>Donax deltoides</td>
<td>23</td>
</tr>
<tr>
<td>Pyrazus ebeninus</td>
<td>96</td>
</tr>
<tr>
<td>Saccostrea glomerata</td>
<td>1779</td>
</tr>
<tr>
<td>Salinator solida</td>
<td>1</td>
</tr>
<tr>
<td>Trichomya hirsutus</td>
<td>556</td>
</tr>
<tr>
<td>Unidentified bivalve</td>
<td>8</td>
</tr>
<tr>
<td>Unidentified gastropod</td>
<td>6</td>
</tr>
<tr>
<td>Unidentified</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>2483</td>
</tr>
</tbody>
</table>

Fibro

There are 42 large pieces of fibro in SU I and 28 pieces in SU II (mean weight = 38.4 g). This material probably entered the archaeological record with the demolition of the hut in the early 1960s.

Glass

There are 10 plain window glass fragments.

Metal

A large number of accommodation related metal artefacts were found in Site 39.

Table 64 provides the details.
Table 64. Distribution of Metal Accommodation Artefacts in Site 39

<table>
<thead>
<tr>
<th></th>
<th>SU I</th>
<th>SU II</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nail</td>
<td>20</td>
<td>79</td>
<td>99</td>
</tr>
<tr>
<td>Nail - bullet headed</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Nail - clout</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Nail - fibro</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nut</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Screw</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Screw - batten</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Screw - coach</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sheet metal with nail hole</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Washers - diamond shaped roofing</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>92</td>
<td>133</td>
</tr>
</tbody>
</table>

Stone

One piece of sandstone in F 3 appears quite different to the sandstone of F 4. There is no evidence indicating that it is an artefact except for its location within F 3. As with all material in F 3 it has been included in the accommodation class.

Wood

Four wooden flakes appear to be from building stumps in SU I. There are two small pieces of wood in SU II and seven pieces in F 3. One of the pieces in F 3 is from a dowel.

Hospital

The only hospital artefacts are made of glass and they include a beaker sherd in SU I, an ampoule sherd in F 2, a beaker sherd and an ampoule sherd in SU II and an ampoule sherd and a vial sherd in F 3. I infer that the same procedure of disposing of
medical equipment under the huts occurred at Hut 39 as at Hut 34 but to a much lesser extent.

Personal

There are 358 artefacts that can be classified as personal. One is a metal artefact: a cut-throat [or straight] razor located in SU II (Figure 31). The remaining artefacts are D Cell batteries.

Batteries

A total of 357 fragments of 4.5 volt 'D' dry cell batteries was removed from Site 39. They are all from one small area towards the northern end of grid unit D1 and in line with the stumps marking the edge of the original building. One battery core is in SU I and the remainder are all in SU II. The sediments were stained a darker colour and were less compacted and more friable around the batteries. The batteries had to be handled with care as once unearthed they released toxic gases.

Unassigned

There are 871 unassigned artefacts (Table 65). Charcoal is dealt with separately as it was not counted, only weighed.

Charcoal

The total weight of charcoal in Site 39 is just over 2.3 kg and is distributed as shown in Table 66.
Figure 31. Cut-Throat or Straight Razor in SU II of Site 39

Table 65. Distribution of Unassigned Artefacts in Site 39

<table>
<thead>
<tr>
<th></th>
<th>Coke</th>
<th>Fauna</th>
<th>Glass</th>
<th>Metal</th>
<th>Plastic</th>
<th>Stone</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>94</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>F 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SU II</td>
<td>3</td>
<td>621</td>
<td>54</td>
<td>84</td>
<td>1</td>
<td>1</td>
<td>764</td>
</tr>
<tr>
<td>F 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>723</td>
<td>59</td>
<td>84</td>
<td>1</td>
<td>1</td>
<td>871</td>
</tr>
</tbody>
</table>
Table 6. Distribution of Charcoal in Site 39

<table>
<thead>
<tr>
<th></th>
<th>Weight in g</th>
<th>% of Sediment Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>70.1</td>
<td>2.58</td>
</tr>
<tr>
<td>F 2</td>
<td>50.2</td>
<td>6.19</td>
</tr>
<tr>
<td>SU II</td>
<td>1489.1</td>
<td>4.48</td>
</tr>
<tr>
<td>F 3</td>
<td>611.1</td>
<td>11.51</td>
</tr>
<tr>
<td>SU III</td>
<td>100.8</td>
<td>0.94</td>
</tr>
<tr>
<td>Total</td>
<td>2321.3</td>
<td>4.39</td>
</tr>
</tbody>
</table>

Coke

There are three pieces of coke in SU II of grid unit A1. They weigh a total of 1.6 g.

Faunal Material

A total of 3,345 animal remains were recovered. A little over 78% of them (n = 2,622) are from F 3 and have been dealt with under Accommodation whilst the remaining artefacts are presented in Table 67.

Table 67. NISP of Unassigned Faunal Material in Site 39

<table>
<thead>
<tr>
<th>Bone</th>
<th>Coral</th>
<th>Shell</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>2</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>F 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SU II</td>
<td>76</td>
<td>17</td>
<td>528</td>
</tr>
<tr>
<td>F 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SU III</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>18</td>
<td>625</td>
</tr>
</tbody>
</table>

Bone

One hundred and twenty-one pieces of bone were removed from Site 39 of which 80 are unassigned. In SU I there are two pieces of unidentifiable calcined bone weighing
a total of 0.2 g. SU II contains 48 pieces of turtle bone of which 46 are calcined, one is burnt and one is carbonised. Two other pieces of bone from SU II are mammalian but the rest defy identification. SU III contains two pieces of bone that together weigh 0.6 g.

Coral

Eighteen pieces of coral remain unassigned from the excavation. It has not been speciated.

Shell

A total of 3,108 shellfish fragments were recovered from the excavation, 625 of which are unassigned (Table 68).

Table 68. Distribution of Unassigned Shell in Site 39

<table>
<thead>
<tr>
<th>Species</th>
<th>SU I</th>
<th>F 2</th>
<th>SU II</th>
<th>F 3</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calthalotia arruensis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Donax deltoides</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Pyrazus ebeninus</td>
<td>3</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Saccostrea glomerata</td>
<td>65</td>
<td>1</td>
<td>398</td>
<td>0</td>
<td>1</td>
<td>465</td>
</tr>
<tr>
<td>Tapes spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Trichomya hirsutus</td>
<td>21</td>
<td>0</td>
<td>101</td>
<td>0</td>
<td>3</td>
<td>125</td>
</tr>
<tr>
<td>Unidentified gastropod</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Unidentified</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>1</td>
<td>528</td>
<td>0</td>
<td>4</td>
<td>625</td>
</tr>
</tbody>
</table>
Glass

There are 150 unassigned glass sherds of which 91 are bottle glass sherds that could not be identified as to use. The unidentified bottle glass sherds weigh a total of 167.4 g with an average of 1.84 g. There are 59 (27.4%) glass sherds that could not be identified to type. The sherds weigh a total of 7.1 g and average 0.12 g each. Two are brown in colour, five are green and 52 are clear.

Metal

All the unassigned metal is located in SU II. It comprises one metal band, one cogwheel, one piece of foil, one rod, one piece of lead solder, one tack and 78 unidentifiable pieces.

Plastic

One piece of very thin (0.7mm) white plastic is in F 3. It weighs 0.6 g and is unidentifiable.

Stone

A stone artefact in SU II is made from the ironstone that naturally occurs on the Island. It is a sharpening file with diamond cut markings along a broad flat surface. It has been fashioned by hand so that it tapers to a rounded point and measures 51.1 x 23.3 x 13.1 mm.
Site 39 Summary

From the alignment of house stumps that remain at Site 39 it is evident that Hut 39 was larger than the standard for male patients and is probably a modified female patients’ hut. The row of three huts to which it belonged included the Catholic Church (Building 37) which was also a modified female patients’ hut. Although Hut 39 was only moved to this location in 1941, artefacts are found in all three strata.

The proportion of charcoal in SU III (0.94%) is quite different from that of Site 34, where 26% of the sediment was charcoal. There is, therefore, no consistency across even small areas of space in the charcoal background levels.

The dominant feature of Site 39 is the shell layer (F 3) under the entrance steps. Sixty-two percent of the artefacts in the site are part of this feature. It consists of shell, bone, exoskeleton and coral as well as glass and plastic artefacts. F 3 is a decorative feature and the bleached midden shell would have been a bright white against the brown of the land surface.

That there are far fewer hospital artefacts in Site 39 (n = 6) than in Site 34 (n = 91) is problematic as the only occupant of Hut 39 (ERC) is known to have received all his nursing treatments in his hut. He refused to go to the surgery for treatment (Mrs June Berthelsen, ex-patient, pers. comm. 1997) even though his hut was the closest to the surgery. It may be that once a full-time medical officer was appointed in 1947 treatment standards improved and correct disposal of broken and used equipment was
enforced. Hut 34 had been occupied four and half times longer than Hut 39 (26 years as opposed to 6 years) before the first full-time doctor was appointed.

The only personal artefacts were batteries and a cut-throat [straight] razor. The batteries relate to the use of a crystal radio set (see Discussion section at the end of this Chapter). The razor is an interesting anomaly. ERC had very advanced Hansen’s Disease and was completely blind for most of the time he was at the Lazaret, so it would be unlikely that he would have shaved himself with a razor. Its presence over half a metre under the edge of the hut remains unexplained.

SITE 71
Site 71 is the location of the original male attendants’ quarters at the Lazaret. It is one of the very few buildings where absolutely no standing structures mark its location. The area upon which it stood is now on the western boundary of the Lazaret’s central grassed area and large pine trees now grow to the south and west of the site. These pines did not exist in Lazaret times but are part of the general encroachment of vegetation into the Lazaret following its closure. Boys from the Church of England Gmar School played volleyball on the area of Site 71 (Meadows 1984) in the mid-1980s.

The male attendants’ quarters was the northern most staff building in the central area of the Lazaret. Its location is now only marked by slight depressions in the ground
surface which are inferred to be post holes from the house stumps. The first pit
opened was designed to test whether indeed these depressions related to post holes.
Site 71 is located less than four metres west of the site datum (Figure 32).

The site was excavated by an undergraduate field class (AY225) and nine 100 x 50
cm pits and one 50 x 50 cm pit were opened. A different grid numbering system was
used so as to accommodate the teaching needs of the field class. A one-metre
alphanumeric grid system with an artificial grid north, set at 330° magnetic, was laid
over the entire site with the origin located 28.4 m at 225° grid or 195° magnetic from
the site datum. Each 50 x 50 cm grid unit was numbered thus:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>C</td>
</tr>
</tbody>
</table>

Grid unit A is to the northwest. In this way each 50 x 50 cm grid unit could be
identified within the grid system.

The excavation strategy followed that used for all the huts. Excavations targeted the
areas around the entrance and the edges of the verandah. Grid Units P23BC and
Q23AD were used to test the hypothesis that depressions related to post holes.
L23BC targeted the northern end of the verandah in close proximity to the entrance
steps. Grid units N15AB, N15C, O15AD, Q15AB and Q16CD were all located along
the edge of the southern verandah of the building as there were two entrances into the
fenced area around the male attendants' quarters. One was in the middle of the fence
33' (10.15 m) to the north of the building and the other was located in the
southeastern corner of the block 71’ 6” (22 m) from the southeastern corner of the building (QSA WOR/Leper Lazaretto Batch: 2610 of 1906). The final grid unit, M20AD, was placed in the centre of the building to determine the differences between the edge and the centre of the site.

Site 71 Stratigraphy and Features

The Site 71 stratigraphy followed the Lazaret-wide horizons except that in most of the site they were shallower (Figure 33) due to the exposed nature of the site on the western edge of the central lawn area. There was much less leaf litter and ground cover to build up the strata. At this site SU I was the grassed turf of the central lawn. Two post holes were excavated: one in N15AB and the other in P23BC and Q23AD. A further pit (Feature 5 or F 5) was excavated in O15AD. This pit had been originally dug from SU I through the underlaying strata and it contained a collection of artefacts from the 1970s including a burnt newspaper.

Site 71 Results

A total of 10,122 artefacts were removed in the 775.39 kg of excavated sediment (Table 69). Of this total 83% relate to accommodation. The largest proportion of this material is wooden housing stumps or weatherboards.
Figure 32. Plan of Site 71
Figure 33. Stratigraphic Profiles of Site 71
Table 69. Distribution of Artefact Classes in Site 71

<table>
<thead>
<tr>
<th></th>
<th>Food</th>
<th>Clothing</th>
<th>Accommodation</th>
<th>Hospital</th>
<th>Personal</th>
<th>Post-Lazaret</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUI</td>
<td>33</td>
<td>6</td>
<td>7745</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>7804</td>
</tr>
<tr>
<td>F 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1526</td>
</tr>
<tr>
<td>SU II</td>
<td>62</td>
<td>3</td>
<td>399</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>474</td>
</tr>
<tr>
<td>SU III</td>
<td>41</td>
<td>6</td>
<td>265</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>318</td>
</tr>
<tr>
<td>Total</td>
<td>136</td>
<td>15</td>
<td>8409</td>
<td>19</td>
<td>17</td>
<td>1526</td>
<td>10122</td>
</tr>
</tbody>
</table>

F 5, the pit feature in grid unit O15AD, contains a large number of artefacts that date to the post-Lazaret use of the site and no artefacts that date the Lazaret period. Therefore all artefacts in F 5 are assigned to a separate ‘Post-Lazaret’ class. Some of the artefacts in F 5, e.g. weatherboards, originated at the Lazaret but their original context was lost when they were re-used in the deposition of F 5.

Food

There are 136 food related artefacts in Site 71 (Table 70).

Table 70. Distribution of Food Artefacts in Site 71

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Cork</th>
<th>Faunal Material</th>
<th>Glass</th>
<th>Metal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUI</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>SU II</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>51</td>
<td>62</td>
</tr>
<tr>
<td>SU III</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>109</td>
<td>136</td>
</tr>
</tbody>
</table>
Ceramic

There are 13 pieces of ceramic and the nine that are not in F 5 are all flatwear but cannot be identified any further due to their small size (mean = 0.18 g). Eight are made of white earthenware and one is porcelain.

Cork

There is one rounded, brown bottle cork in SU I.

Faunal Material

The only faunal material that can definitely be assigned to the food class is one piece of bone. The bone fragment is a mammal vertebra that has evidence of having been sawn.

Glass

The glass that can be identified as food related comprises six beer bottle sherds and 10 sherds from drinking glasses or tumblers. Four of these drinking glass pieces display the same double helix pattern etched into the glass. Two pieces in SU I conjoin.

Metal

There are 109 food related metal artefacts in Site 71 (excluding F 5). Table 71 presents the distribution of each type of artefact.
Table 71. Distribution of Metal Food Artefacts in Site 71

<table>
<thead>
<tr>
<th>Item</th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can opener blade</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Crown seal cap</td>
<td>7</td>
<td>40</td>
<td>34</td>
<td>81</td>
</tr>
<tr>
<td>Foil bottle seal</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Foil food container</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Jar lid</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ring pull</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Tin can rim</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>51</td>
<td>36</td>
<td>109</td>
</tr>
</tbody>
</table>

Clothing

There are 15 clothing artefacts in Site 71 (Table 72).

Table 72. Distribution of Clothing Artefacts in Site 71

<table>
<thead>
<tr>
<th>Leather</th>
<th>Metal</th>
<th>Plastic</th>
<th>Rubber</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>SU II</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Leather

There is one fragment of black shoe leather in SU II.

Metal

The metal clothing artefacts in Site 71 consist of four buttons and six shoe eyelets.

The buttons are both four holed buttons and were found in SU III.
Plastic

The three plastic clothing related artefacts in SU I are all four holed buttons; one is black, one is brown and one is red.

Rubber

The rubber artefact in SU II is part of the sole of the heel of a man's shoe.

Accommodation

There are 8,409 accommodation artefacts (Table 73).

<table>
<thead>
<tr>
<th>Concrete</th>
<th>Fibro</th>
<th>Glass</th>
<th>Metal</th>
<th>Plastic</th>
<th>Wood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>20</td>
<td>0</td>
<td>146</td>
<td>233</td>
<td>11</td>
<td>7335</td>
</tr>
<tr>
<td>SU II</td>
<td>6</td>
<td>5</td>
<td>57</td>
<td>172</td>
<td>3</td>
<td>156</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>71</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>5</td>
<td>246</td>
<td>476</td>
<td>14</td>
<td>7642</td>
</tr>
</tbody>
</table>

Concrete

There are 29 pieces of concrete (three are in F 5) that weigh a total of 44.2 g. There is no concrete in SU III.

Fibro

There are five pieces of fibro in SU II that weigh 13.1 g. There is no other fibro in the site.
Glass

There are 246 pieces of accommodation associated glass (excluding the six pieces in F 5) of which 52 are window glass and 194 are from electric light bulbs. Three of these light bulb pieces are located in SU III.

Metal

There 476 metal accommodation artefacts in Site 71 (Table 74).

Table 74. Distribution of Metal Accommodation Artefacts in Site 71

<table>
<thead>
<tr>
<th>Artefact</th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper wire</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electrical cable clip</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Electrical connector</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lead solder</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Light bulb element</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nail - Bullet headed</td>
<td>14</td>
<td>3</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>Nail - Flat headed</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Nail - Galvanised</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Nail - Lead headed roofing nail</td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Nail - Rose headed</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nail - Unidentified</td>
<td>173</td>
<td>159</td>
<td>54</td>
<td>386</td>
</tr>
<tr>
<td>Screw - Wood</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Washer</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wire</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Upholstery tack</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>233</td>
<td>172</td>
<td>71</td>
<td>476</td>
</tr>
</tbody>
</table>

Plastic

From a total of 56 plastic artefacts, 14 relate to accommodation (Table 75).
Table 75. Plastic Accommodation Artefacts in Site 71

<table>
<thead>
<tr>
<th>Number</th>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUI</td>
<td>2</td>
<td>Black Electrical flex</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Brown Electrical flex</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Black Electric light fitting</td>
</tr>
</tbody>
</table>
| | 5 | Brown Electric light fitting - one with moulded lettering 'RING GRIP' and 'MADE IN AUSTRALIA'
| | 1 | Brown Eyelet - 12 mm diameter (? shower curtain or taupulin) |
| SUI II | 3 | Black Electrical flex |

Wood

There are 7,647 pieces of wood, including five in F 5, and they weigh a total of 597.8 g (Table 76). It is all from building stumps or weatherboards.

Table 76. Distribution of Wooden Artefacts in Site 71

<table>
<thead>
<tr>
<th>Number</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUI</td>
<td>7335</td>
</tr>
<tr>
<td>SUI II</td>
<td>156</td>
</tr>
<tr>
<td>SUI III</td>
<td>151</td>
</tr>
<tr>
<td>Total</td>
<td>7647</td>
</tr>
</tbody>
</table>

Hospital

There are 19 hospital related artefacts (Table 77). Eighteen of the 19 are made of glass.

Table 77. Distribution of Hospital Artefacts in Site 71

<table>
<thead>
<tr>
<th></th>
<th>Glass</th>
<th>Plastic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUI</td>
<td>12</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>SUI II</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUI III</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>1</td>
<td>19</td>
</tr>
</tbody>
</table>
Glass

The glass artefacts consist of fragments of pipettes and test tubes; there are six pipette fragments and six test tube fragments in SU I and six pipette fragments in SU III. The presence of this glass material may be considered problematic as it is unlikely that either such equipment was stored at the male attendants' hut or that the male attendants used this equipment in their duties. Male attendants were not nurses and did not carry out nursing duties. It is possible that secondary uses were found for the equipment.

Plastic

SU I contains the plastic lid of a medicine bottle.

Personal

There are 17 personal items in Site 71 (Table 78).

| Table 78. Distribution of Personal Artefacts in Site 71 |
|---------------------------------|-----|-----|-----|-----|-----|-----|
| | Glass | Metal | Pencil lead | Plastic | Rubber | Total |
| SU I | 0 | 2 | 1 | 3 | 1 | 7 |
| SU II | 3 | 4 | 1 | 2 | 0 | 10 |
| SU III| 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 3 | 6 | 2 | 5 | 1 | 17 |

Glass

All three items of personal glass are located in SU II; one is the base of an ink bottle, one is the rim of an ash tray and the other is part of a radio valve.
Metal

Three of the six metal artefacts relate to fishing activities: a handmade fishhook (SU II), a fishing swivel (SU I) and a lead barrel sinker (SU II). The other personal items are two pieces of foil from cigarette packets and the metal setting of a cufflink.

Pencil lead

There are two small pieces of pencil lead; one in SU I and the other in SU II.

Plastic

The three plastic artefacts in SU I are all knurled knobs from the backs of clocks. These knobs exactly match those on the back of the complete clock found in Site D1 (see page 221). The two artefacts in SU II are a toothpaste tube cap and a yellow comb tooth.

Rubber

The one personal rubber artefact is a vulcanite tobacco pipe stem that is black and weighs four grams. It was located in SU I of Q23BC.

Post-Lazaret

All material found in the pit (F 5) has been assigned to a Post-Lazaret class. This applies even if the material originated during the lifetime of the Lazaret. The pit was dug and the material deposited at some stage after February 1976. Material was deposited in the pit and then a fire was lit, which burnt the folded newspaper within
the pit but it was then quickly extinguished and the pit was refilled with the same sediments that were removed from it. The artefacts found in F 5 are presented in Table 79.

Table 79. Count of Post-Lazaret Artefacts in Site 71

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick</td>
<td>12</td>
</tr>
<tr>
<td>Cardboard</td>
<td>9</td>
</tr>
<tr>
<td>Ceramic</td>
<td>4</td>
</tr>
<tr>
<td>Concrete</td>
<td>3</td>
</tr>
<tr>
<td>Faunal material</td>
<td>528</td>
</tr>
<tr>
<td>Glass</td>
<td>74</td>
</tr>
<tr>
<td>Metal</td>
<td>867</td>
</tr>
<tr>
<td>Paper</td>
<td>1</td>
</tr>
<tr>
<td>Plastic</td>
<td>23</td>
</tr>
<tr>
<td>Wood</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>1526</td>
</tr>
</tbody>
</table>

F 5 contains identifiable food storage containers such as a ‘Tristrams’ soft drink can, a ‘Pure and Simple’ oil spray can and an ‘Edgell Potato Whip’ can. The soft drink can holds 370 ml of fluid and therefore post-dates Australia’s metric conversion that occurred during the 1970s. The major changes occurred in 1974. The standard Australian soft drink can holds 375 ml. Following metrification, however, there was a period prior to the standardisation of container sizes. Therefore a 370 ml can most probably dates from a period of non-standard experimentation with can sizes that existed for a period following 1974.

F 5 also contains many thousands of fragments of burnt newspaper, all from a single newspaper that was folded and burnt complete (total fragment weight = 8.2 g). It is
extremely fragile. Three headlines are decipherable from the ashes: 'Guatemalan disaster kills 20,000 people', 'Tasmanian ramparts' and 'description of Tasmania'. The 'Guatemalan disaster' is the earthquake that hit Guatemala on 4 February 1976 and left an estimated 23,000 people dead or missing (Pan American Health Organisation 1994:1). This date supplies a *terminus post quem* of mid-February 1976 for F 5, as Australian newspapers of the day were slow to report the disaster (two weeks after the earthquake the death toll was reported as 13,000) and then coverage disappeared quickly.

As well as these artefacts there were also 1,479 g of charcoal in F 5. This represents 95.79% of the total weight of material, including sediment, removed from F 5. The large amount of charcoal and the burnt newspaper are indicative of an attempt to burn the rubbish prior to burial. This was a common practice in the 1970s in camping circles and was known as 'burn, bash and bury'. It was not until the more environmentally aware 1980s that this practice ceased.

Unassigned

Excluding the charcoal there are 5,030 unassigned artefacts in Site 71 (Table 80).

<table>
<thead>
<tr>
<th></th>
<th>Faunal Material</th>
<th>Glass</th>
<th>Metal</th>
<th>Plastic</th>
<th>Rubber</th>
<th>Sponge</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>720</td>
<td>287</td>
<td>1326</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2337</td>
</tr>
<tr>
<td>SU II</td>
<td>647</td>
<td>224</td>
<td>1099</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1976</td>
</tr>
<tr>
<td>SU III</td>
<td>133</td>
<td>67</td>
<td>510</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>717</td>
</tr>
<tr>
<td>Total</td>
<td>1500</td>
<td>578</td>
<td>2935</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>5030</td>
</tr>
</tbody>
</table>
Charcoal

A total of 2,345.2 g of unassigned charcoal was recovered. Its distribution is shown in Table 81, which demonstrates significant variation in the amount of charcoal in each stratum.

Table 81. Distribution of Unassigned Charcoal in Site 71

<table>
<thead>
<tr>
<th></th>
<th>Weight (g)</th>
<th>% of Sediment Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>118.1</td>
<td>0.46</td>
</tr>
<tr>
<td>SU II</td>
<td>317.7</td>
<td>1.23</td>
</tr>
<tr>
<td>SU III</td>
<td>1909.4</td>
<td>11.08</td>
</tr>
<tr>
<td>Total</td>
<td>2345.2</td>
<td>4.34</td>
</tr>
</tbody>
</table>

Cigarette Butt

A cigarette butt was found on the surface of the site.

Faunal Material

Bone

Of the 55 bones fragments in the unassigned collection (mean weight = 0.22 g), none could be speciated on morphological grounds.

Coral

There are 12 coral pieces in Site 71; five in SU I (1.2 g), and seven in SU II (10.3 g). The coral has not been speciated.
Shell

There are 1,471 pieces of unassigned shell in Site 71. Their distribution is presented in Table 82.

Table 82. Distribution of Unassigned Shell in Site 71

<table>
<thead>
<tr>
<th>Species</th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donax deltoides</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Pyrazus ebeninus</td>
<td>81</td>
<td>40</td>
<td>13</td>
<td>134</td>
</tr>
<tr>
<td>Saccostrea glomerata</td>
<td>527</td>
<td>556</td>
<td>100</td>
<td>1183</td>
</tr>
<tr>
<td>Trichomya hirsutus</td>
<td>43</td>
<td>25</td>
<td>3</td>
<td>71</td>
</tr>
<tr>
<td>Unidentified gastropod</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Unidentified</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>666</td>
<td>635</td>
<td>130</td>
<td>1431</td>
</tr>
</tbody>
</table>

Tooth

There are two fragments of rodent incisor in SU I that together weigh 0.4 g.

Glass

There 578 unidentified pieces of glass (excluding F 5) which represents the majority of the collection. They weigh a total of 48.4 g with a mean weight of 0.08 g.

Metal

The unassigned metal artefacts are presented in Table 83.
Table 83. Distribution of Unassigned Metal Artefacts in Site 71

<table>
<thead>
<tr>
<th>Description</th>
<th>SU I</th>
<th>SU II</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc - slightly convex measuring 53.9 mm diameter and 0.9 mm thickness</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Drawing pin</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Pin</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ring</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Screw - grub</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Staple</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Tack</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Tin foil</td>
<td>27</td>
<td>11</td>
<td>19</td>
<td>57</td>
</tr>
<tr>
<td>Unidentified copper</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Unidentifiable due to small size and degree of corrosion</td>
<td>1288</td>
<td>1059</td>
<td>482</td>
<td>2829</td>
</tr>
<tr>
<td>Unidentified lead</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Wire</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1326</td>
<td>1099</td>
<td>510</td>
<td>2935</td>
</tr>
</tbody>
</table>

Plastic

All the unassigned plastic is unidentifiable as to its original source. Colours include blue, brown, green, white and yellow.

Rubber

There are six unassigned rubber artefacts including a curved, orange dimpled object that resembles the outer layer of a golf ball, however no positive identification has been obtained. The remaining rubberised artefacts cannot be identified.

Sponge

There is one piece of brown coloured sponge weighing just 0.1 g in SU II.
Site 71 Summary

Although 10,122 artefacts were recovered from this site, 9,935 of these are parts of the building (accommodation artefacts) or from a post-Lazaret pit. Therefore only 187 artefacts remain to inform on the life of the occupants of the hut. Fifteen of these are clothing; either plain utility style buttons or parts of shoes. Nineteen relate to the operation of the hospital.

Possibly the most indicative group of artefacts are the identifiable alcohol bottles. Only six beer bottle sherds and one bottle cork were located. This would seem surprising given the information contained in the Historical Documentary Record concerning the very high levels of alcohol consumed by the male staff (e.g. Ludlow 1991b:53, 56).

The range of personal artefacts located at Site 71 is greater than at either Site 34 or Site 39. This may relate to the fact that staff members left the Island on their rostered days off and could access materials outside the normal lines of supply at the Lazaret. The presence of fishing equipment (hook, swivel and sinker) indicates that at least some male staff spent their leisure time fishing (and not just drinking). The ash tray, ink bottle and radio valve all attest to other daily activities of the male staff.
SITE 80

Site 80 is located within the white female patients' compound. The southeast corner of Hut 80 is 51.4 m at 270.6° magnetic from the northwest corner of the Matron's house (Building 68). The Site 80 datum is located 63.8 m at 220.2° magnetic from the site datum. Hut 80 is located immediately south of the bathhouse and was one of the original huts built in this compound in 1906. It was constructed to the standards described in Chapter 3 and was originally 10' x 10' square on wooden stumps. An enclosed verandah was added shortly after the Lazaret opened and a kitchenette attached to the western side of the hut in the 1920s. Most of the stumps from the hut and the stove alcove are extant.

Surawski, the contractor, demolished the hut on Site 80 in 1964 (see Chapter 4 and Figure 7). The fabric of the building that was not removed at the time was stacked up on the wooden stumps. Between the date of demolition and my excavation in December 1994 some material had been removed. The surviving material had slumped and was covered in leaf litter from the large poinciana tree that dominates the site (Figure 34). The stacked building materials were removed to allow excavation of the area and this material was replaced over the site at the completion of the field season.

Five 100 x 50 cm pits were excavated. Once again the strategy was to excavate in areas under and stairs and verandah (Figure 34). A total of 416.15 kg of sediment
was removed in two bucket excavation units within stratigraphic units and sieved on site through nested 6mm and 3mm sieves.

Site 80 Stratigraphy

The three Lazaret-wide stratigraphic horizons are present at Site 80. There are also two features in Site 80: a pit in grid units A and D (F 6) and a layer of ash located within SU II in grid unit D (F 7) (Figure 35). F 6 was originally dug from SU I into the underlaying sediments and like F 5 is filled with post-Lazaret materials. Once the nature of the pit was discovered excavation of the feature ceased and no further artefacts were removed from it. F 7 is a very fine light gray ash layer that contains 126 artefacts, but surprisingly no charcoal. The ash probably originates from the stoves; these were located in all the female patients’ huts. F 7 has been truncated by the wall of F 6.

Site 80 Results

A total of 4,755 artefacts was removed from Site 80 (Table 84). Sixty one percent of this material belongs to the unassigned class.

Table 84. Distribution of Artefact Classes in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Food</th>
<th>Clothing</th>
<th>Accommod.</th>
<th>Hospital</th>
<th>Personal</th>
<th>Post-Lazaret</th>
<th>Unass.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>4</td>
<td>0</td>
<td>189</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>345</td>
<td>539</td>
</tr>
<tr>
<td>F 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1157</td>
<td>0</td>
<td>1157</td>
</tr>
<tr>
<td>F 7</td>
<td>44</td>
<td>1</td>
<td>44</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>33</td>
<td>126</td>
</tr>
<tr>
<td>SU II</td>
<td>14</td>
<td>3</td>
<td>337</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1738</td>
<td>2097</td>
</tr>
<tr>
<td>SU III</td>
<td>10</td>
<td>3</td>
<td>38</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>784</td>
<td>836</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>7</td>
<td>608</td>
<td>7</td>
<td>3</td>
<td>1158</td>
<td>2900</td>
<td>4755</td>
</tr>
</tbody>
</table>
Figure 34. Plan of Site 80
Figure 35. Stratigraphic Profiles of Site 80
Food

There are 72 food related artefacts (Table 85).

Table 85. Distribution of Food Artefacts in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Faunal Material</th>
<th>Glass</th>
<th>Metal</th>
<th>Plastic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>SU II</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>F 7</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>61</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>72</td>
</tr>
</tbody>
</table>

Ceramic

There are three pieces of white earthenware flatware in SU II of which one is the body of a plain white dinner plate, one is the rim of a saucer and one is the rim of an unidentified item. The saucer rim has a painted overglaze line of gilt around its scalloped edge.

Faunal Material

Two types of faunal material have been assigned to the food class: chicken egg shell and the marine shell found in F 7 (Table 86). The shell in F 7 is assigned to the food class based on the assumption that the ash layer derives from the residue dumped after cleaning the hut’s stove.
Table 86. Distribution of Faunal Material Food Artefacts in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Eggshell</th>
<th>Marine Shell</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SU II</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>F 7</td>
<td>25</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>SU III</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>19</td>
<td>61</td>
</tr>
</tbody>
</table>

Chicken Egg Shell

Eighty-six pieces of chicken egg shell were recovered, of which 42 are allocated to the Food class and 44 are included in the Post-Lazaret class (see later). This is the only site excavated at the Lazaret that contains egg shell. This is probably due to the fact that the female patients did their own cooking in their huts; hence the large number (n = 25) in F 7. It is possible that once the egg was cracked into a pan that the shell was discarded into the stove and then the contents of the stove were discarded under the hut.

Marine Shell

The only shellfish remains in F7 are *Saccostrea glomerata* and *Trichomya hirsutus*; both are species eaten by Europeans.

Glass

There are 28 pieces of bottle glass however only three can be definitely assigned to the food class; one beer bottle sherd in SU I and two beer bottle sherds in SU II.
Metal

The one food related metal artefact is a wire used to hold a seal on an alcohol bottle (SU II).

Plastic

The four plastic artefacts are all parts of the rim of grey plastic plates. None of them conjoin.

Clothing

The only clothing related artefacts are made of fibre or metal (Table 87).

Table 87. Distribution of Clothing Artefacts in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Fibre</th>
<th>Metal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SU II</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>F 7</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Fibre

F 7 contains a 1 cm² piece of black open weave cotton fabric. SU II contains a small piece of purple coloured wool.
Metal

In SU II there are a brown coloured shoe eyelet and a button. The button is daisy-flower shaped with 12 petals radiating from a central disc. It has a diameter of 11.8 mm and a shank on the reverse. In SU III there is a button with two holes and a diameter of 17.3 mm, half the base of a press-stud and a hook fastener from an eyelet and hook fastener, commonly used in women’s clothing.

Accommodation

Six hundred and eight accommodation related artefacts were excavated (Table 88).

Table 88. Distribution of Accommodation Artefacts in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Ceramic</th>
<th>Fibro</th>
<th>Glass</th>
<th>Metal</th>
<th>Paint</th>
<th>Plastic</th>
<th>Stone</th>
<th>Wood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>7</td>
<td>13</td>
<td>0</td>
<td>56</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>111</td>
<td>189</td>
</tr>
<tr>
<td>SU II</td>
<td>12</td>
<td>33</td>
<td>1</td>
<td>260</td>
<td>1</td>
<td>29</td>
<td>1</td>
<td>0</td>
<td>337</td>
</tr>
<tr>
<td>F 7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>SU III</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>53</td>
<td>3</td>
<td>377</td>
<td>2</td>
<td>31</td>
<td>1</td>
<td>117</td>
<td>608</td>
</tr>
</tbody>
</table>

Ceramic

Twenty-eight pieces of ceramic were recovered including 24 (85.7%) which are sherds from electrical resistors. The resistors were introduced to the Lazaret in 1947 when electricity was supplied for the first time. Following the installation of diesel generators electricity was supplied to every hut and staff building within the Lazaret. The resistors therefore act as a terminus post quem to date SUs I and II at no earlier
than 1947 (breakages may have occurred during installation). The resistors are made of fine stoneware and have a blue glaze.

Fibro

There are 53 pieces of fibro in Site 80 (Table 89), not including the 35 pieces in F 6. It all comes from the fibro used in the construction of the huts.

Glass

All three pieces of clear window glass are located in grid unit A1.

Table 89. Distribution of Fibro Artefacts in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Quantity</th>
<th>Weight (g)</th>
<th>Mean Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>13</td>
<td>323.9</td>
<td>24.92</td>
</tr>
<tr>
<td>SU II</td>
<td>33</td>
<td>471.0</td>
<td>14.27</td>
</tr>
<tr>
<td>F 7</td>
<td>1</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>SU III</td>
<td>6</td>
<td>3.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>88</td>
<td>1389.3</td>
<td>15.79</td>
</tr>
</tbody>
</table>

Metal

Table 90 displays the distribution of metal accommodation artefacts in Site 80.

Paint

Two pale apple-green coloured paint flakes were found in Site 80: one in SU I and the other in SU II.
Table 90. Distribution of Metal Accommodation Artefacts in Site 80

<table>
<thead>
<tr>
<th></th>
<th>SU I</th>
<th>SU II</th>
<th>F 7</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Hinge</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Nail</td>
<td>7</td>
<td>104</td>
<td>31</td>
<td>21</td>
<td>163</td>
</tr>
<tr>
<td>Nail - bullet headed</td>
<td>41</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>172</td>
</tr>
<tr>
<td>Nail - flat head</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Nail - lead headed</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Nail - panel</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nail - square shaft</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Screw</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Screw - counter sunk wood</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Wire - fencing</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Wire mesh</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
<td>260</td>
<td>35</td>
<td>26</td>
<td>377</td>
</tr>
</tbody>
</table>

Plastic

All the accommodation related plastic artefacts relate to the instillation of electrical wiring at the Lazaret and all but one are insulating wires. The other is a brown coloured light bulb fitting found in SU II. The artefact in F 7 is a piece of black coloured insulating wire.

Stone

A piece of blue metal stone occurs in SU II. It does not derive from the Island and must have been imported from the mainland, probably for making concrete.

Wood

There are 117 wooden fragments that are all remains of weatherboards from the huts. Five are painted green, 111 are red and one is white. The red pieces have evidence of white ant activity and the red paint may be the remains of termite treatment. All the
red pieces are in SU I, the rest are in SU III. One of the green pieces is burnt at one end.

Hospital

All the hospital related artefacts are made of glass, including a small pipette fragment in F 7. It is unlikely that a patient threw it into the stove although a nurse may have done so. There are four pieces of medicine bottle glass in SU II and another two in F 7.

Personal

There are only three artefacts that can be assigned as personal items; two are glass beads (one in F 7 and one in SU III) and the other is a transparent plastic hair comb tooth in SU II.

Post-Lazaret

All material found in the pit feature (F 6) has been assigned to a Post-Lazaret class even if the material originated in the Lazaret. The pit was dug and the material deposited at some stage in the 1970s or 1980s by a member of the Church of England Grammar School, ‘Churchie’. A ‘Churchie’ sock was found in the pit. All the artefacts removed from F 6 prior to the cessation of excavation of this feature are presented in Table 91. A metal artefact in SU I is also ascribed a post-Lazaret status. It is a badly corroded ring pull soft drink can. The words ‘It’s the ...’ are discernible
on the side of the can and 'PLEASE DON'T LITTER' is embossed on the top of the can. It has a seam running down the side. A ring pull can must post-date the Lazaret.

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faunal material</td>
<td>230</td>
</tr>
<tr>
<td>Fibre</td>
<td>4</td>
</tr>
<tr>
<td>Fibro</td>
<td>35</td>
</tr>
<tr>
<td>Glass</td>
<td>29</td>
</tr>
<tr>
<td>Metal</td>
<td>819</td>
</tr>
<tr>
<td>Pencil lead</td>
<td>1</td>
</tr>
<tr>
<td>Plastic</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>1157</td>
</tr>
</tbody>
</table>

F 6 contains 21 pieces of bone, 14 pieces of coral, 44 pieces of chicken egg shell, 150 pieces of shell and one piece of turtle shell and it contains the full range of midden shell found elsewhere at the Lazaret. The pit also contained a grey 'Churchie' school ankle sock, two pieces of purple coloured cotton thread and a length of pink cotton thread. The metal artefacts include the same range of accommodation related metal artefacts as the rest of SU I and SU II through which the pit passes.

As well as these artefacts there was also 22.2 g of charcoal in F 6. This is a small amount (0.23% of the total sediment weight) and is a good deal less than the background amounts detected throughout the entire Lazaret. Unlike the pit in Site 71 (F 5) no attempt had been made to burn the contents of this pit. This may indicate that it was dug later in time than F 5.
Unassigned

There are 2,900 unassigned artefacts in Site 80 (Table 92).

<table>
<thead>
<tr>
<th>Table 92. Distribution of Unassigned Artefacts in Site 80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SU I</td>
</tr>
<tr>
<td>SU II</td>
</tr>
<tr>
<td>F 7</td>
</tr>
<tr>
<td>SU III</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Charcoal

The weight of unassigned charcoal in Site 80 is 1,366.1 g (Table 93).

<table>
<thead>
<tr>
<th>Table 93. Distribution of Charcoal in Site 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>SU I</td>
</tr>
<tr>
<td>SU II</td>
</tr>
<tr>
<td>F 7</td>
</tr>
<tr>
<td>SU III</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Faunal Material

There are 1,498 unassigned faunal remains located in Site 80 (Table 94). The largest group is shell representing 70% of the collection.
Table 94. NISP of Faunal Material in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Bone</th>
<th>Coral</th>
<th>Exoskeleton</th>
<th>Shell</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>49</td>
<td>69</td>
</tr>
<tr>
<td>SU II</td>
<td>313</td>
<td>29</td>
<td>1</td>
<td>490</td>
<td>833</td>
</tr>
<tr>
<td>F 7</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>SU III</td>
<td>52</td>
<td>12</td>
<td>0</td>
<td>510</td>
<td>574</td>
</tr>
<tr>
<td>Total</td>
<td>389</td>
<td>59</td>
<td>1</td>
<td>1049</td>
<td>1498</td>
</tr>
</tbody>
</table>

Bone

The bone is extremely fragmentary (mean weight = 0.22 g), nonetheless 348 (89.46%) fragments are identifiable as fish bone, of which six are vertebrae. The remaining bone is unidentifiable.

Coral

The coral has an average weight of 0.49 g. None has been speciated.

Exoskeleton

The tip of a *Scylla serrata* (mud crab) claw was recovered from SU II.

Shell

A total of 1,049 unassigned shellfish fragments were recovered in the excavation of Site 80. Nine hundred and fifty-eight (91.32%) of them were identifiable as edible species from Moreton Bay (Table 95). This shell probably all relates to the pre-European uses of the Island.
Table 95. Distribution of Unassigned Shell in Site 80

<table>
<thead>
<tr>
<th></th>
<th>Donax deltoides</th>
<th>Pyrazus ebeninus</th>
<th>Saccostrea glomerata</th>
<th>Salinator solida</th>
<th>Unident. Trichomya hirsuta</th>
<th>Unident. Bivalve</th>
<th>Unident. Gastropod</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU I</td>
<td>0</td>
<td>3</td>
<td>22</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>SU II</td>
<td>2</td>
<td>14</td>
<td>273</td>
<td>1</td>
<td>151</td>
<td>8</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>SU III</td>
<td>1</td>
<td>27</td>
<td>295</td>
<td>1</td>
<td>147</td>
<td>0</td>
<td>39</td>
<td>510</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>44</td>
<td>602</td>
<td>2</td>
<td>326</td>
<td>8</td>
<td>68</td>
<td>1049</td>
</tr>
</tbody>
</table>

Glass

Seventy-eight pieces of glass were excavated of which 59 (75.6%) could not be identified, however 34 of these unidentified sherds are bottle glass (mean weight = 0.31 g). The entire glass collection weighs a total of only 35 g.

Metal

The unassigned metal artefacts are presented in Table 96.

Table 96. Distribution of Unassigned Metal Artefacts in Site 80

<table>
<thead>
<tr>
<th></th>
<th>SU I</th>
<th>SU II</th>
<th>F 7</th>
<th>SU III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foil</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Staple</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Tin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Unidentifiable due to level of corrosion and small size</td>
<td>274</td>
<td>863</td>
<td>8</td>
<td>197</td>
<td>1342</td>
</tr>
<tr>
<td>Total</td>
<td>274</td>
<td>867</td>
<td>10</td>
<td>301</td>
<td>1352</td>
</tr>
</tbody>
</table>

Plastic

Thirteen pieces of unassigned plastic are located in SU II of Site 80 (mean weight = 0.61 g). None of this plastic could be identified.
Rubber

One piece of black rubber (weight = 0.2 g) was found in SU II. It has a raised
crosshatch pattern on it.

Stone

There is a silcrete flaked piece in SU II (weight = 3.2 g). It is an Aboriginal stone
artefact that probably originated in the Aboriginal middens located in close proximity
to the Lazaret. These middens were mined for raw materials to make concrete (see
Sites 34 and 39).

Site 80 Summary

Site 80 has the second smallest number of artefacts (4,755) behind Site 39. This is
surprising given that Hut 80 was built before either Hut 34 or Hut 39. This paucity of
artefacts may be due to one or more of the following factors:

• The cleanliness of female patients;
• Expectations from staff and/or the female patients themselves, that they would
 keep their huts clean;
• Access to a stove in which to burn material;
• No shell layers associated with architectural elements being identified at Site 80;
 or
• A result of the excavation strategy.
Of the 4,755 artefacts unearthed, 608 are accommodation related and 1,158 are post-Lazaret. A further 2,900 are unassigned. This leaves 89 artefacts that can be used to describe the life of patients in Hut 80. Amongst these are a flower-shaped button, glass beads, hair combs and beer bottle glass.

Interestingly there are fewer hospital related artefacts in Site 80 than any other site. They also differ in type. The six pieces of medicine bottle glass possibly indicate that some medication, possibly patent medicines, were allowed to be stored in the huts and used by the patients without the requirement for the nursing administration of the drugs.

There is a paucity of personal items in Site 80. There are only two glass beads (which are probably related to sewing activity) and a part of a haircomb. In comparison to the male patients and staff areas there is no evidence of the recreational pursuits of female patients.

DISCUSSION

Almost 36,000 artefacts were recovered from the four living site excavations (Table 97). Table 98 displays the distribution of the artefact classes across the Lazaret. Table 99 shows the distribution of artefact classes within the Lazaret-wide horizons (SUs I, II and III).
Clothing artefacts are distributed across the Lazaret along gender lines. Buttons from men's trousers are found under the men's huts and floral buttons and eyelets are found under a woman's hut. A shoe sole is found under the very centre of the male staff members' house. This gender division occurs irrespective of the fact that women were employed to sew and repair clothes (e.g. QSA A31756: 1/7/1938).

Accommodation artefacts are concentrated in the upper two strata. Few artefacts relating to the construction of the buildings appear to exist. The artefacts would
appear to relate to the demolition of the huts rather than the construction. This explains why 53.1% of all accommodation artefacts are in SU I.

The overall number of hospital related artefacts is surprising given that no excavated area was a purpose-built treatment area. This result demonstrates that treatments and sample collections occurred in places other than the hospital and surgery. This was to be expected for the period prior to the construction of the surgery in 1925. It is obvious then that not all bed-ridden patients were treated in the hospital (built in 1937) and that some patients remained in their huts even when severely incapacitated. Possibly, the hospital was used for acute reactions to medication and accident victims. Blind patients may well have received medical and nursing treatment in their huts.

The large number of hospital artefacts discarded at Site 34 may relate to this hut’s position on the edge of the male patients’ compound beside a bitumened access road to the rest of the compound. Staff leaving the compound may have discarded the material as they passed the hut. The hut may also have been used at some time during the operation of the Lazaret as a temporary laboratory for collection or analysis of specimens.

Stratigraphy and Chronology

Three Lazaret-wide horizons built up over the 52 years of the Lazaret’s operation and the following 35 years prior to excavation. SU I appears to have been deposited from late in the history of the Lazaret and continues to be deposited to this day. Demonstrably post-Lazaret pits were dug from SU I into the underlaying strata at
some date in the 1970s and 1980s. SU I contains numerous artefacts related to the
demolition of the huts including parts of stumps and wall cladding. The presence of
hospital related artefacts in SU I suggests that equipment housed in some of the
buildings may have become scattered across the land surface during the demolition of
the buildings.

SU II can be dated by the presence of artefacts related to the supply of electricity at
the Lazaret. Electricity was introduced in 1947 and all sites except Site 39 have
artefacts related to its supply (Table 100). The artefacts related to electricity supply
are distributed between SU I and SU II except in Site 71 where three pieces of light
bulb glass and three electrical connectors were found in SU III. This may be due to
some unidentified post-depositional disturbance factors at the site.

<table>
<thead>
<tr>
<th>Table 100. Electricity Related Artefacts at the Lazaret</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SU I</td>
</tr>
<tr>
<td>SU II</td>
</tr>
<tr>
<td>SU III</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The lack of such artefacts in Site 39 is interesting. Hut 39 was only ever occupied by
one patient, ERC who was quite blind. Accounts of ERC include ‘by the time I first
met him in 1951, he had no useful sight and he was practically confined to his cottage’
(QSA TR1255 14/7/1959) and his ‘only interests are radio and books read to him’
The 357 D cell batteries located in SU II support the idea that he liked to use the radio. One explanation for the lack of electricity related artefacts is that the Health Department did not supply electricity to ERC’s hut, because he could not see and had no use for light. This seems highly unlikely, as it would have cost very little to include the hut into the electricity system (the power lines would have run past his hut to get to the Catholic Church and because it was located beside the surgery). Furthermore, nurses doing ERC’s dressings and other treatments in his hut would have required electrical light to carry out their duties and by 1947 ERC’s life expectancy must have been considered quite short and the re-use of the hut for another patient may have been a distinct possibility. The most likely explanation for the absence of any type of electrical equipment in Site 39 (so abundant in other sites) is that it is an artefact of the excavation strategy. I simply did not find any evidence of this material; a more extensive excavation may well have located such items.

There is also no evidence upon which to base the dating for SU III. In Site 71, SU III contains artefacts that cannot date earlier than 1947 and in Site 39 there are 22 artefacts in SU III when the hut was not moved there until 1941. In all probability SU III was the land surface when the Lazaret was constructed but the artefacts provide no conclusive evidence. No artefact from SU III has proven datable. As Spencer-Wood (1987:2) states:

Formation processes for sites occupied by a number of residents over time may or may not yield archaeological stratigraphic deposits that form a chronological sequence of layers which can be related to
developmental cycles in the sequence of archaeological households occupying the site.

The problem of dating the different stratigraphic layers at the Lazaret not only relates to the large number of residents but is compounded by the short time period over which the Lazaret operated (52 years). Nonetheless, demonstrable changes, such as the evidence for the demolition of the buildings, suggest that major changes at the Lazaret are recorded in the stratigraphy and that the material evidence for later events overlay those of earlier events.

The interpretation of these events and life at the Lazaret in terms of the elements of paternalism, i.e. context, content and affect, is the topic of the next chapter. The physical evidence from the layout of the place and the recovered artefacts will be used to produce an archaeological picture of the Lazaret. Then in Chapter 8 the documentary evidence presented in Chapter 3 and physical evidence presented in Chapters 4 to 7 will be melded using the methodology presented in Chapter 1 to produce a story of the social life of the Lazaret.
CHAPTER 7

THEY GAVE YOU EVERYTHING BUT ...

They gave you sunshine
They gave you sea
They gave you everything but the jailhouse key
They gave you coffee
They gave you tea
They gave you everything but equality
(John Lennon and Yoko Ono 1972 Angela)

INTRODUCTION

The material items for life are the subject of this chapter. I discuss the physical data available from the Peel Island Lazaret archaeological record that characterise the paternalism of the place during the first half of the 20th century. The whole Island was archaeologically surveyed (Chapter 4) and five areas of the Lazaret were excavated: four in the central living areas (Chapter 6) and one in the perimeter zone (Chapter 5). As I did with the written evidence in Chapter 3, I now use the data obtained from these archaeological activities to outline the physical evidence for paternalism at the Lazaret.
PHYSICAL EVIDENCE OF PATERNALISM

As in previous chapters, the paternalism at the Lazaret is examined as to its context, content and affect. Content is understood in terms of provision, protection and control. Control is further divided into the strategies of disciplinary power: spatialisation, minute control of activity, repetitive exercises, detailed hierarchies and normative judgment (see Figure 3 in Chapter 3).

Context

The context of paternalism is its chronological and spatial setting and, in particular, the relationship (in time and space) of paternalistically-run organisations with similar institutions. It is apparent from the material presented herein that there were no significant changes in the mechanisms for the management of Hansen’s Disease from pre-Christian times (see Chapter 1) until the middle of the 20th century. The diseased individual was removed from the centre of the group and forced to live a segregated, institutionalised existence on the periphery of society.

The location of the Lazaret was part of the Queensland government policy of the late 19th and early 20th century to locate the ‘impure elements’ of society away from the heart of the community. The 19th century saw a major growth in the number of asylums and other institutions in the western world. At this time deviance was managed by removing the deviants to large institutions. Prominent members of the Queensland medical profession, such as Joseph Bancroft and Raphael Cilento (Fisher 1994), were instrumental in the establishment and maintenance of these segregation
policies. Bancroft had even pressured the Queensland government to use North Stradbroke Island as a Lazaret before the *Queensland Leprosy Act of 1892* was enacted (Kidd 1997:88).

The Lazaret was constructed on an isolated corner of an isolated island in the middle of Moreton Bay. The only other occupants of the Island were at the Inebriates Asylum located on the opposite corner of the Island, in the former Quarantine Station buildings.¹ The Island itself is some distance from the normal shipping channels of the Bay and the fringing mangroves, stories of the place and legislative restrictions would all have acted to keep recreational boaters away from the Lazaret. Getting to the Lazaret not only involved a lengthy boat trip across the Bay but also a bumpy ride by horse-drawn dray to the farthest corner of the Island.

The physical layout of the Lazaret, reflects the ideas dominant at the start of the 20th century concerning the management of illness (deviance control) (e.g. Pearn and O'Carrigan 1983), management of the sexes (e.g. Di Lizio 1988; Hourani 1990) and management of the races (e.g. Evans *et al.* 1993; Kidd 1997; Wishart 1994). It also demonstrates the strength and conservatism inherent in these ideas as no major changes to the layout occurred during its 52-year operation. In fact, when new buildings were constructed, particularly for staff accommodation in the 1940s, they were all placed to follow the initial plan of the Lazaret.

¹ This shared occupancy of the Island only lasted between 1910 and 1916.
Locating the patients in small individual huts was uncharacteristic of the Queensland hospital system that generally used ‘pavilion' and ‘nightingale' wards (Prangnell and Hall 1999:61). Individual huts for the patients, such as 34, 39 and 80, demonstrate the thinking on the nature and course of the disease and the anticipated life-expectancy of the patients. The patients were not just isolated from the community they were separated from one another so that patients with advanced forms of the disease did not interact with those with mild forms, who had a chance of later discharge. The huts were built as scaled-down versions of the Queensland worker’s cottage style with pyramid roofs (e.g. Rechner 1998:9), resembling the homes the patients had left behind in their previous lives. Junior staff (male attendants and nurses), on the other hand, were housed in larger communal-living spaces, in the ‘Queenslander’ bungalow style (e.g. Rechner 1998:13), as they could leave the Island and at no time was the Lazaret ever considered to be their permanent home.

The female patients’ compound was small and spatially bounded. All the huts were constructed in tight equidistance rows. The differences in the plans of Site 34 (male patients’ hut) and Site 80 (female patients’ hut) reflect the differences in ideas about men’s and women’s roles in the institution and in society, at that time. Hut 80 was considerably larger than Hut 34 in order to accommodate a stove (F 7 is the ash from such a stove), so that the female occupant could cook her own meals. Male patients did not need this extra space as they ate in a dining room and were never expected to cook for themselves. The extra space in female’s huts also allowed them to undertake solitary, functional tasks such as sewing and mending.
The coloured and white patients were completely segregated in space. Even though this was a multi-racial Lazaret, it is obvious from the plan (Figure 2) that the coloured patients’ compound was located over 150 m away from the main area of the Lazaret (approximately the same distance away as the cemetery!). Almost all the buildings that occupy the space between the male patients’ compound and the coloured patients’ compound (i.e. Building Nos. 37-39 and 43-58) were constructed after the coloured patients were removed to Fantome Island in 1940. After this removal the area between the Administration Zone and the coloured patients’ compound lost its status as a patient area and gradually became occupied with staff-related buildings. Even today the area housing the coloured patients’ compound seems remote from the rest of the Lazaret.

The coloured patients compound was constructed on an angle of 300° magnetic as opposed to the rest of the Lazaret constructed in rows on an angle of 335° magnetic (see Figure 2). This difference in orientation cannot be accidental and, although there is no evidence that it was a deliberate planning policy, it nonetheless acts to further accentuate the differences between these groups of people.

The large amount of Aboriginal shell midden material that was used as decorative features (Site 39), to construct concrete paths (Site 34) and for a myriad other uses around the Lazaret reinforces the ignorance of Aboriginal culture held by Queenslanders for most of the 20th century. Material items of Aboriginal origin were used as a cheap raw material resource by agents of the Queensland government and
was a common source of lime for cement from the earliest days of British settlement of Australia (e.g. Mulvaney 1969:77).

Other artefacts found in the different sites help to illuminate the context of the paternalism. Standard and cheap building materials of the early 20th century, such as weatherboards, fibro and corrugated metal roofing sheets, were used. The prevalence of lead headed roofing nails in Site 80 indicates the nature of the metal sheeting used on the roof of the hut. Technological innovations were adopted slowly with the same standard hut design continuing to be used throughout the Lazaret’s history. Electricity was not introduced until 1947, many decades after its introduction into Brisbane. In all 98.97% (289 of 295) of the electricity related artefacts are in the top two Lazaret-wide horizons.

The context of the Lazaret within the hospital system as an institution of low status located outside the mainstream of society, can be seen in artefacts such as the 27 ‘A van Hoboken’ gin bottle sherds found in Site D1. These sherds actually predate the existence of the Lazaret itself and represent a ‘manufacture - deposition lag’ (Hill 1982) of a minimum of 15 years. In general bottles tend to enter the archaeological record quickly (e.g. Hill 1982:293). For these gin bottles, the lag represents a time period before the Lazaret was built, so it cannot be explained by a lag in the deposition of the bottles once they entered the Lazaret. The primary manufacture-deposition lag must have occurred prior to their entry. This indicates that the oldest and possibly the least desirable stores were supplied to the Lazaret rather than newer
issue items, as these items sat 'on the shelf' in Government Stores for extended periods.

In short, the archaeological record of the Peel Island Lazaret indicates that, contextually, not only was the Lazaret geographically isolated from the rest of the Queensland community, it was also isolated and of very little concern within the health system itself. The Lazaret neither attracted nor received much attention from the decision-makers in that system.

Content
As in Chapter 3, physical evidence for the content of paternalism is discussed under the headings of 'provision', 'protection' and 'control'.

Provision
Provision relates to the supply of materials within the institutional setting. Almost the entire archaeological record of the Lazaret relates to the provision component. Virtually everything was supplied by various government authorities (the Health Department, Government Stores or Works Department). The only items that may have entered the archaeological record that were not provided by the government were those that were either obtained illicitly (as patients were not officially permitted personal items within the Lazaret) or were the personal possessions of staff members (some of which would have been officially sanctioned).
The documents indicate that large quantities of material items were supplied to the patients of the Lazaret. The archaeological record substantiates the documentation but also shows there was very little variety in those materials. It is obvious that the government preferred to purchase from a limited number of suppliers. Each type of product (e.g. gin or vinegar) was, for the most part, supplied by the one supplier. Suppliers probably had contracts with the Government Stores to supply merchandise generally to the government for distribution to a number of institutions. The cost of supply may have been the major criterion in tendering for these contracts; for example as the large amount of undifferentiated green glass in the dump (Site D1) indicates that liquid products were supplied to the Lazaret in cheap general storage bottles.

Although Queensland manufacturers do not appear to have been preferred, for the most part the goods supplied to the Lazaret were from local Australian manufacturers (Table 101). All the tableware ceramics, however, were imported from Britain and at least one clay pipe came from France. The only definitely American artefact is the Higgin’s ink bottle in Site 34. Of the four domestic areas excavated (Sites 34, 39, 71 and 80), only Site 34 contained items identifiable to a particular maker (Table 101).
Table 101. Identified Manufacturers or Brand Names from the Peel Island Lazaret Excavations

<table>
<thead>
<tr>
<th>Manufacturer or Brand Name</th>
<th>Country of Origin</th>
<th>Product</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Gaiffe</td>
<td>France</td>
<td>Perfume</td>
<td>D1</td>
</tr>
<tr>
<td>A Hoadley & Co.</td>
<td>Australia</td>
<td>Pickles</td>
<td>D1</td>
</tr>
<tr>
<td>Alfred Meakin</td>
<td>England</td>
<td>Tableware</td>
<td>D1</td>
</tr>
<tr>
<td>Angus & Co.</td>
<td>Australia</td>
<td>Ink</td>
<td>D1</td>
</tr>
<tr>
<td>Arthur J Wilkinson Ltd</td>
<td>England</td>
<td>Tableware</td>
<td>D1</td>
</tr>
<tr>
<td>Australian Glass Manufacturers</td>
<td>Australia</td>
<td>Bottles</td>
<td>D1</td>
</tr>
<tr>
<td>A van Hoboken</td>
<td>Holland</td>
<td>Gin</td>
<td>D1</td>
</tr>
<tr>
<td>Bengal Chutney Company</td>
<td>Australia</td>
<td>Chutney</td>
<td>D1</td>
</tr>
<tr>
<td>Brisbane Bottle Exchange</td>
<td>Australia</td>
<td>Bottles</td>
<td>D1</td>
</tr>
<tr>
<td>Brookes & Sons</td>
<td>Australia</td>
<td>Cordial</td>
<td>D1</td>
</tr>
<tr>
<td>Busby & Sons</td>
<td>Australia</td>
<td>Bottles</td>
<td>D1</td>
</tr>
<tr>
<td>Castlebrand</td>
<td>Australia</td>
<td>Pickles</td>
<td>D1</td>
</tr>
<tr>
<td>Champions</td>
<td>Australia</td>
<td>Vinegar</td>
<td>D1</td>
</tr>
<tr>
<td>Colgate Palmolive</td>
<td>Australia</td>
<td>Toothpaste</td>
<td>34</td>
</tr>
<tr>
<td>Eno’s</td>
<td>Australia</td>
<td>Salts</td>
<td>D1</td>
</tr>
<tr>
<td>Fosters</td>
<td>Australia</td>
<td>Beer</td>
<td>D1</td>
</tr>
<tr>
<td>Harrison’s</td>
<td>Australia</td>
<td>Pickles</td>
<td>D1</td>
</tr>
<tr>
<td>Helidon Spa Water Company</td>
<td>Australia</td>
<td>Aerated Water</td>
<td>D1</td>
</tr>
<tr>
<td>Higgin’s Inks</td>
<td>USA</td>
<td>Ink</td>
<td>34</td>
</tr>
<tr>
<td>Holbrook & Co.</td>
<td>Australia</td>
<td>Sauce</td>
<td>D1</td>
</tr>
<tr>
<td>J & G Meakin</td>
<td>England</td>
<td>Tableware</td>
<td>D1</td>
</tr>
<tr>
<td>John Maddock & Sons</td>
<td>England</td>
<td>Tableware</td>
<td>D1</td>
</tr>
<tr>
<td>Kepler/Wellcome</td>
<td>?</td>
<td>Lotion</td>
<td>D1</td>
</tr>
<tr>
<td>Lea & Perrins</td>
<td>Australia</td>
<td>Sauce</td>
<td>D1</td>
</tr>
<tr>
<td>Marchant & Co.</td>
<td>Australia</td>
<td>Mineral Water</td>
<td>D1</td>
</tr>
<tr>
<td>Mellor, Taylor & Co.</td>
<td>England</td>
<td>Tableware</td>
<td>D1</td>
</tr>
<tr>
<td>New South Wales Lager Bier Company</td>
<td>Australia</td>
<td>Beer</td>
<td>D1</td>
</tr>
<tr>
<td>Reschs</td>
<td>Australia</td>
<td>Beer</td>
<td>D1</td>
</tr>
<tr>
<td>Smith Ford</td>
<td>England</td>
<td>Tableware</td>
<td>D1</td>
</tr>
<tr>
<td>The Gaelic Whiskey</td>
<td>Scotland</td>
<td>Whiskey</td>
<td>D1</td>
</tr>
<tr>
<td>Whyte and MacKay</td>
<td>Scotland</td>
<td>Whiskey</td>
<td>D1</td>
</tr>
</tbody>
</table>

The table does not include products identified as post-Lazaret or items that are incompletely identified, such as the poison bottles from ‘...E & Mayr...’ of Hamburg.
No change through time was detected in the artefacts supplied to the Lazaret. The green beer bottles changed from having applied lips to ring seals and then to crown seals as the technology changed; however, this was not detected stratigraphically. Three different pickle suppliers were identified as were two different sauce suppliers and whiskey suppliers but again the period of supply could not be ascertained.

The material items provided for the patients covered the basics of life (housing, clothing, food and health care) but very little else. The patients lived a relatively spartan lifestyle with very few comforts and non-essentials. In this way the paucity of artefacts in the archaeological record of the living quarters is a real reflection of the patients' lifestyle. The materials that were supplied tended to be undecorated and very plain. Of the 19 pieces of ceramic tableware identified in the excavations of the patients' living areas, all but one are white earthenware (the other is fine stoneware) and only four have any design. One has the Queensland government crest in underglaze black, one has a red underglaze design, one has an unidentifiable polychrome design and the fourth has a line of overglaze gilt.

Archaeologically there is very little detectable difference between the staff area and the patient areas of the Lazaret (Table 102). I infer very little difference in the activities of the male staff and the male patients. Both groups occupied their time in fishing, smoking, listening to the radio and drinking beer. The only radio artefacts found associated with the living areas (a dial was found in Site D1) are found in the
men's areas. These artefacts are batteries and valves - the parts of a crystal radio set that would require the most regular replacement.

The most compelling material evidence of differences in the lifestyle between male staff and male patients is the presence of the can opener and 10 pieces of drinking glasses (tumblers) in Site 71. The male staff were able to keep food and beverages in their quarters and had charge of the items necessary for their consumption. The patients were not allowed to do this and the no such artefacts were found in association with the patients' huts. The only evidence of beverage consumption existing in the patients' huts are teacup sherds found in Site 34 and a saucer sherd found in Site 80.

The differences between the items found in the male patients' huts and the female patient's hut are quite small. The major difference is evidence for food preparation in the female patients' huts. The chicken egg shell, oysters and mussels in Site 80 are indicative of food preparation activities. The shellfish were probably collected from the rocks and mangrove mud flats on the edge of the Island, possibly by the male patients (who were generally allowed greater access to areas away from the Lazaret proper (Berthelson and Ross 1996)). As was expected, there is no evidence of food preparation in the male patients' huts.
<table>
<thead>
<tr>
<th>Class</th>
<th>Material</th>
<th>Male Patients</th>
<th>Female Patient</th>
<th>Staff</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Site 34</td>
<td>Site 39</td>
<td>Site 80</td>
<td>Site 71</td>
</tr>
<tr>
<td>Food</td>
<td>Ceramic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine Stoneware</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Porcelain</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>White Earthenware</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Cork</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fauna</td>
<td>Bone</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Egg shell</td>
<td>0</td>
<td>0</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shell</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Glass</td>
<td>Beer</td>
<td>1</td>
<td>48</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Drinking glass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Vinegar</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Whisky</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metal</td>
<td>Bottle seal</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Can opener</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Crown seal caps</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Foil food wrapper</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Jar lid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ring pull</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Tin cans</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Clothing</td>
<td>Fabric</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Shoe</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Uncertain</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leather</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shoe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Uncertain</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metal</td>
<td>Button</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hook fastener</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Press stud</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shoe eyelet</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Plastic</td>
<td>Button</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Rubber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shoe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Wool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Personal</td>
<td>Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ash Tray</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Bead</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ink bottle</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Marble</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Radio valve</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Metal</td>
<td>Cigarette Packet</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>foil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cufflink</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cut throat razor</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D-cell battery</td>
<td>0</td>
<td>357</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fish hook</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fishing sinker</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fishing swivel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Toothpaste tube</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pencil lead</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Plastic</td>
<td>Clock knobs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Comb teeth</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rubber</td>
<td>Pipe stem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

342
The basic components of life at the Lazaret are shared by all members of all three groups. Only two artefacts types are common to all five sites (D1, 34, 39, 71, 80): white earthenware ceramics and beer bottle glass. The provision of beer appears to be one thing that did not change throughout the history of the place, yet the amount of beer bottle sherds in Site D1 does not reflect the documentary evidence for the provision of beer. Extrapolating from the excavated material there are almost 43,000 beer bottles in Site D1. This represents only 7.26% of the possible beer issue and accounts for just under four years (1,379 days) worth of standard issue. There are 48 years worth of beer issue that remain unaccounted for. The problem of the missing beer bottles is addressed in the next chapter.

In summary, although a large number of material items including housing, food and medicines were provided to the patients and staff, the differences in material possessions between the male patients and the female patients are very small, as are the differences between the male staff and the male patients. The overwhelming impression obtained from the artefact assemblage is one of poverty of choice and a total lack of variety.

Protection

Protection relates to the authorities’ taking charge of the moral health of the inmates. The layout of the Lazaret, such that male and female patients and white and coloured patients were segregated into fenced compounds, indicates the desire of the Health Department to take on this responsibility for the moral character of their charges.
From the initial planning stages there was no other expectation than that the sexes and races would be separated. The implementation of this responsibility is through enforced segregation by the use of fences, curfews and observational techniques.

The remnants of the Catholic Church in the male patients’ compound (see Chapter 4) and the Protestant Church just to the north of the coloured patients’ compound indicate the role the authorities saw for themselves in protecting the moral health of the patients. This moral protection did not, however, extend to protection against the effects of alcohol and tobacco. By far the greatest proportion of artefacts unearthed relate to alcohol consumption. Throughout the entire Lazaret excavations there were 15,330 alcohol bottle sherds identified from a use-identified glass sherd collection of 16,218. Therefore, 94.5% of all the identified glass sherds are from alcohol bottles.

The protection element may have been expressed in the daily rationing of one pint of beer per person, although this was probably a financial rather than a protective measure. The distribution of the alcohol was also a mechanism of control which would enable staff to attempt to modify the behaviour of patients by simple reinforcement strategies.

Negative evidence from the archaeological record also suggests that protection may have extended to safeguarding the patients from the effects of knowledge concerning the changes that were occurring to their bodies, in particular their faces. There is absolutely no mirror glass in the archaeological assemblages (there is also no mention of mirrors in any of the written records). Obviously, blind patients would not require
mirrors but it may also be possible that staff did not issue mirrors to the patients in order perhaps to protect their feelings and self-esteem. This would be an interesting aspect of paternalism as it would mean that it is also expressed by the paternalists not provisioning a basic item required by most people.

Control

As in Chapter 3 the control component of paternalism is discussed under the separate headings of spatialisation, minute control of activity, repetitive exercises, detailed hierarchies and normative judgment.

Spatialisation

Spatialisation refers to the distribution of people in space so as to emphasise particular similarities and differences. The spatial layout of the Lazaret achieves this through a complex arrangement of external and internal boundaries, buildings and spaces. This complex arrangement involves an interplay of the Island itself, the location of the Lazaret, the boundaries between the compounds and the location of each structure within the compounds.

The compounds of the Lazaret are positioned such that a panopticon-like affect is established. The Administration Zone (see Figure 2) is situated in the centre of the Lazaret with the male patients’ compound and the female patients’ compound located directly east and west of the Administrative Zone respectively. The clear view across the compounds ensured that inmates knew that they were subject to visual inspection.
at all times.

The layout of the Lazaret is such that a straight line drawn at 116°/296° will pass directly from the centre of the coloured patient’s compound, through the centre of the Surgery, the centre of the Superintendent’s house and through the middle of the female patients’ compound. The distance between the Surgery and the Superintendent’s house is 52 metres. A 90° bearing from the mid-point of this distance between these two buildings runs to the centre of the male patients’ compound (Figure 36).

Figure 36. Figurative Representation of the Arrangement of Compounds
Consequently both the Superintendent’s residence and the Surgery are placed to ensure the division of patients into separate categories and to ensure that patients are constantly aware of the two most important and centrally located structures in the Lazaret. Prior to the arrival of a full-time Medical Officer in 1947 the Superintendent was the most important person in the Lazaret (see Figure 6) and his residence was the seat of power. This building was built in 1906 and dominated the Lazaret for the entire period of its operation. Once the Superintendent was replaced by a full-time medical officer, the Matron lived in the Superintendent’s house (Mrs June Berthelsen, ex-patient, pers. comm 1997).

The surgery was also a powerful place as it was the area from which staff received instructions and it was the place where patients interacted with the doctor. The surgery was not erected until 1925, 18 years after the Lazaret was built. This indicates that the planning philosophy concerning the arrangement and use of space at the Lazaret remained unchanged through time.

Archaeological evidence of the Lazaret boundaries exist in the location of the Lazaret itself on the remote northwestern corner of an island and in the physical evidence for the division of the Lazaret into compounds (e.g. the remnant fence lines and gateways that remain beside Hut 82 and that had survived between Hut 39 and the Surgery until 1995). Other evidence for the external boundary exists in the depauperate state of the overall artefact assemblage. There are clear differences between materials available at the Lazaret and those available on the mainland. Inmates and staff of the Lazaret
could only access a small range of goods from a small range of suppliers compared with the rest of Australian society. During the time span of the Lazaret's operation, for which the only cordial bottle sherds found come from the Brooks & Sons company, Jones (1979:19-34) records 111 cordial manufacturers operating in Sydney alone (see also Arnold 1997:34-35; Cozzolino and Rutherford 1990:105-107; Roycroft and Roycroft 1985:47-48). This restricted choice of materials at the Lazaret was not the result of a limited number of manufacturers or suppliers; mainstream Australian society would have enjoyed a far greater choice. It was the result of a deliberate provisioning policy adopted by the Queensland Government. The limited choice in consumable goods demonstrates the effectiveness of the external boundary of the Lazaret and the strength of the distanced controllers in maintaining the boundary. For the most part only sanctioned goods ever got through this external boundary.

Minute control of activity

The minute control of activity is generally maintained by an exaggerated system of timetabling. The only evidence for clocks in the archaeological record are in the male attendants' house (Table 102) and the Dump (Site D1). The staff would have been responsible for ensuring that the timetable for the daily activities of the Lazaret occurred on schedule and given the male attendants' daily split shifts (see Table 5) they would have required alarm clocks to ensure their own compliance with the schedule. There is no other artefactual evidence for the minute control of activity.
The panopticon-like layout of the Lazaret ensured that patient activities were observable from the central staff areas of the Lazaret even by staff that were off-duty. The male attendants' hut is located only 21 m from the female patients' compound and 39 m from the male patients' compound. It had front and rear verandahs that would have enabled male staff to have a clear view through both patient compounds.

Repetitive exercises

The repetitive exercises element of disciplinary power includes routinisation and automation of behaviours in which the same stimuli provoke the same response each time. The physical evidence from these excavations does not provide information on the use of repetitive exercises as a strategy of control.

Detailed hierarchies

The complex chain of authority at the Lazaret is visible in the layout of the central staff area. At the centre of the Lazaret was the Superintendent’s residence. In a straight line from the centre to the periphery of this administrative area are the Superintendent’s residence, the Matron’s residence, the Registered Nurses’ residence and then finally the male attendants’ quarters. The layout of the staff quarters reinforces the social positioning of each category of staff and ensures a system whereby each staff group physically overlooks all those beneath them (even when off-duty) and the arrangement ensures that each group is aware of who watches over whom.
This hierarchical arrangement is also apparent in the lack of contrast between artefacts from the male attendants’ and the male patients’ places. The artefact collections from both these male places are virtually the same. Thus, male attendants may be seen as more closely related, in a hierarchical sense, to the male patients than to the other staff categories. This could be tested further by archaeological analysis of places related to other staff categories. Inmate labourers and male attendants would have undertaken similar tasks around the Lazaret and the artefacts from both places indicate that the same recreational pursuits were enjoyed.

Normative judgement

At the Lazaret the definition of ‘normal’ resided with the Medical Officer, Superintendent and Matron. Their definition of ‘normal’ was always with the patients. As noted above, the Surgery is in the centre of the three patients’ compounds. It was the one place on the Island where the patients had an opportunity to prove they were eligible to leave the Lazaret (by way of a series of negative skin smears). It was also the place from which, until the invention of sulfonamides, patients would inevitably learn that their incarceration would continue. This ritualised enactment of staff power occurred every month. It is also not by accident that the Surgery is the highest building in the Lazaret. It is built on the tallest stumps and has verandahs on three sides so that the Medical Officer and Matron could oversee the entire Lazaret.
One explanation for the relative abundance of medical and laboratory equipment associated with Site 34 is that Hut 34 was used as a temporary laboratory (see page 272). If this was indeed the case then even the places that the patients felt they had some control over, their own huts, had the potential to become part of the system of normalising judgment.

Other artefacts played an active role in reinforcing concepts of ‘normal’ and ‘deviant’. The presence of the Queensland Government crest in black on all the plain white tableware used by the staff and patients would be a constant visual reminder to the patients of their status as the object of paternalistic endeavour, and to whom they owed their isolation and institutionalisation. It would act to continually reinforce their relationship with the staff, the agents of the paternalistic Government.

Affect

The affective component of paternalism is the emotional relationship that exists between the paternalists and the objects of the paternalism. The layout of the Lazaret with the Superintendent’s house and Matron’s house located side by side in the centre of the panopticon allowed these people at the summit of the hierarchy to survey all of their good work. They could gain pleasure from the orderly layout of the Lazaret and their place at its very centre. In one sense they could be seen as the ‘mother’ and ‘father’ of the Lazaret.
Little evidence for the affective component of the paternalism was supplied by the excavations. The presence of musical instruments and radio parts may indicate that the staff enjoyed seeing the patients enjoying themselves.

DISCUSSION OF THE PHYSICAL EVIDENCE

The story of Hansen’s Disease and paternalism told here is from an historical archaeological perspective and, consequently, it differs from the stories of Hansen’s Disease or paternalism available elsewhere. Using an archaeological approach to understanding paternalism emphasises particular aspects, namely spatial relationships and the provisioning of material items. Often, studies of paternalistic institutions tend to concentrate on the affective component and emphasise hegemonic aspects of benevolent or autocratic control (e.g. Dube 1995; Eskew 1992; Walker 1998; Woodruff 1994; Young 1993). This archaeological investigation, on the other hand, found it difficult to access these types of information.

The spatial arrangement of the Lazaret and the provisioning of the place are both symptomatic of the establishment and maintenance of boundaries between the Lazaret and mainstream society and within the Lazaret itself. The positioning of the Lazaret on the physical edge of mainstream society creates a tangible boundary across which all provisioning must occur. Differences in the availability of material items on either side of the boundary are themselves evidence for the existence of the boundary.
The creation of boundaries and bounded space, both external and internal to the Lazaret, are detectable archaeologically and allow a unique perspective on the paternalism of the place. It is a truism that space is a social construct, and the examination of the construction of social space has become a major archaeological past-time (e.g. development of agriculture, development of city-states, origins of civilisation, plantation archaeology). It has also been the target of many social geographers (e.g. Anderson and Gale 1992; Hoggart and Kofman 1986; Sibley 1992, 1995; Stein 1995).

From an archaeological perspective there are four types of social space that are accessible by archaeological investigation (Thomas 1990:466-467):

1. Individual space, reflected in the attribute level of the archaeological record;
2. Small group space, where material residue patterns are generated by ‘members of minimal groups of interacting individuals’;
3. Household space, wherein spatial patterning occurs at a community level; and
4. Society level, that allows for the reconstruction of social organisation and settlement pattern.

The Peel Island Lazaret provides evidence for small group space and household space as it is the product of a small community operating in some degree of isolation from the wider community. Although broader statements related to social organisation can be generated from the archaeological material from the Lazaret, it will only really help to illuminate the understanding of space at the society level once a number of similar
institutions within the Australian context have been analysed.

A large body of anthropological literature exists on the symbolic nature of boundaries and borders (e.g. Barth 1969; Cohen 1986; Michaelsen and Johnson 1997; Wilson 1993) and on the nature of national borders (e.g. Donnan and Wilson 1994). Humans create divisions in the continuity of nature that can be seen in the unitisation of time and space. This process may be a cultural universal (Leach 1976). Dividing nature into discrete pieces is at the centre of ‘structuralism’:

The phenomena which we perceive have the characteristics which we attribute them because of the way our senses operate and the way the human brain is designed to order and interpret the stimuli which are fed into it. One very important feature of this ordering process is that we cut up the continua of space and time with which we are surrounded into segments so that we are predisposed to think of the environment as consisting of vast numbers of separate things belonging to named classes, and to think of the passage of time as consisting of sequences of separate events (Leach 1974:21).

This divisioning of the environment manifests itself in the search for binary pairs, such as diseased:not diseased, inside:outside etc. Divisions at the Lazaret can be easily identified as binary pairs: inside:outside, white:coloured, patient:staff, female:male (e.g. Ross 1994).

For this study the importance of the divisioning of the environment is that at each division a boundary is created. These boundaries become imbued with meaning. ‘The crossing of frontiers and thresholds is always hedged about with ritual, so is the transition from one social status to another’ (Leach 1976:35). In moving to the
Lazaret, social actors in everyday society were transformed into inmates within an institution (deviants). This transformation was both a spatial and social transformation. To achieve this change required that the person proceed through a number of stages that removed them further and further from the life they knew. This process often involved being placed in police custody, being moved by special arrangement to Brisbane (e.g. police carriage on a train or special housing built on the deck of government boats (QSA WOR/Leper Lazaretto Peel Island Batch: 2230 of 1907)), leaving the mainland, crossing the water of Moreton Bay, disembarking at a specific point in the boundary of the Island (the jetty), transfer to a horse drawn cart and finally reception at the Lazaret. This process also required a change of jurisdiction from the Police to the Health Department. Once officially received at the Lazaret the person became an ‘inmate’ (later a ‘patient’), they were stripped, supplied with a clothing issue, ascribed a colour (‘coloured’ or ‘white’) and then moved to the hut prepared for them (Berthelson and Ross 1996). The compound in which they were to live was based on their newly ascribed status.

There were four levels of spatial and social boundaries operating at the Lazaret, namely the Island itself, the boundary of the Lazaret, the compounds and finally the huts. The Island acted as a boundary and a filter through which authorised people, sanctioned materials and, less frequently, illicit materials moved. The edge of the Island acted very much like a cell wall, filtering the materials that moved between the

2 For coloured patients, jurisdiction changed from the Department of Aboriginal Affairs to the Police and then to the Health Department (Kidd 1997:113).
outside and inside of the structure. It acted in the same ways that walls of jails and psychiatric hospitals work, but without the strong visible presence (solid brick or barbed wire) that such walls create (Cohen 1985). The edge of the Island is a natural boundary that became laden with cultural meaning. It was both a physical and psychological boundary with specific entry points and rituals of transition. During the operation of the Lazaret members of mainstream society did not visit the Island for any purpose and even after the Lazaret was closed very few people visited (a caretaker was stationed there and school groups visited after 1969 (Ivett 1977)). In 1993, my mother-in-law, with 50 years of nursing experience in Queensland, could not accept that I would voluntarily choose to work on Peel Island. The boundary continued to exist in her mind 34 years after the Lazaret ceased to function.

Although the Island boundary is a natural feature, the decision to place the Lazaret (and Quarantine Station and Inebriates Asylum) on the Island can be seen as a deliberate attempt to make the deviants completely invisible to the rest of society. It is designed to deter escape attempts and to ensure the isolation of the inmates. Because this boundary is more than physical its characteristics, size and shape differed depending on group membership at the Lazaret. The white male patients were allowed fishing boats and a jetty for their use was built at the northern end of the Lazaret. For the white male patients, then, the Island-wide boundary extended far out into Moreton Bay. For the white female patients, however, the edge of the Island was marked by the landward side of the fringing mangroves. For the staff the boundary existed only during the period of their rostered days on. They could easily move in
both directions through the boundary, at specified times. No matter which group a patient belonged to, they seldom were able to move through this boundary. The 250 people who died at the place were never able to pass through.

The second level of boundary is the edge of the Lazaret on the Island. To the north and west, the edge of the Island forms the boundary and to the south and east it is marked by access roads, although this was not the case in the early days. The Lazaret boundary is completely invisible to the outside world and during the operation of the Lazaret was not marked by any physical fence (although early plans for such a fence exist (QSA WOR/Leper Lazaretto Peel Island Batch: 2610 of 1906)). Berthelson and Ross (1996) make it clear that although the boundary was not visible, it was marked by the edge of the settled areas and that although the patients had access to all the Island in theory, this was not generally allowed by the staff in practice. Patients were encouraged not to leave the area of the Lazaret buildings.

The Lazaret boundary is the most detectable archaeologically for it is the Lazaret boundary through which all people and material items must enter and leave. The archaeological evidence for this boundary exists in the difference between materials available at the Lazaret compared to those available outside the Island (as discussed earlier in this chapter), the limited choices available in material goods such that only particular types of items got through, and in the differences observed between the compounds.
The third level of boundary is the compounds within the Lazaret. These boundaries were clearly delineated by fences and paths. The compounds were physically separated and occupants of each compound were discouraged from entering different compounds except on official business. This internal boundary was the most strictly regulated, although only for the patients. The staff were free to move across this boundary without censure, in fact they were expected to.

The final level of boundary were the huts and living quarters of the staff and patients. Patients had some control over which patients could access their huts and through informal channels had some control over staff access (Berthelson and Ross 1996).

Traditionally archaeologists use material culture to understand the meanings of social boundaries. This is often based on stylistic or technological variation (Stark 1998). This is not applicable in the Peel Island situation as the inhabitants did not create the material culture they used. They also had very few, if any, choices as to the material culture they could access. They were limited in their choices by factors external to their own lived experience prior to entering the Lazaret and factors external to the Lazaret itself. The distanced controllers of the Lazaret (officers of the Health Department and the Works Department) determined the quantity and quality of materials that were supplied to the place. The Lazaret then can be seen as a ‘landscape of exclusion ... [where] ... power is expressed in the monopolisation of space and the relegation of weaker groups in society to less desirable environments’ (Sibley 1995:ix). So, the Lazaret can be seen to be located on the edge,
geographically and psychologically, of mainstream society and is excluded to Peel Island. On the Island the coloured patients are further excluded from the most desirable environment. The white patients occupy the more desirable areas towards the edge of the Island with views across Moreton Bay, access to the water’s edge and the chance of catching sea breezes. The coloured patients are relegated to the rear of the Lazaret, away from the coast and located close to the swamp (the mosquito breeding ground). Staff, as whites, occupied an area in the white half of the Lazaret; however, understanding the staff areas is enhanced by overlaying the panopticon concept (noted previously). So although the staff were white and located within the white areas they were still able, or had the potential to, maintain a constant line of sight across the coloured patients’ compound.

While the boundaries of the place were tightly controlled and monitored they were more flexible than those of other total institutions, such as jails or monasteries. The disciplinary control of the Lazaret was not absolute. There was an internal dynamic to the functioning of the place that resulted in the movement of some illicit materials and people across the internal and external boundaries. This may have been because:

- The patients were not criminals, although they often felt as if they were (Ludlow 1992:61);
- They were not poverty stricken and were not forced by courts to the charge of Benevolent Asylums (Goodall 1992);

3 The staff that lived at the Lazaret were all white. Some Aboriginal women worked as nurses’ aides and commuted daily from Dunwich (Mr Shane Coghill, Quandamooka Land Council, pers. comm. 1993).
• They were not to blame for their medical condition. This was not true for the coloured patients, however, as many mainstream white Queenslanders felt that Asians and Islanders were responsible for the introduction of the disease (Evans et al. 1993);

• Staff worked extended rosters on the Island (see Chapter 3) and some intimacy may have developed between the staff and the patients. This is true of many institutions and the power differential between staff and patients often leads to inappropriate relationships (e.g. Select Committee on the Hospitals of the Colony 1866);

• The lifestyle on the Island was believed in mainstream society to be one of a subtropical idyll (see Ross 1994, Telegraph 22/10/1946). I have demonstrated that this is far from the case with boredom being the major component of the lifestyle. The patients were not expected to work, there was very little else for them to do and the recreational pursuits available became routinised and timetabled; and

• The lack of support from the Health Department for the management of the Lazaret may have meant that a degree of co-operation was required between the staff and patients so as to make life bearable. The staff and the patients may have had other things in common as well. The male assistants at the Lazaret occupied the lowest staff category and in the mythology of the place are often portrayed as drunkards and slackards (Berthelson and Ross 1996:39). It is possible that they felt that in many ways they were as much trapped on Peel Island as were the patients. Nobody on the outside would wish to know of staff, patient or family connections to the Lazaret (Courier Mail 18/1/1999; Mr Robert Islaub, former
male attendant, Peel Island, pers. comm. 1995; Ann McGregor, former Registered Nurse, pers. comm. 1998; Rosemary Opala, former Registered Nurse, Peel Island, pers. comm. 1998). The use of inmate labour to undertake some of the more menial tasks also put the male assistants and these particular patients on a more even footing.

The Lazaret was a product of its time, although the time lag involved in closing the place after effective medications became available suggests that the community was still not comfortable with the idea of Hansen’s Disease. In fact, in 1999 the stigma persists; a north Queensland man did not reveal his family connections to Peel Island when diagnosed with Hansen’s Disease in 1998 (Courier Mail 18/1/1999).

As can be expected in this archaeological approach the physical aspects of paternalism have been emphasised. Most texts on paternalism deal with justification of the practice or the difference between ‘hard’ and ‘soft’ paternalism. I have tended to concentrate on the spatial and provision aspects (the physical aspects) of paternalism and demonstrated that they can be used as a valid way of getting at an understanding of the way the system operated.

CONCLUSION

In this thesis I examine the paternalism and disciplinary power expressed at the Lazaret. Just as different types of documents are better able to address particular
aspects of paternalism than others (see Tables 2 and 3) the same is true of the archaeological record (Table 103). There are some areas, such as spatialisation, that are best accessed archaeologically.

Table 103. Paternalistic Elements Accessible from the Archaeological Record

<table>
<thead>
<tr>
<th>Archaeological Record</th>
<th>Paternalistic Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey Results</td>
<td>Context Provision Protection Control</td>
</tr>
<tr>
<td>Site D1</td>
<td>Context Provision</td>
</tr>
<tr>
<td>Site 34</td>
<td>Provision Control</td>
</tr>
<tr>
<td>Site 39</td>
<td>Provision Control</td>
</tr>
<tr>
<td>Site 71</td>
<td>Provision Control</td>
</tr>
<tr>
<td>Site 80</td>
<td>Provision</td>
</tr>
</tbody>
</table>

The understandings of this paternalism that derive from the archaeological record, centre on the spatial location, arrangement and organisation of the Lazaret and on the provision (and non-provision) of material items. Protection and the contextual and affective components of the paternalism are currently inadequately addressed by the archaeology, and interpretation of these aspects of the paternalism must for the time being come almost solely from the documents. Once archaeological work has been undertaken at comparable institutions along the Queensland coast then historical archaeological analysis will be able to shed more light on at least the contextual component of paternalism and possibly the others. In the following chapter I use all
available records (AR, DR and HDR) to develop an understanding of the character and the role of paternalism at the Peel Island Lazaret and to answer the questions first raised in Chapter 1.
CHAPTER 8

FULL CYCLE

And that’s the way of a real tale. Take any that you’re fond of. You may know, or guess, what kind of a tale it is, happy-ending or sad-ending, but the people in it don’t know. And you don’t want them to (JRR Tolkein 1978 The Lord of the Rings).

INTRODUCTION

In this chapter I look back to the start of the dissertation to determine the understandings that have been gained and the future directions for study. I use the same structure as Chapter 1 but deliberately reverse the order. In this way the cycle of thesis is closed (Figure 37) by an examination of the value of the methodology, possible answers to the six questions posed on page 26, and the impacts of the research on the five concerns of the dissertation discussed between pages 6 and 26: my background; historical archaeology; paternalism; the twentieth century; and health institutions.

METHODOLOGY REVISITED

This thesis is as much an investigation of a methodology as it is an examination of lifeways at the Lazaret. Archaeologists rightfully use all types of records they can
obtain (archaeological evidence, diaries, journals, ethnohistory, ethnology, ethnoarchaeology, environmental, geological, geomorphological etc.) to aid interpretation of the archaeological phenomena encountered. Most archaeological investigations, therefore, use multiple and disparate data sets, yet until recently only historical archaeologists have grappled with the interconnections between these
different records (but see Kepecs and Kolb 1997 and Knapp 1992). Prehistorians have tended to use all these records without analysing the multiple data sets. They indiscriminately use individual details from the various records without consideration of the character and nature of those records as ‘prehistorians have no defined place for historical documents’ (Leone 1992:130). Conversely in historical archaeology the largest proportion of theorising effort has been dedicated to just this problem (e.g. Beaudry 1988; Beaudry et al. 1991; Kosso 1993; Kowalewski 1997; Noël Hume 1969; Schuyler 1978b).

All archaeologists use hermeneutic devices for the interpretation of their data. But as ‘no interpretation is possible until interpretation has begun’ (Scranton 1982 in Hodder 1992), it is essential to ensure that the original basis (context) for the interpretation is legitimate. To maintain such validity throughout this thesis I extend the methodology proposed by Kosso (1991, 1993). To do this, the written records of the Peel Island Lazaret are divided into those written at the time, the Documentary Record (DR), and those written after the closure of the Lazaret and looking back upon it, the Historical Documentary Record (HDR). It is obvious that the DR and HDR differ contextually and that both can offer different yet equally legitimate starting points for interpretation of the archaeological record.

1 Behavioural archaeologists have tackled the interrelatedness of the environmental and archaeological records.
Although prehistorians use hermeneutic devices all the time they do not make this use explicit. In all probability they are unaware that they are using these cycles to interpret their sites; but they are (hermeneutics explains the way interpretation occurs - it does not prescribe it). This implicit process works in much the same way as post-processualists giving much more credence to solid scientific data than to their stories of the past and hence perpetuating the processual approach they proclaim to despise so much (Clark 1991:427; Tschauner 1996; VanPool and VanPool 1991).

Hermeneutics is not a circle, it is a cycle, so that archaeologists move cyclically between their data and interpretation and enhance their level of understanding as a result. Knowledge is gained by moving in a cycle built on previous understandings. This can only occur if there is sufficient level of rigour to ensure a solid foundation for the interpretation. In this project each stage of the process has led to new insights into life at the Lazaret. As with almost all archaeological use of hermeneutics, it is difficult to present explicit examples (Hodder 1991:7, 1992:213-240 being notable exceptions). The methodology used in this dissertation has however, proven valuable in allowing use of the written records and the archaeological record in the interpretation of the Lazaret. It has ensured that the contextualisation of any meanings derived from the archaeology has a valid footing.

An illustrative example of the way this methodology operates to interpret the archaeological and written records is provided in the problem of the missing beer
bottles, (see page 343). References in the HDR create the impression that a culture of alcoholism existed at the Lazaret:

- ‘So, faced with ... alcoholism, and threats of bodily harm, Dr Row sought help from the Government’ (Ludlow 1991b:19-20, 1995b:105);

- ‘two bottles of altar wine ... someone “got to them” and ... drank them dry’ (Ludlow 1991b:57); and

- They ‘thought being Hansen’s Disease patients put them outside the law. Alcohol was the main problem’ (Ludlow 1991b:20-21, 1995b:106).

The DR tells us that beer was available for issue to the white patients at a rate of one pint per day (see page 102) and that extra beer was issued for special events, such as Christmas. Although it was customary practice in the first half of the 20th century to return empty bottles to the supplier for re-use, it was also common that materials that entered the Lazaret stayed within its boundaries. Quarantine laws governing the movement of people and materials were applied to the Lazaret (see page 121). The empty bottles almost certainly would not have been removed from the Island.

On locating Site D1 I thought I had indeed found the archaeological expression of this high level of alcohol consumption at the Lazaret. However, subsequent analysis led to a re-interpretation of the data. Site D1 is the major dump for bottles and contains almost all the known alcohol bottles at the Lazaret. Some bottles are found in small numbers scattered about the Lazaret’s perimeter zone but Site D1 contains the concentrated remains of the beer drinking behaviour. There are 12,420 beer bottle fragments found in the six square metres of Site D1.

2 Coloured patients were not issued alcohol.
As beer was only issued to white patients they are the only patients considered in the following analysis. The average number of white patients per year in the Lazaret was 30.98 (calculated from Blake 1993:61). Therefore over the 52 years of the Lazaret’s operation (including leap years) up to 588,403 beer bottles could have been used and discarded at the Lazaret (based on one bottle per person per day, and this figure excludes beer consumed by staff).

A one pint beer bottle in Site D1 weighs an average of 979.81 g (calculated from the data in Chapter 5) and the average beer bottle fragment weighs 33.71 g. The average bottle, therefore, is represented by 29.07 fragments. The 12,420 fragments excavated from Site D1 therefore represent approximately 427.24 beer bottles. This result matches extremely well with the MNI of green beer bottles based on rims (395 bottles) or kicks (419 bottles). Extrapolating the result from the six squares across the entire dump (100 m long by approximately 6 m wide) results in 42,724 beer bottles in the dump. Dividing this by the 52 years of operation of the Lazaret yields 821.61 bottles per year or 2.25 bottles per day which is equivalent to 0.07 beer bottles per person per day. This represents only 7% of the possible beer issue to patients. The percentage would be even smaller if the issue to the staff was included; however, this has not been attempted as it is difficult to estimate the average number of staff as the DR of the staff at the Lazaret is far less complete than for the patients.

If all the unidentified green glass in Site D1 is included in the count of beer bottle glass and is added into the equation, the number of beer bottles in the site actually
decreases due to the reduced average weight of glass fragments and the concomitant increase in the number of pieces required to make a complete bottle. All the green unidentified and beer bottle glass together total 503.58 bottles per year or 1.38 bottles per day or 0.04 bottles per person per day. This represents 4% of the possible beer issue.

If the dump was used for less than the full length of time of the Lazaret's operation then the numbers raise slightly but not significantly. For example, if the dump was only used for 40 years (and with calculations based only on identified beer bottles so as to maximise the number) then the number of beer bottles per person per day rises to 0.09 or 9% of the minimum possible issue.

In fact the total of 42,724 beer bottles is equivalent to just under four years (1,379 days) worth of standard issue. There are 48 years worth of beer issue unaccounted for. The survey demonstrated that the bottles have not been discarded elsewhere on the Island. The most probable explanation is that this beer was not issued. Therefore up to 93% of the possible beer issue at the Lazaret was not issued.

Other explanations for the missing beer bottles exist:

- There are dumped elsewhere on the Island. There would need to be 13 other dumps the same size as D1 or a second bottle dump 13 times the size to account

3 There is no evidence to suggest that the dump was not used throughout the entire duration of the Lazaret's operation. The presence of ring seal and 'A van Hoboken' bottles indicates an early date for the start of its use.
for all the missing bottles. If such dumps existed the caretakers and rangers would know of them and they would have been recorded during the survey. The recording of Dump 3, which is quite small compared to Dump 1, during the survey demonstrates the success of the survey strategy in identifying such places;

- The dump was periodically removed into Moreton Bay. There is no evidence in either the DR or the HDR to suggest that this occurred. The mangroves in the vicinity of Site D1 would need to be removed and a channel cut through the shallows for this to occur. There is absolutely no physical evidence to support this proposition;

- The male patients disposed of the bottles into the Lazaret gutter whilst fishing. Although this is quite likely to have happened, the gutter is shallow and narrow and is largely exposed during low tide and there is no visible evidence for the deposition of large numbers of bottles; and

- The bottles were illicitly removed to the mainland by staff to sell. This is also a reasonable assumption to make as recycling bottles was a common practice. There are over 567,000 bottles unaccounted, however, and it is unlikely that the staff members who only left the Island once every five weeks (see page 126) where able to smuggle such large quantities.

So, the DR assists in interpreting the presence of a very large number of beer bottle sherds at a hospital. It is explained by the 'provision' component of the paternalism of the place (as identified in Chapter 3). The HDR however takes it further than simply stating that there is a small daily issue of beer and constructs a story of alcohol
misuse and abuse and a culture of alcoholism at the Lazaret. By separating the two written records it is easy to identify the two different messages. The AR record identified large numbers of beer bottle fragments. The DR allows a way into interpreting these fragments. The archaeological record contextualised in the light of the DR allows more rigorous interpretation of the HDR. The HDR carries other agenda, baggage and messages. The HDR over-emphasises the role of alcohol at the Lazaret. Far more beer could have been issued and alcohol related problems could have been far greater than they actually were. This completes one circuit of the interpretive cycle.

So why does the HDR over-emphasise the role of alcohol? The HDR for the most part concentrates on sensational episodes such as murders (Berthelson and Ross 1996:40), escapes (Ludlow 1991b:22), boat burning (Ludlow 1991b:22), arson (Ludlow 1991b:30), prostitution (Ludlow 1991b:19) and other abhorrent behaviour. It does not tend to deal with the mundane. Single episodes become apocryphal through time and are repeated in every account of the place until the cumulative image obtained is one of vice. The descriptions of alcohol abuse in the HDR almost certainly relate to the extra-ordinary rather than the everyday.

This is one example of the application of the methodology to enhance understanding about the functioning of specific aspects of the Lazaret. The methodology is also applied at a broader level, as the responses to the questions raised in Chapter 1 demonstrate.
THE QUESTIONS

In Chapter 1 I posed six main questions of the written and the archaeological records of the Peel Island Lazaret:

1. What do the voiceless people of the Peel Island Lazaret have to say about their lives in a government institution?
2. What are the material and written evidences for paternalism at the Peel Island Lazaret?
3. What are the characteristics of paternalism (and disciplinary power) as expressed at the Lazaret?
4. What are the social relationships between the different groups and how did they manifest?
5. What role did pollution play in creating and maintaining the external and internal boundaries of the place?
6. How can evidence from the Lazaret inform on health care delivery in Queensland in the 20th century?

These questions have been addressed throughout the thesis through the examination of the different records. Now I draw together the different sections and provide summary answers to each.
Question 1 - What do the voiceless people of the Peel Island Lazaret have to say about their lives in a government institution?

All the people at the Lazaret, whether inmates or staff, left records of their presence there. For some this was in the form of written documents either penned themselves or written by the staff about them. All the occupants left traces in the archaeological record. For the most part it has not been possible to identify individuals in the archaeological record of the Lazaret even though the archaeological identification of individuals has been an objective of both processual (e.g. Deetz 1967; Carlisle and Gunn 1977; Hill 1978; Hill and Gunn 1977) and post-processual (e.g. Hodder 1991:9, 73) archaeologies. Processual archaeologists have attempted to identify stylistic variation in the products of individuals in both prehistoric and historic times (e.g. Adovasio and Gunn 1977; Gunn 1977). Post-processual archaeology places some degree of emphasis on the individual in archaeology, not so much to learn about the actions of specific individuals but rather as a mechanism for the integration of meaning and agency into archaeological theory. Individuals use material culture as a resource and as a sign system 'in order to create and transform relations of power and domination' (Hodder 1991:9).

Although for the most part individuals were not personally identifiable in the Lazaret's archaeological record, that record was constructed by the actions of numerous individuals acting in concert to maintain their community. In this sense all the people

The dissertation research questions relate to groups rather than individuals, although Sites 39 and 80 were targeted in part because the last occupants of these huts were identified in the HDR.
at the Lazaret left some record of their occupation there. Information concerning the lives of these groups of people is accessible even if they did not produce any written records themselves.

From the HDR, the DR and the archaeological record the primary interpretation of the life of the occupants, whether staff or patient, is that they lived a boring, scheduled round of sleep, meals, medication, alcohol and surveillance. There was very little purposeful or directed activity and patients were pretty much left to fend for themselves within a set of regulations and timetables. I view the general paucity of artefacts in association with the patients’ huts as a genuine reflection of the paucity of materials supplied to the patients. The archaeological record contains little variety or richness because the peoples’ lives did not contain variety or richness. The DR records numerous examples of the supply of material and equipment either for or to the patients; however, the archaeological record demonstrates that the materials that were supplied did not vary through time and were inevitably the cheapest product available.

References to surveillance of the patients are very scarce in the DR (e.g. see page 118); however elements of the HDR (e.g. Berthelson and Ross 1996:30-48) make it clear that patients felt constantly under observation. This view contrasts with Ludlow (1993:14-16) who describes the typical daily tasks of the staff and the only interactions described between staff and patients are of medical or nursing interventions. The archaeological record can be interpreted quite clearly in light of
the HDR to show that staff and patients lived in bounded and contested spaces consisting of their individual huts located within compounds within the Lazaret on an isolated island. The spatial arrangement of the Lazaret controlled the activities of the patients and ensured that it was possible for them to be continually under observation.

Control of the patients and lower categories of staff was also maintained through all the aspects of disciplinary power, not just spatialisation. It was self-promoting and reinforcing and required little intervention from the distanced controllers to maintain, although when required strong enforcement strategies were used (see page 114).

Question 2 - What are the material and written evidences for paternalism at the Peel Island Lazaret?

On embarking on this project I approached the archaeology of the Lazaret with a ‘vast baggage of theoretical knowledge’ (Hodder 1992:214). Firstly, I assumed that the place was indeed a paternalistically-run institution. This required definitions of institutions and paternalism. I define paternalism (p. 56) as the ‘exercise of freedom-diminishing control by one person over another’ (Kleinig 1984:xii) justified by reasons referring ‘to the welfare, good, happiness, needs, interests or values of the person being coerced’ (Dworkin 1983a:20).

My second piece of baggage is an objective not to justify or condemn the paternalistic practices that occurred at the Lazaret. I want to describe and understand them. To achieve this I apply the different aspects of Foucault’s disciplinary power to the
functioning of the Lazaret. I therefore deliberately use the categories of disciplinary power as an explanatory framework rather than adopt other explanations that exist of the maintenance of control at the Lazaret (e.g. 'social control was enforced ... by gossip, and by threat of sanctions' (Ludlow 1991b:35).

So these then were the basic assumptions underlying my approach to the written and archaeological evidence from the Lazaret. As I defined paternalism in this particular way I was looking for specific types of evidence, the interpretation of which occurred in terms of my conceptualisation of paternalism. Obviously other interpretations of the data can and will exist and I make no attempt to preclude any future interpretation. Nonetheless it is important to understand the principles that underlie my interpretation.

The written evidence is separated into the DR and the HDR based on the origins of the documents. This organisational approach was used so as to understand the different origins of the records and because each group provides different types of information concerning different aspects of the Lazaret's functioning. The DR consists of files from all the government departments that had an interest in the Lazaret or its patients, namely the Department of Health and Home Affairs, Department of Works, Department of Native Affairs (whose primary interest was the loss of control over the financial affairs of Aboriginal patients admitted to the Lazaret (Kidd 1997:113)), Home Secretary's Office and sundry others. The Documentary Record proved most useful in addressing the context, provision and protection
elements of paternalism. The HDR contains a number of autobiographical and/or anecdotal accounts of life at the Lazaret. These records provide a general background to the Lazaret and the times in which it existed. Therefore the HDR proves to be most beneficial in providing information on the context of the place. It provides little information on the daily life and the protection element of paternalism. Both the DR and the HDR provide sparse information on the affective component.

The archaeological record of the occupants of the Lazaret is spread across most of the Island but is concentrated in or near the Lazaret itself. I surveyed the Island and excavated five sites around the Lazaret: four in the central living areas and one in a dump on the perimeter. As can be expected the information from the archaeological record centres on the spatial organisation of the place and in the provision of material items. The contextual and affective components are much less accessible. It has proven difficult to access the affective component of the relationships from any of the records.

Question 3 - What are the characteristics of paternalism (and disciplinary power) as expressed at the Lazaret?

The definition of paternalism used in this thesis is supplied in the answer to the previous question. Figure 3 supplies a schematic representation of the analytical categories of paternalism and disciplinary power that I have applied to the analysis of the Lazaret.
Context

The 19th century saw a major growth in the number of asylums and other institutions in the western world. The Lazaret was planned and built in the first decade of the 20th century as part of a general policy to use islands off the Queensland coast to house institutions for those considered undesirable. At this time control was managed by removing deviants to large-scale institutions. In this way the establishment of the Lazaret was a product of its time and environment.

In total, four islands in Moreton Bay: Peel, North Stradbroke, St. Helena and Bribie, housed government institutions in the late 19th and early 20th centuries. Although they were run by different government departments they were all funded and provisioned in much the same way.

Content

The content of paternalism relates to the material and ideational aspects of the paternalistic relationship. The subsections of content are provision (of materials), protection (of individuals) and control (of behaviour).

Provision

Provision is the element of paternalism that was most accessible archaeologically as it concerns the supply of material items that are eventually discarded to form the archaeological record. The overriding principle in the supply of materials to the Lazaret appears to have been that every patient should receive the same amount of the
same material. A ration and coupon system ensured that each patient received exactly the same amount of tea, milk or beer (QSA COL/322: 827 of 1908) and had the same ration of clothing, although ad hoc exceptions were made to this policy. Individual patients petitioned for exceptional items, such as patient ‘AM’ requesting a better style of hut (QSA WOR/Leper Lazaretto Peel Island Batch: 6287 of 1946) which was refused, or a request from the father of child patient ‘NA’ that the boy have a hut built in a location outside the original compound plan (QSA WOR/Leper Lazaretto Peel Island Batch: 6478 of 1911), which was approved.

The archaeological record indicates that single suppliers were preferred for the routine items supplied to the Lazaret. For one-off expenditure items, however, tenders were called and the government invariably selected the lowest quote. Building materials, services and large equipment purchases such as the electricity generators (QSA WOR/Leper Lazaretto Peel Island Batch: 2519) or the supply of small items such as a movie projector (QSA WOR/Leper Lazaretto Peel Island Batch: 326 of 1946) were purchased in this way.

The primary elements of the Documentary Record are the files of the Health Department and the Works Department. These files provide information on health, hospital and nursing supplies and on building and architectural supplies respectively. Information on other areas of provisioning (such as personal items, food and clothing) is not so readily obtainable from these files. This information must come from Site D1.
Excavations of Site D1 were undertaken to determine the quantities and variety of artefacts that entered the Lazaret (the ‘artefactual universe’). Site D1 yielded 37,265 food and beverage artefacts, along with 662 pieces of clothing and 100 artefacts from personal items. The personal artefacts include evidence for the use of vases, clocks, radios, musical instruments, perfume and fishing lines. Of the food items almost all were glass (98.5%) and of these 42% are alcohol-related. Those that are not alcohol containers are either drink (such as milk, cordial or mineral water) or condiment (such as chutney, jam, pickles, sauce or vinegar). There are only 183 metal food artefacts and almost all are from tin cans. The ceramic food artefacts are almost all tableware (99.4%) of which only 36% are decorated in some way. The remainder are completely plain and represent the tableware used by the patients in the dining rooms (if male) or their own huts (if female).

Given the use of the incinerator for the disposal of Lazaret waste it is surprising that 662 items of clothing survive in the excavated part of the dump. If the pattern continued across the dump then in excess of 66,000 pieces of clothing are located there. The surviving clothing items are made of leather, metal, plastic and shell. Almost all (98%) are pieces of shoes, and all of the same design, being lace-up black leather, except for a small child’s sandal in white leather.

The universe of artefacts unearthed in the dump indicates the plainness, sameness and conformity of the material culture component of the lives of the people at the Lazaret. Provisions were basic, tableware was plain, there was little or no choice in foods,
beverages and condiments. The lack of personal items show how little material penetrated the boundaries of the Lazaret. Some items, however, did penetrate them demonstrating that they were not impervious and that informal channels for the movement of goods existed.

Another major characteristic concerning the provision of materials and care at the Lazaret was that all patients were considered to be public patients, and therefore the government's responsibility. There is not a single account in either written record of the existence of private patients. Queensland has a long history of providing free public hospitals (Prangnell and Hall 1999), but in virtually every other area of institutional care the option to pay for private facilities existed. For example, at the Inebriates Asylum that operated on the opposite side of the Island between 1910 and 1916, private patients, even if incarcerated by the courts, paid one guinea per week for board and lodgings (Ludlow 1995b:101). However at the Lazaret all patients were treated the same, incarcerated against their will, possibly for the remainder of their lives, they were not expected to pay their way. Even if they had a private income, no extra facilities were available.

One major area of difference in the provision of materials and accommodation was between the white patients and the coloured patients. There were major differences in the style of huts provided and in the bathroom and dining room facilities provided for the two groups. The division of people by colour was an institutionalised part of the system and reflected widely held social policy and expectations.
Protection

The government took seriously its role to protect the moral health of its charges and constructed high fences around the compounds and instituted a night time curfew. Churches were supplied and clergy with parishes that included the Bay Islands visited the Lazaret (Ludlow 1995a). This moral protection did not extend to the effects of alcohol and tobacco which were both issued by the Health Department to the patients. By far the greatest single artefact type unearthed at the Lazaret is alcohol bottle sherds; they represent 13% of the entire cultural assemblage.

Control

The Lazaret was established to control behaviour. Its sole purpose was to exclude particular individuals from participating in mainstream society. Control was established by the formal use of legislation to establish the Lazaret and restrict the behaviour of patients and their relatives. Once the place was established, control was maintained by the application of disciplinary power.

Spatialisation

Spatialisation was implemented at the Lazaret using a complex series of boundaries and with the application of a panopticon-like distribution of staff and patient areas. The methodology used in this thesis has enabled an enhanced understanding of the distribution of the people, huts, compounds, zones and boundaries within the Lazaret. This had not been understood in the HDR. Without an historical archaeological approach it is unlikely that this advance would have occurred. The negotiated use of
space to create and maintain relations of power have been studied and categorised by historical archaeologists and others (see Delle 1999:15-17 for a summary). This body of work has shown that 'space is not merely a natural phenomenon but is produced and manipulated by human beings for specific purposes' (Delle 1999:16). The patients and staff of the Lazaret, likewise, were not static actors operating within a space allocated to them. They created and re-created the spatial arrangement and meanings of the Lazaret. Spatial relationships did not remain constant as the use and meaning of particular buildings, compounds and zones changed through time.

Minute Control

The minute control of inmate activity is achieved by the implementation of routine timetabling and strictly enforced rules. The Lazaret was less strictly controlled in this sense than other, more total institutions; the DR and HDR document, however, that meals, medications, skin tests, roll calls, 'lights out' and visits were strictly timetabled. Although this technique was of less importance at the Lazaret than elsewhere it was still an important component of the strategies of control. The archaeological record contains very little evidence of the minute control of activity (see pages 348-349).

Repetitive Exercises

Repetitive exercises lead to routinisation and automation of behaviours within an inmate population. The HDR suggests that the routine of the Lazaret was primarily one of boredom and monotony (e.g. Berthelson and Ross 1996; Ludlow 1995b:106). The archaeological record does not shed light on this element of control except that it
showed that the recreational options for patients were extremely limited and supports a view of boredom and tedium.

Detailed Hierarchies

'Detailed hierarchies' relates to the complex chain of command that exists within institutions. The construction of space at the Lazaret meant that the physical positioning of particular staff members' quarters was directly related to group membership, such that the Superintendent and the Matron's quarters were in the centre and the male attendants' quarters were on the periphery. The spatial arrangement mirrors the social arrangement and acts to continually reinforce it.

Normalising Judgement

That no areas of the Lazaret were exclusively patient areas meant that the potential existed for patients to remain under the gaze of the staff at all times. The realisation of this potential led to the accumulation by the Health Department of over 250 m of patient records, now housed at the Queensland State Archives. Until the introduction of the new drugs in the early 1950s, progress reports by the Medical Officers were mainly reports on patient behaviour rather than reports on the progress of the disease.

The institution used a number of strategies to constantly reinforce to patients that they were different from the rest of society. Seeing the Queensland State Government crest on your dinner plate, cup and saucer at every meal, for example, would act to reinforce the role of the paternalist provider and to remind inmates of their status in
society: isolated by the government and in turn wholly dependent on the government and the largesse of its agents. It told them every day who had the power to determine that they were ‘normal’ enough to return to society.

Affect

None of the records, written or archaeological, supply much information concerning the affective aspect of paternalism because the institution was run by a government department, more concerned with the financial drain that the Lazaret represented on the Department’s budget than in the care of its charges. The Health Department, though, always felt that it was doing the best job that it could.

Question 4 - What are the social relationships between the different groups and how did they manifest?

The social relationships between the groups at the Lazaret are the relationships of power negotiation and they manifest in the strategies of disciplinary control summarised under Question 3 above. The relationships between the groups have been seen as binary relationships between coloured:white, male:female, and staff:patient (Blake 1993; Ross 1994). However the situation is much more complex than these simple statements make out. These are not, as structural anthropology would have us believe, universals of the human mind but are in fact categories created and maintained within our own culture.
These organising principles related to sex or ethnicity were not in themselves equal. The space at the Lazaret was organised primarily along colour lines such that all the white patients were housed together and all the coloured patients were together. Within the white area the next level of division was staff:patient. Male and female staff, although occupying different buildings, were intermixed within the staff area. In fact, from the very centre (the Superintendent’s house) to the outside of the staff section, the mix was Superintendent (male), Matron (female), Registered Nurses (female), male attendants (male). Only after space was allocated between staff and patients was the division made between male and female. These three principal binary oppositions in fact overlie a complex arrangement of hierarchical distribution and a spatial layout designed (possibly not overtly) along the panopticon principle.

The archaeological evidence suggests that aspects of the lives of male patients and staff had more in common than did those of male and female patients. Male patients and male staff were both at the base of the Lazaret hierarchy and occupied their time in the same pursuits (fishing, smoking, listening to the radio and drinking). The story interpreted from the artefacts is that both patients and staff were trapped on this small island with very little control over the provisioning of materials.

Male staff were higher in the Island hierarchy than the female patients.
Question 5 - What role did pollution play in creating and maintaining the external and internal boundaries of the place?

Concepts of pollution in Christian society obviously played a role in the establishment and maintenance of the boundaries of the Lazaret. The external boundary was maintained by ideas of excluding Hansen's Disease patients from mainstream society. As late as 1946 a State Government Cabinet Minister is reported in a newspaper article as saying 'whether the lepers should be released or not was a vexed question. There was a definite fear in the public mind' (QSA WOR/Leper Lazaretto Peel Island Batch: 1328). The decade-long time lag involved in closing the place after the drugs became available (1947 to 1959) also suggests that the community was still not comfortable with the idea of Hansen's Disease. The stigma persists to the present day (Courier Mail 18/1/1999). By emphasising abhorrent behaviour such as drunkenness, prostitution and murder, the HDR maintains the association of pollution and Peel Island and introduces it to a modern audience.

Other factors, including the self-mediating character of disciplinary power, also acted to maintain the boundaries of the Lazaret. The patients themselves maintained the boundary. Formal legislative vehicles were enacted to ensure the external boundary was not breached by unauthorised personnel; however, this formal power was not really required as the boundary was self-perpetuating and maintained by the fear of pollution and the belief of the patients that their every move was monitored (e.g. Berthelson and Ross 1996).
The contextualisation of the Lazaret as a small part of a policy to use off-shore islands to house institutions to hold the socially deviant demonstrates that considerations of the specific pollution of Hansen’s Disease was not the only factor in the establishment of the place. Pollution associated with any deviancy meant removal to an island institution, be it an inebriates asylum, benevolent asylum, prison, quarantine station or Aboriginal mission.

Concepts of pollution played a smaller role in the establishment and maintenance of the internal boundaries than they did with the external boundary. Other factors such as disciplinary power and racism were the essential factors in the creation of internal boundaries. As has been shown, though, the internal boundaries were located at fixed points in space and the meanings of these boundaries were re-negotiated through time.

Question 6 - How can evidence from the Lazaret inform on health care delivery in Queensland in the twentieth century?

The Lazaret was a hospital, purpose-built at the start of this century. It can illustrate a number of factors related to the delivery of health care in Queensland in the twentieth century:

- The Lazaret was used for the long-term housing of inmates as there was no known cure and no effective treatment for Hansen’s Disease until the 1950s. Nursing and medical staff did not expect the condition of a patient’s health to improve;
• Every patient was removed to the institution by Government order. There were no voluntary patients.\(^6\) This is true of other notifiable diseases (Prangnell and Hall 1999);

• There were no private patients. The government took the financial responsibility to maintain every patient. This is true of other long-stay institutions, such as psychiatric hospitals, however, private hospitals have existed in Queensland since at least 1910 (Sisters of Mercy 1999);

• The government supplied all accommodation, food, alcohol, tobacco, clothing and every other basic need of the patients. There was no apparent concept within the Health Department that the patients may have needs that the government could not meet;

• Racism and sexism were built into the hospital system and were not questioned by the administrators. Large volumes of archival material penned by the coloured patients show their dissatisfaction with the difference in treatment that they received, but no change of departmental policy ever occurred;

• The internal operations of the hospital were kept invisible from the outside world. Only specific individuals were allowed into the Lazaret for specific purposes. The general community could only surmise what was occurring within the institution;

• The staff of the Lazaret were given a free hand to run the Lazaret without much interference from the distanced controllers except in financial matters. The purse strings were always tightly controlled by the central authority;

\(^6\) One voluntary patient lived on the Island in the 1950s. The woman was blind and had no family, so the Health Department allowed her to stay on at the Lazaret even though she was eligible for discharge. This is another example of the \textit{ad hoc} paternalistic decision making process.
• Disciplinary power played a large role in the operation of the place. The layout of
the Lazaret, though at first appearing to be a physical manifestation of racism and
sexism, was in fact a panopticon, and functioned as such; and
• The government allowed public opinion to dictate its policy on Hansen's Disease.
The newspaper article cited on page 388 indicates that politicians were sensitive
to the general feelings in the community rather than to expert medical advice.

It is probable that all these factors can be extended, in some degree, to all Queensland
hospitals and especially to institutions which housed people out of public view for
extended periods, such as psychiatric hospitals and other asylums. Further historical
archaeological investigation of similar institutions will need to be undertaken to
determine the general applicability of these statements. I am currently using this
information in another hospital related research project (see page 8).

IMPACTS ON THE CONCERNS OF THE DISSERTATION

In Chapter 1 I identified five areas that this dissertation impacts upon: my
background; historical archaeology; paternalism; the twentieth century; and health
institutions. I now address each of these to determine changes that have occurred
through this dissertation.
My Background

When I started this research about Peel Island I knew very little about Hansen's Disease, Lazarets or Peel Island. I have a background in Queensland Health institutions and in archaeology and a long-term interest in the expression of paternalistic behaviour. This background directed the research interests of this dissertation. This research has passed through a number of stages:

- On-going research in historical archaeology;
- Research into paternalism and its archaeological expression;
- Learning of the existence of the Peel Island Lazaret whilst working for the Department of Environment and Heritage and undertaking an inspection of the place and deciding to dedicate my PhD research to it;
- Research into Hansen's Disease;
- Research into the DR and HDR;
- Development of a methodology that allowed for the integration and separation of the different data sources;
- The archaeological fieldwork; and
- A long period of artefact description, analysis, data entry and thesis writing.

This process has culminated in an enhanced knowledge of paternalism, the Peel Island Lazaret and historical archaeology, to such an extent that I am now the course coordinator of the only historical archaeology subject offered at the University of Queensland and I have become the manager of the University's cultural heritage consulting company.
Earlier I identified four possible advantages of my background as an employee in government institutions. All four areas did in fact prove to be advantageous: my interest was maintained over many years; I did relate to the role of the staff on the Island; I was able to understand the jargon used in the Health Department records; and I was able, for the most part, to recognise hospital specific items of material culture. I identified only one disadvantage of my background, namely that my research of the Lazaret would show a bias towards telling the story of the lives of the staff. It is difficult for me to judge, however I endeavoured to maintain a balance in the research design, analysis and reporting of the Lazaret.

Historical Archaeology

Australian historical archaeology has tended to concentrate on investigations of technological and architectural development within a colonial economy. This project has effectively demonstrated that ordinary people, the twentieth century and health institutions are valid targets for historical archaeological examination and that valuable data can be obtained. There has been almost no historical archaeology of the twentieth century, possibly because it is considered too recent or that we know about our own society. But as with other centuries and other places, intellectual endeavour has aimed at understanding the role of the powerful or famous and very little focus has been placed on the silent majority and the structures that organised their lives. This dissertation has concentrated on understanding the lives of two groups of people (patients and staff) whose stories would not normally be recorded by history. I have provided some insights into the lives of these silent people.
This dissertation may also be profitable for historical archaeology in the promulgation of a methodology that involves the integration of the logic of processualism with the social and multiple aspects of post-processualism. Recently, as a further rejection of processual principles in historical archaeology, there is a move towards thick description (e.g. de Cunzo and Herman 1997) or story telling (e.g. Praetzellis and Praetzellis 1998). However, description no matter how thick, remains descriptive and intellectually unsatisfying as there is no expansion of the knowledge base on human activity. Rigour is also lost by these approaches:

Other archaeologists ... have sacrificed the quest for empirical knowledge on the altar of hyperrelativism. The return to historicism embedded in this “paradigm” is antiscientific; objectivity is lost in a web of obscurantist symbolism and narcissistic self reflection (Kepecs 1997:194).

There is no way to duplicate any of the evidence produced and no way to know that the starting point for understanding the emic was any more than a mere guess. It is essential that the connections are made explicit and understood, otherwise there is no gain in knowledge. The methodology applied in this thesis provides a mechanism by which the different records of a people or place under study can maintain their epistemological separateness yet still be integrated to obtain a single interpretation.

Paternalism

The physical aspects of paternalism have been emphasised throughout this dissertation. Most texts on paternalism deal with concerns about the justification of the practice (e.g. Archard 1994; Nuyen 1983; Young 1982). I concentrate on the
Spatial and provision aspects (the physical aspects) of paternalism and demonstrate that they can be used as a valid means of understanding the operation of the overall system. The integration of the strategies of disciplinary power into a model for accessing paternalism has proved advantageous for interpreting the role of space and time at the Lazaret.

Twentieth Century

This dissertation has demonstrated that the 20th century is a valid target for historical archaeological research although there is still very little of it done in Australia. Due to the paucity of archaeology of the twentieth century in this country it is impossible at this stage to advance the analysis of the Peel Island Lazaret case beyond the Island until other similar institutions have also been investigated archaeologically. Plans to undertake excavations in the coloured compound at the Lazaret to enable comparisons to be made across another inmate category at the Lazaret, are in an advanced state.

Health Institutions

The analysis of the Peel Island Lazaret has allowed an understanding of the role of control and the use of space in health institutions. These institutions were not so much about curing the sick as about controlling the behaviour of the patients and ensuring that they were kept isolated from mainstream society. The day to day control was enforced by the staff rostered to the Island but the distanced controllers...
of the Health Department bureaucracy maintained a tight financial control over the operation of the Lazaret and the supply of materials to it.

My future research directions relate to a continued investigation of Queensland health institutions. This is to enable a greater contextualisation of the current research and I envisage a program of excavations at the Quarantine Station/Inebriates Asylum that existed on the opposite corner of Peel Island, the site of a WWII American Army hospital, located on the campus of the University of Queensland Gatton College, and Wolston Park Hospital, Queensland’s major psychiatric institution since the 1860s. In addition, I have almost completed an anthropological study of the Prince Charles Hospital (a tuberculosis and psychiatric hospital) in Brisbane’s northern suburbs.

CONCLUSION

There are five major achievements of this dissertation research:

1. The expansion of Kosso’s methodology for integrating different records of the same place and time by dividing the written records into the Historical Documentary Record and the Documentary Record thereby making it easier to disentangle the different messages from the different records;

2. The successful application of the method to the interpretation of a 20th century Australian archaeological site;

3. Demonstration that philosophies, such as paternalism, can be accessed archaeologically;

4. An increased understanding of the spatial and material aspects of paternalism; and
5. An increased understanding of the operation of the Peel Island Lazaret.

The thesis has enabled an understanding of the character of paternalism at the Peel Island Lazaret and an understanding of the role of disciplinary power in maintaining its internal structure. The thesis, however, is not the last word on the operation of the place or on the paternalistic structure of Queensland health institutions. As knowledge acquisition occurs in a cycle of interpretation, this thesis will make the starting point for the next study more sure, more rigorous and less of a 'conceptualised intervention'.
BIBLIOGRAPHY

Cook, C. 1927 *The Epidemiology of Leprosy in Australia.* Canberra: Commonwealth of Australia, Department of Health, Service Publication Number 38.

Courier Mail 18 January 1999 *Leper Hid Family Link to the Disease.*

Davidson, W.S. 1978 *Havens of Refuge: A history of leprosy in Western Australia*. Perth: University of Western Australia.

Department of Health and Home Affairs 1939 *Report upon the Operations of the Sub-Departments of Aboriginals, Diamantina Hospital for Chronic Diseases (South Brisbane), Dunwich Benevolent Asylum, Inebriates Institution (Dunwich), Eventide Home (Charters Towers), Prisons, Queensland Industrial Institution for the Blind, Westwood Sanatorium, and Licensing Commission*. Brisbane: Queensland Government Printer.

Dickens, C. 1908 *American Notes and Pictures from Italy*. London: Dent.

Diocese of Brisbane 1923 *Home Mission Echoes* 53.

du Cros, H. and Smith, L. 1993 *Women in Archaeology: A feminist critique.* Department of Prehistory, Research School of Pacific Studies, Australian National University Occasional Papers in Prehistory No. 23. Canberra: ANU.

Frankland, K. draft *Records Guide Volume 2: A guide to Queensland Government records relating to Aboriginal and Torres Strait Islander Peoples.*

Hodder, I. 1987 Archaeology as Long-Term History. Cambridge: Cambridge University Press.

Jones, D. 1979 *One Hundred Thirsty Years: Sydney's aerated water manufacturers from 1830 to 1930*. Deniliquin: Reliance Press.

Kippen, K. 1993 A Critical Discussion of the View, Often Expressed, that Australian Historical Archaeology is Unlikely to Tell Us Anything that We Could Not Find Out From Documentary or Oral Sources. *Australian Historical Archaeology Course Handbook* pp. 47-53. University of New England.

413

Leach, E. 1976 *Culture and Communication: The logic by which symbols are connected*. Cambridge: Cambridge University Press.

Lennon, J. and Ono, Y. 1972 *Angela*. Essex/Control.

Ludlow, P. 1988 *Peel Island: Paradise or prison?* Stones Corner: Peter Ludlow.

Ludlow, P. 1996 *Moreton Bay People Volume 4*. Stones Corner: Peter Ludlow

Marsden, S. 1993 What’s Wrong with the Twentieth Century? Why has it been ignored by archaeologists. *Australasian Historical Archaeology* 11:142-144.

One Port Construction and Repair Group, Royal Australian Engineers 1990 Exercise Red Dolphin, Peel Island, Moreton Bay Qld. Engineering and Hydrographic Survey.

Pan American Health Organisation 1994 *A World Safe from Natural Disasters: The journey of Latin America and the Caribbean*. International Decade for Natural Disaster Reduction Regional Office for Latin America and the Caribbean.

Pearn, J. and O’Carrigan, C. 1983 *Australia’s Quest for Colonial Health: Some influences on early health and medicine in Australia*. Brisbane: Department of Child Health, Royal Childrens Hospital.

Pearson, M. 1995 ‘All that glisters ...’: Assessing the heritage significance of mining places. Australasian Historical Archaeology 13:3-10.

QSA A29448 Department of Health and Home Affairs Lazaret Control

QSA A29449 Department of Health and Home Affairs Peel Island

QSA A31756 Department of Health and Home Affairs Peel Island Correspondence 1927-1940.

QSA A31757 Department of Health and Home Affairs Peel Island Correspondence 1941-1944.

QSA A31758 Department of Health and Home Affairs Peel Island Correspondence 1945.

QSA A31759 Department of Health and Home Affairs Peel Island Correspondence 1946-1948.

QSA A31760 Department of Health and Home Affairs Peel Island Correspondence 1949.

QSA A31761 Department of Health and Home Affairs Peel Island Correspondence 1950.

QSA A58972 Department of Native Affairs Card Index of Lepers 1923-1939.

QSA Blue Books.

QSA COL/322 Home Secretaries Office Correspondence.

QSA Department of Administrative Services Peel Island Batch 1.
QSA LEP2/1 Department of Health and Home Affairs Peel Island Admission Register.

QSA TR1255 Health Department transfer.

QSA WOR/Leper Lazaretto Peel Island Batches.

QSA Z1167 Dunwich Benevolent Asylum Funeral Register.

Quarantine Act of 1908.

Queensland Electoral Roll.

Queensland Government Gazette.

Queensland Leprosy Act of 1892.

Queensland Times 11 March 1862.

Regulations for the Prevention of the Spread of Leprosy 1897.

Regulations Relating to Leper Lazarets Declared to be Quarantine Areas.

Scott, E.M. 1994 *Those of Little Note: Gender, race and class in historical archaeology.* Tuscon: University of Arizona Press.

Smiths Weekly 12 August 1926.

Telegraph 22 October 1946 *Don’t be Swayed by Old False Ideas of Leprosy.*

Watts, S. 1997 *Epidemics and History: Disease, power and imperialism.* New Haven: Yale University Press.

Young, T.C., Jr. 1988 Since Herodotus, Has History been a Valid Concept?